Wolf Pack

GP: 82 | W: 7 | L: 66 | OTL: 9 | P: 23
GF: 224 | GA: 426 | PP%: 20.28% | PK%: 73.53%
GM : Jonathan Laroche | Morale : 50 | Team Overall : 48
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPAgeContractSalary Average
1Matt LuffX100.00734396647156765926675758254949050580223700,000$
2Hunter ShinkarukX100.00706691636561585650465464555252050550243900,000$
3Blake SpeersXX100.00747083686760615266464663455555050550221667,000$
4Cliff PuXX100.00777287557254564961494462424444050520212742,500$
5Tyler Moy (R)XXX100.00514690657065904558463545376464050520244650,000$
6Emerson EtemXX100.00524385617348334535424962504943050500272550,000$
7Tomas Hyka (R)XX100.00433591704554354849494754473734050490262710,000$
8Maxim MaminXXX100.00524382597248344335384750473734050460242732,500$
9Borna RendulicXX100.004635926469432931403131654537340504402756,500,000$
10Matt TennysonX100.00784886707663645425494563255858050600291850,000$
11Christian JarosX100.00784786637657725325544662255454050590232730,000$
12Matt BartkowskiX100.00746975657259615125444067386465050590313655,000$
13Joey LaLeggiaXX100.00726288686475785446464862464646050590275900,000$
14Kevin CzuczmanX100.00787384667668684925404065394646050580283700,000$
15Mark AltX100.00797483657768764825384264404444050580271700,000$
16Anton Karlsson (R)X100.00736982626963684625374059384444050550234700,000$
Scratches
1Tyler Kelleher (R)X100.00433486745474916255555745606464050580244525,000$
2Henrik HaapalaXX100.00403593654647313335343253463532050420252925,000$
3Jonne Tammela (R)XX100.00364040405735353640363640383230050380222716,112$
4Martins Dzierkals (R)X100.00374343435135353743373743403230050380221700,000$
5Max Zimmer (R)X100.00364040405935353640363640383230050380212650,000$
6Jordy Stallard (R)X100.00333737375833333337333337353230050350222525,000$
7Daniel SedinX100.001920202020191919201919202020200502103926,000,000$
8Simon Bourque (R)X100.00323737376331313237323237343230050360221525,000$
TEAM AVERAGE100.0056497458635253453842415340444305049
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Samu Perhonen (R)100.0038434068373535353535343230050390
2Karel Vejmelka (R)100.0033373576333232323232313230050380
Scratches
TEAM AVERAGE100.003640387235343434343433323005039
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Hunter ShinkarukWolf Pack (Ran)LW81542983-7231519116845211328811.95%45167820.7312820691730000232254.24%11800040.9902001453
2Matt LuffWolf Pack (Ran)RW81313970-47200145165324812339.57%25170921.113253815101151651026.81%27600000.8215000342
3Matt BartkowskiWolf Pack (Ran)D79165268-5082026212417562959.14%181174822.146915641640000109110.00%000000.7800000232
4Blake SpeersWolf Pack (Ran)C/RW82133548-384210163222218741555.96%28140617.16178351550000431055.35%175800000.6803011011
5Christian JarosWolf Pack (Ran)D8183846-5247518185139411015.76%164162620.0821113511460112125010.00%000000.5700010101
6Tobias BjornfotRangersD62112940-395210867914234997.75%94118019.04461063118101590000.00%000000.6800101020
7Cliff PuWolf Pack (Ran)C/RW81192039-47480227160198591469.60%32133516.494482676000010051.26%83500000.5800000201
8Tomas HykaWolf Pack (Ran)LW/RW81191433-54206145242691637.85%11133116.4422418520000180133.33%9000010.5000000300
9Marko DanoRangersLW/RW52141832-15010125108157481178.92%880615.510005260000171237.93%5800000.7900002122
10Kevin CzuczmanWolf Pack (Ran)D8171926-75912519010610937696.42%144135316.71325203800002100100.00%100000.3800302001
11Matt TennysonWolf Pack (Ran)D4341822-2120073435917446.78%6181018.841342256000035010.00%000000.5400000001
12Anton KarlssonWolf Pack (Ran)D8131619-72200109636215514.84%124135116.6901148000080000.00%000000.2800000001
13Tyler MoyWolf Pack (Ran)C/LW/RW8110919-4220238910123329.90%6134416.6021391460001240254.53%77200000.2800000010
14Maxim MaminWolf Pack (Ran)C/LW/RW8131013-368067809126643.30%2082110.140114170004610038.58%74400000.3200000010
15Mark AltWolf Pack (Ran)D4721012152409619447244.55%5570114.9300037000010000.00%000000.3400000003
16Cole BardreauRangersC/RW115510-108027303972412.82%120618.761457260000141153.10%22600000.9701000020
17Borna RendulicWolf Pack (Ran)LW/RW296410-2120113747174012.77%1649116.9301129000020036.67%3000000.4100000000
18Tyler KelleherWolf Pack (Ran)RW10279-1100327327306.25%223523.521125270001310147.44%7800000.7712000000
19Trevor LewisRangersC/RW14088-41001842399310.00%327019.340006360003250049.23%32300000.5900000000
20Joey LaLeggiaWolf Pack (Ran)LW/D10156-240917224144.55%1023523.510118290000240020.00%500000.5102000002
21MacKenzie EntwistleRangersRW11044-126019272315340.00%218616.97000000000170057.14%3500000.4311000000
22Ilya LyubushkinRangersD1011020103120.00%01919.620000000001000.00%000001.0200000000
23Juuso RiikolaRangersD1011000253000.00%52020.170001000002000.00%000000.9900000000
24Anton LindholmRangersD31012207723450.00%66622.080000600009000.00%000000.3000000000
25Mike VecchioneRangersC/RW1101-1002361316.67%11616.6800011000000048.00%2500001.2000000000
26Emerson EtemWolf Pack (Ran)LW/RW1000000012100.00%01515.75000000000000100.00%100000.0000000000
27Henrik HaapalaWolf Pack (Ran)LW/RW7000-2003112140.00%011716.8300002000050030.00%1000000.0000000000
Team Total or Average1193230391621-6925736520461863273377218678.42%10442108917.68426410646114831232196471249.47%538500050.59316427162120
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Samu PerhonenWolf Pack (Ran)3452430.8835.1616980014612530000.61513340101
2Karel VejmelkaWolf Pack (Ran)5723950.8785.5126052023919630210.400154781000
Team Total or Average9176380.8805.3743032038532160210.500288181101


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract Type Current Salary Salary RemainingSalary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10Link
Anton KarlssonWolf Pack (Ran)D231996-08-03Yes187 Lbs6 ft1NoNoNo4Pro & Farm700,000$70,000$0$No700,000$700,000$700,000$Link
Blake SpeersWolf Pack (Ran)C/RW221997-01-02No185 Lbs5 ft11NoNoNo1Pro & Farm667,000$66,700$0$NoLink
Borna RendulicWolf Pack (Ran)LW/RW271992-03-25No200 Lbs6 ft2NoNoNo5Pro & Farm6,500,000$650,000$0$No6,500,000$6,500,000$6,500,000$6,500,000$Link
Christian JarosWolf Pack (Ran)D231996-04-02No201 Lbs6 ft3NoNoNo2Pro & Farm730,000$73,000$0$No730,000$Link
Cliff PuWolf Pack (Ran)C/RW211998-06-03No192 Lbs6 ft2NoNoNo2Pro & Farm742,500$74,250$0$No742,500$Link
Daniel Sedin (1 Way Contract)Wolf Pack (Ran)LW391980-09-26No190 Lbs6 ft1NoNoNo2Pro & Farm6,000,000$6,000,000$0$No6,000,000$Link
Emerson EtemWolf Pack (Ran)LW/RW271992-06-16No212 Lbs6 ft1NoNoNo2Pro & Farm550,000$55,000$0$No550,000$Link
Henrik HaapalaWolf Pack (Ran)LW/RW251994-02-28No165 Lbs5 ft9NoNoNo2Pro & Farm925,000$92,500$0$No925,000$Link
Hunter ShinkarukWolf Pack (Ran)LW241994-10-13No181 Lbs5 ft10NoNoNo3Pro & Farm900,000$90,000$0$No900,000$900,000$Link
Joey LaLeggiaWolf Pack (Ran)LW/D271992-06-24No182 Lbs5 ft9NoNoNo5Pro & Farm900,000$90,000$0$No900,000$900,000$900,000$900,000$Link
Jonne TammelaWolf Pack (Ran)LW/RW221997-08-05Yes186 Lbs5 ft10NoNoNo2Pro & Farm716,112$71,611$0$No716,112$Link
Jordy StallardWolf Pack (Ran)C221997-09-18Yes185 Lbs6 ft1NoNoNo2Pro & Farm525,000$52,500$0$No525,000$Link
Karel VejmelkaWolf Pack (Ran)G231996-05-25Yes202 Lbs6 ft3NoNoNo1Pro & Farm525,000$52,500$0$NoLink
Kevin CzuczmanWolf Pack (Ran)D281991-01-09No206 Lbs6 ft2NoNoNo3Pro & Farm700,000$70,000$0$No700,000$700,000$Link
Mark AltWolf Pack (Ran)D271991-10-17No201 Lbs6 ft4NoNoNo1Pro & Farm700,000$70,000$0$NoLink
Martins DzierkalsWolf Pack (Ran)RW221997-04-04Yes173 Lbs5 ft11NoNoNo1Pro & Farm700,000$70,000$0$NoLink
Matt BartkowskiWolf Pack (Ran)D311988-06-04No196 Lbs6 ft1NoNoNo3Pro & Farm650,000$65,500$0$No600,000$575,000$Link
Matt LuffWolf Pack (Ran)RW221997-05-04No188 Lbs6 ft3NoNoNo3Pro & Farm700,000$70,000$0$No700,000$700,000$Link
Matt TennysonWolf Pack (Ran)D291990-04-23No205 Lbs6 ft2NoNoNo1Pro & Farm850,000$85,000$0$NoLink
Max ZimmerWolf Pack (Ran)LW211997-10-29Yes187 Lbs6 ft0NoNoNo2Pro & Farm650,000$65,000$0$No650,000$Link
Maxim MaminWolf Pack (Ran)C/LW/RW241995-01-13No206 Lbs6 ft2NoNoNo2Pro & Farm732,500$73,250$0$No732,500$Link
Samu PerhonenWolf Pack (Ran)G261993-03-07Yes184 Lbs6 ft5NoNoNo4Pro & Farm700,000$70,000$0$No700,000$700,000$700,000$Link
Simon BourqueWolf Pack (Ran)D221997-01-12Yes195 Lbs6 ft1NoNoNo1Pro & Farm525,000$52,500$0$NoLink
Tomas HykaWolf Pack (Ran)LW/RW261993-03-23Yes160 Lbs5 ft11NoNoNo2Pro & Farm710,000$71,000$0$No710,000$Link
Tyler KelleherWolf Pack (Ran)RW241995-01-02Yes161 Lbs5 ft6NoNoNo4Pro & Farm525,000$52,500$0$No525,000$525,000$525,000$Link
Tyler MoyWolf Pack (Ran)C/LW/RW241995-07-18Yes194 Lbs6 ft1NoNoNo4Pro & Farm650,000$65,000$0$No650,000$650,000$650,000$Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2625.04189 Lbs6 ft12.461,122,043$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Hunter ShinkarukBlake SpeersMatt Luff40122
2Tomas HykaTyler MoyCliff Pu30122
3Borna RendulicMaxim Mamin20122
4Blake SpeersMatt LuffHunter Shinkaruk10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Matt TennysonMatt Bartkowski40122
2Christian Jaros30122
3Kevin CzuczmanAnton Karlsson20122
4Matt TennysonMatt Bartkowski10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Hunter ShinkarukBlake SpeersMatt Luff60122
2Tomas HykaTyler MoyCliff Pu40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Matt TennysonMatt Bartkowski60122
2Christian Jaros40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Matt LuffBlake Speers60122
2Hunter ShinkarukTyler Moy40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Matt TennysonMatt Bartkowski60122
2Christian Jaros40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Matt Luff60122Matt TennysonMatt Bartkowski60122
2Blake Speers40122Christian Jaros40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Matt LuffBlake Speers60122
2Hunter ShinkarukTyler Moy40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Matt TennysonMatt Bartkowski60122
2Christian Jaros40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Hunter ShinkarukBlake SpeersMatt LuffMatt TennysonMatt Bartkowski
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Hunter ShinkarukBlake SpeersMatt LuffMatt TennysonMatt Bartkowski
Extra Forwards
Normal PowerPlayPenalty Kill
Maxim Mamin, Borna Rendulic, Maxim Mamin, Borna Rendulic
Extra Defensemen
Normal PowerPlayPenalty Kill
Kevin Czuczman, Anton Karlsson, Christian JarosKevin CzuczmanAnton Karlsson, Christian Jaros
Penalty Shots
Matt Luff, Blake Speers, Hunter Shinkaruk, Tyler Moy, Cliff Pu
Goalie
#1 : Samu Perhonen, #2 : Karel Vejmelka


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals2020000038-51010000013-21010000025-300.00035810858156459906842836527815443600.00%2150.00%01177250546.99%1117259743.01%682148645.90%1812122720856041074524
2Baby Hawks20200000812-41010000047-31010000045-100.00081523008581564549068428365299282418225.00%110.00%01177250546.99%1117259743.01%682148645.90%1812122720856041074524
3Bears404000001224-1220200000612-620200000612-600.00012213300858156412890684283652208592710418738.89%11190.91%01177250546.99%1117259743.01%682148645.90%1812122720856041074524
4Bruins30300000713-62020000059-41010000024-200.00071320008581564929068428365213336296811327.27%11372.73%01177250546.99%1117259743.01%682148645.90%1812122720856041074524
5Cabaret Lady Mary Ann311000011416-21010000046-2210000011010030.500142438008581564185906842836521353420834125.00%9366.67%01177250546.99%1117259743.01%682148645.90%1812122720856041074524
6Caroline404000001222-1020200000713-62020000059-400.000122032008581564107906842836521935338925120.00%15660.00%01177250546.99%1117259743.01%682148645.90%1812122720856041074524
7Chiefs2010001068-2100000104311010000025-320.50061016008581564479068428365290301340500.00%2150.00%01177250546.99%1117259743.01%682148645.90%1812122720856041074524
8Chill20200000412-81010000036-31010000016-500.00048120085815647490684283652823312478112.50%6266.67%01177250546.99%1117259743.01%682148645.90%1812122720856041074524
9Comets20200000410-61010000024-21010000026-400.000471100858156458906842836528231639600.00%30100.00%01177250546.99%1117259743.01%682148645.90%1812122720856041074524
10Cougars30300000613-72020000059-41010000014-300.000691500858156487906842836521252810535120.00%5180.00%01177250546.99%1117259743.01%682148645.90%1812122720856041074524
11Crunch30300000817-920200000612-61010000025-300.00081321008581564939068428365215635663500.00%3166.67%01177250546.99%1117259743.01%682148645.90%1812122720856041074524
12Heat2020000039-61010000024-21010000015-400.0003580085815646490684283652912812492150.00%6183.33%01177250546.99%1117259743.01%682148645.90%1812122720856041074524
13Jayhawks20200000510-51010000046-21010000014-300.0005813008581564659068428365289172155200.00%30100.00%01177250546.99%1117259743.01%682148645.90%1812122720856041074524
14Las Vegas20100001510-51000000134-11010000026-410.2505712008581564549068428365291264547114.29%20100.00%11177250546.99%1117259743.01%682148645.90%1812122720856041074524
15Manchots413000001425-1120200000614-821100000811-320.2501427410085815641079068428365221357207710110.00%10460.00%01177250546.99%1117259743.01%682148645.90%1812122720856041074524
16Marlies30300000419-1520200000314-111010000015-400.00047110085815649090684283652143342080700.00%10550.00%01177250546.99%1117259743.01%682148645.90%1812122720856041074524
17Minnesota2110000012111110000007521010000056-120.500121628008581564889068428365295241268200.00%6183.33%01177250546.99%1117259743.01%682148645.90%1812122720856041074524
18Monarchs20200000615-91010000045-110100000210-800.0006111700858156469906842836521134212496116.67%5260.00%01177250546.99%1117259743.01%682148645.90%1812122720856041074524
19Monsters403010001017-72010100078-12020000039-620.2501018280085815641209068428365215731221051119.09%10190.00%01177250546.99%1117259743.01%682148645.90%1812122720856041074524
20Monsters20200000512-71010000025-31010000037-400.00059140085815646390684283652101291151300.00%3166.67%01177250546.99%1117259743.01%682148645.90%1812122720856041074524
21Oceanics2110000047-3110000002111010000026-420.500481200858156437906842836521052120618225.00%90100.00%01177250546.99%1117259743.01%682148645.90%1812122720856041074524
22Oil Kings20200000512-71010000045-11010000017-600.0005914008581564579068428365298351243400.00%6183.33%01177250546.99%1117259743.01%682148645.90%1812122720856041074524
23Phantoms403000011525-1020100001812-420200000713-610.1251528430085815641079068428365219855228612216.67%11554.55%01177250546.99%1117259743.01%682148645.90%1812122720856041074524
24Rocket3010000269-31000000123-12010000146-220.333610160085815641019068428365210127136111218.18%4250.00%01177250546.99%1117259743.01%682148645.90%1812122720856041074524
25Senators30300000918-91010000036-320200000612-600.00091524008581564929068428365217942266310440.00%12191.67%01177250546.99%1117259743.01%682148645.90%1812122720856041074524
26Sharks20200000111-101010000006-61010000015-400.000123008581564419068428365291251938200.00%20100.00%01177250546.99%1117259743.01%682148645.90%1812122720856041074524
27Sound Tigers40300001922-1320200000212-1020100001710-310.125916250085815641349068428365214848258511218.18%10370.00%01177250546.99%1117259743.01%682148645.90%1812122720856041074524
28Spiders412000011317-42110000086220100001511-630.3751321340085815641429068428365216363267519631.58%13469.23%01177250546.99%1117259743.01%682148645.90%1812122720856041074524
29Stars2020000059-41010000035-21010000024-200.00058130085815648790684283652813515466350.00%5260.00%01177250546.99%1117259743.01%682148645.90%1812122720856041074524
30Thunder30100002913-41000000134-12010000169-320.3339152400858156410790684283652953518593266.67%9188.89%01177250546.99%1117259743.01%682148645.90%1812122720856041074524
Total8256601019224426-2024133201014120209-894123400005104217-113230.1402243856091085815642609906842836523733105649718782174420.28%2045473.53%11177250546.99%1117259743.01%682148645.90%1812122720856041074524
_Since Last GM Reset8256601019224426-2024133201014120209-894123400005104217-113230.1402243856091085815642609906842836523733105649718782174420.28%2045473.53%11177250546.99%1117259743.01%682148645.90%1812122720856041074524
_Vs Conference4633701005120246-126232180100261118-57231190000359128-69130.141120215335108581564139990684283652210659630210401423222.54%1313374.81%01177250546.99%1117259743.01%682148645.90%1812122720856041074524
_Vs Division281110100385152-671415010014477-331406000024175-3470.12585151236008581564845906842836521280366180624862023.26%802470.00%01177250546.99%1117259743.01%682148645.90%1812122720856041074524

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
8223L2224385609260937331056497187810
All Games
GPWLOTWOTL SOWSOLGFGA
825661019224426
Home Games
GPWLOTWOTL SOWSOLGFGA
413321014120209
Visitor Games
GPWLOTWOTL SOWSOLGFGA
412340005104217
Last 10 Games
WLOTWOTL SOWSOL
350002
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
2174420.28%2045473.53%1
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
906842836528581564
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
1177250546.99%1117259743.01%682148645.90%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
1812122720856041074524


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
2 - 2020-10-236Oceanics1Wolf Pack2WBoxScore
4 - 2020-10-2520Wolf Pack3Senators6LBoxScore
11 - 2020-11-0161Oil Kings5Wolf Pack4LBoxScore
16 - 2020-11-06100Wolf Pack5Spiders6LXXBoxScore
17 - 2020-11-07109Wolf Pack2Bears6LBoxScore
19 - 2020-11-09124Comets4Wolf Pack2LBoxScore
21 - 2020-11-11136Jayhawks6Wolf Pack4LBoxScore
23 - 2020-11-13147Crunch6Wolf Pack2LBoxScore
26 - 2020-11-16175Bruins5Wolf Pack2LBoxScore
28 - 2020-11-18181Thunder4Wolf Pack3LXXBoxScore
32 - 2020-11-22205Wolf Pack1Chill6LBoxScore
34 - 2020-11-24221Senators6Wolf Pack3LBoxScore
36 - 2020-11-26235Cougars5Wolf Pack4LBoxScore
37 - 2020-11-27241Wolf Pack1Caroline4LBoxScore
40 - 2020-11-30263Cabaret Lady Mary Ann6Wolf Pack4LBoxScore
42 - 2020-12-02274Manchots7Wolf Pack5LBoxScore
44 - 2020-12-04287Wolf Pack3Thunder5LBoxScore
46 - 2020-12-06306Wolf Pack5Cabaret Lady Mary Ann6LXXBoxScore
50 - 2020-12-10332Bears6Wolf Pack4LBoxScore
52 - 2020-12-12347Wolf Pack3Senators6LBoxScore
53 - 2020-12-13354Wolf Pack3Rocket4LXXBoxScore
55 - 2020-12-15366Minnesota5Wolf Pack7WBoxScore
57 - 2020-12-17381Caroline5Wolf Pack2LBoxScore
59 - 2020-12-19391Wolf Pack2Bruins4LBoxScore
60 - 2020-12-20403Wolf Pack0Spiders5LBoxScore
62 - 2020-12-22420Las Vegas4Wolf Pack3LXXBoxScore
65 - 2020-12-25444Wolf Pack1Monsters5LBoxScore
66 - 2020-12-26448Rocket3Wolf Pack2LXXBoxScore
68 - 2020-12-28465Wolf Pack2Las Vegas6LBoxScore
70 - 2020-12-30483Wolf Pack2Monarchs10LBoxScore
72 - 2021-01-01498Wolf Pack1Sharks5LBoxScore
74 - 2021-01-03503Wolf Pack2Admirals5LBoxScore
76 - 2021-01-05520Chill6Wolf Pack3LBoxScore
80 - 2021-01-09550Marlies8Wolf Pack1LBoxScore
82 - 2021-01-11565Admirals3Wolf Pack1LBoxScore
83 - 2021-01-12574Wolf Pack5Phantoms6LBoxScore
87 - 2021-01-16584Caroline8Wolf Pack5LBoxScore
88 - 2021-01-17594Wolf Pack1Marlies5LBoxScore
91 - 2021-01-20624Wolf Pack1Oil Kings7LBoxScore
93 - 2021-01-22635Wolf Pack1Heat5LBoxScore
95 - 2021-01-24651Wolf Pack2Comets6LBoxScore
98 - 2021-01-27666Monsters5Wolf Pack2LBoxScore
100 - 2021-01-29682Spiders4Wolf Pack3LBoxScore
102 - 2021-01-31698Wolf Pack2Chiefs5LBoxScore
104 - 2021-02-02710Sound Tigers6Wolf Pack1LBoxScore
107 - 2021-02-05730Wolf Pack5Sound Tigers6LXXBoxScore
110 - 2021-02-08758Monsters5Wolf Pack3LBoxScore
112 - 2021-02-10762Sound Tigers6Wolf Pack1LBoxScore
122 - 2021-02-20785Cougars4Wolf Pack1LBoxScore
123 - 2021-02-21797Wolf Pack1Cougars4LBoxScore
125 - 2021-02-23810Stars5Wolf Pack3LBoxScore
127 - 2021-02-25825Marlies6Wolf Pack2LBoxScore
129 - 2021-02-27840Crunch6Wolf Pack4LBoxScore
131 - 2021-03-01857Monarchs5Wolf Pack4LBoxScore
133 - 2021-03-03872Wolf Pack2Oceanics6LBoxScore
135 - 2021-03-05887Wolf Pack5Minnesota6LBoxScore
136 - 2021-03-06893Wolf Pack2Monsters4LBoxScore
138 - 2021-03-08907Bruins4Wolf Pack3LBoxScore
141 - 2021-03-11927Wolf Pack4Baby Hawks5LBoxScore
143 - 2021-03-13942Wolf Pack4Caroline5LBoxScore
144 - 2021-03-14953Sharks6Wolf Pack0LBoxScore
Trade Deadline --- Trades can’t be done after this day is simulated!
147 - 2021-03-17971Wolf Pack2Sound Tigers4LBoxScore
149 - 2021-03-19985Wolf Pack1Rocket2LBoxScore
150 - 2021-03-20994Wolf Pack2Phantoms7LBoxScore
152 - 2021-03-221011Phantoms6Wolf Pack3LBoxScore
154 - 2021-03-241021Chiefs3Wolf Pack4WXXBoxScore
156 - 2021-03-261036Bears6Wolf Pack2LBoxScore
158 - 2021-03-281056Spiders2Wolf Pack5WBoxScore
161 - 2021-03-311076Wolf Pack2Stars4LBoxScore
162 - 2021-04-011081Wolf Pack3Monsters7LBoxScore
165 - 2021-04-041107Wolf Pack1Jayhawks4LBoxScore
167 - 2021-04-061119Heat4Wolf Pack2LBoxScore
169 - 2021-04-081133Manchots7Wolf Pack1LBoxScore
171 - 2021-04-101146Wolf Pack6Manchots5WBoxScore
173 - 2021-04-121165Wolf Pack2Crunch5LBoxScore
175 - 2021-04-141178Monsters3Wolf Pack4WXBoxScore
177 - 2021-04-161194Wolf Pack4Bears6LBoxScore
179 - 2021-04-181211Wolf Pack3Thunder4LXXBoxScore
181 - 2021-04-201225Wolf Pack5Cabaret Lady Mary Ann4WBoxScore
183 - 2021-04-221239Phantoms6Wolf Pack5LXXBoxScore
184 - 2021-04-231247Wolf Pack2Manchots6LBoxScore
186 - 2021-04-251257Baby Hawks7Wolf Pack4LBoxScore



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price4020
Attendance62,61326,769
Attendance PCT76.36%65.29%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
0 2180 - 72.67% 74,144$3,039,900$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
2,185,151$ 2,317,311$ 2,317,811$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
12,461$ 2,185,863$ 26 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 0 12,459$ 0$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT