Monsters

GP: 82 | W: 45 | L: 32 | OTL: 5 | P: 95
GF: 280 | GA: 263 | PP%: 23.27% | PK%: 83.59%
GM : Benoit Toupin | Morale : 50 | Team Overall : 53
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPAgeContractSalary Average
1Sheldon DriesXX100.00696170746568776568546360644848050600255700,000$
2Julien GauthierX100.00755285698458855439585558254747050580212925,000$
3Zach Senyshyn (R)X100.00777090707171745350485564534444050570221895,000$
4Marcus KrugerXXX100.005443837458536246824447724763600505502921,000,000$
5Griffen MolinoXX100.00716489606354525265504662455151050530253900,000$
6Tim Soderlund (R)XX100.00665885655856594750434556434444050510214825,834$
7Kasper Bjorkqvist (R)XX100.00777289507249495050385662534444050510222700,000$
8Teemu PulkkinenXX100.00463581715748384736405460454338050500272650,000$
9Alexander KhokhlachevXX100.00413591715540273040303061483936050430261600,000$
10Scott KosmachukX100.00413584685740273135333064443532050430251560,000$
11Adam Tambellini (R)XX100.00354343435133333543353543393230050370242560,000$
12Brian LashoffX100.00838281688268724825364069396364050620292775,000$
13Julian MelchioriX100.00848189688168755025374266404848050600274725,000$
14Keaton MiddletonX100.00828867618864684925404264404444050580212715,000$
15Jimmy Schuldt (R)X100.00767577617561645325464562434444050570242825,000$
16Johnathan Kovacevic (R)X100.00787879637855584825384262404444050560223792,500$
17Jake Christiansen (R)X100.00797199587154584125283961374444050530204925,000$
Scratches
1Todd Burgess (R)X100.00364040405535353640363640383230050370232650,000$
2Kurtis MacDermidX100.00878870668259695928484865255151050610254650,000$
3Jeremy RoyX100.00707181616858644725394062384747050550221825,000$
4Reece Scarlett (R)X100.00746986616949504925404260404444050530262650,000$
5Sergei Boikov (R)X100.00333737376633333337333337353230050370232705,000$
TEAM AVERAGE100.0065617762685356473941446042454405052
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Jake Oettinger100.0059526586636356636362304444050600
2Michael Hutchinson100.0052616681594952555657785959050580
Scratches
1Cory Schneider100.0057616580585253596357726970050600
2Jean-Francois Berube100.0058698266535953625855304748050580
TEAM AVERAGE100.005761707858565460605853555505059
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Sheldon DriesMonsters (Clb)C/LW724347902524021226239210528710.97%20171623.844101456170112112007056.71%209300111.05040001245
2Zach SenyshynMonsters (Clb)RW82334174-4420187138379982548.71%22161419.69618246719601131157246.63%16300010.9214000761
3Kurtis MacDermidMonsters (Clb)D791548631713735235110162661069.26%113164520.8261016671670003172110.00%000000.7700412336
4Marcus KrugerMonsters (Clb)C/LW/RW77223759118033231252821898.73%29148319.2777143817911261315262.07%137100000.8003000144
5Griffen MolinoMonsters (Clb)C/LW82203454-8280113137232591458.62%10149018.1851015511900002372353.56%87000000.7201000126
6Gustav LindstromColumbusD577424901608695158451114.43%110135023.696915741470110158000.00%000000.7300000023
7Brian LashoffMonsters (Clb)D70192746145514264124317815.32%106164023.437815451791012174310.00%000000.5600001234
8Julien GauthierMonsters (Clb)RW8218284614300131123229531697.86%10148118.0747114620000011262143.92%25500000.6236000253
9Julian MelchioriMonsters (Clb)D82133245152201098013739949.49%125168820.596713451440003205520.00%000000.5300000133
10Teemu PulkkinenMonsters (Clb)LW/RW8220193988017921736213411.56%11114413.961126630002742135.38%13000000.6800000231
11Jimmy SchuldtMonsters (Clb)D618303814655138458917698.99%79102316.78471124114000141110.00%000000.7400010112
12Kasper BjorkqvistMonsters (Clb)LW/RW82201838-3640199801944712710.31%23128915.7213412510001582050.36%13900100.5901000311
13Tim SoderlundMonsters (Clb)LW/RW82152035-172608982162451129.26%13132416.1513411810000100244.17%12000000.5302000110
14Keaton MiddletonMonsters (Clb)D8292534-863152338185244710.59%103141817.302352771000171400.00%000000.4800021141
15Jeremy RoyMonsters (Clb)D5841822-10180394736142511.11%7394616.32011111000159000.00%000000.4600000002
16Alexander KhokhlachevMonsters (Clb)C/LW8041519-40031286316446.35%17116714.60000017000080135.04%134700000.3311000000
17William CarrierColumbusLW193811414076365521525.45%435518.690229520001530139.57%13900000.6201000101
18Johnathan KovacevicMonsters (Clb)D5601010354107910288210.00%354798.56033433000016000.00%100000.4200101000
19Scott KosmachukMonsters (Clb)RW805510-1006285111399.80%135847.31000150000441127.63%7600000.3400000000
20Adam TambelliniMonsters (Clb)C/LW61134-580142172914.29%04547.4500000000010034.29%34700000.1800000000
21Jake ChristiansenMonsters (Clb)D121230808312168.33%721718.150111400007010.00%000000.2800000000
22Adam ErneColumbusLW/RW11010204331333.33%02222.32000120000010100.00%300000.9000000000
23Reece ScarlettMonsters (Clb)D4011-300510020.00%76716.960000200001000.00%000000.2900000000
24Sergei BoikovMonsters (Clb)D2000-100100000.00%23316.630000000000000.00%000000.0000000000
Team Total or Average1445281510791386927021591897302384721239.30%9322464117.05601101705862089347381773432050.06%705400220.64523545384243
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Jake OettingerMonsters (Clb)79423040.9133.12446410223226780010.80020784682
2Michael HutchinsonMonsters (Clb)123210.9093.3348700272970200.6673478000
Team Total or Average91453250.9133.14495110225929750210.783238282682


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract Type Current Salary Salary RemainingSalary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10Link
Adam TambelliniMonsters (Clb)C/LW241994-11-01Yes169 Lbs6 ft2NoNoNo2Pro & Farm560,000$56,000$0$No560,000$Link
Alexander KhokhlachevMonsters (Clb)C/LW261993-09-09No181 Lbs5 ft10NoNoNo1Pro & Farm600,000$60,000$0$NoLink
Brian LashoffMonsters (Clb)D291990-07-15No221 Lbs6 ft3NoNoNo2Pro & Farm775,000$77,500$0$No775,000$Link
Cory SchneiderMonsters (Clb)G331986-03-18No200 Lbs6 ft3NoNoNo3Pro & Farm5,250,000$525,000$0$No5,250,000$5,250,000$Link
Griffen MolinoMonsters (Clb)C/LW251994-01-21No171 Lbs5 ft11NoNoNo3Pro & Farm900,000$90,000$0$No900,000$900,000$Link
Jake ChristiansenMonsters (Clb)D201999-09-12Yes194 Lbs6 ft1NoNoNo4Pro & Farm925,000$92,500$0$No925,000$925,000$925,000$
Jake OettingerMonsters (Clb)G201998-12-18No212 Lbs6 ft4NoNoNo3Pro & Farm925,000$92,500$0$No925,000$925,000$Link
Jean-Francois BerubeMonsters (Clb)G281991-07-13No177 Lbs6 ft1NoNoNo2Pro & Farm999,999$100,000$0$No999,999$Link
Jeremy RoyMonsters (Clb)D221997-05-14No185 Lbs6 ft0NoNoNo1Pro & Farm825,000$82,500$0$NoLink
Jimmy SchuldtMonsters (Clb)D241995-05-11Yes205 Lbs6 ft1NoNoNo2Pro & Farm825,000$82,500$0$No825,000$Link
Johnathan KovacevicMonsters (Clb)D221997-07-12Yes207 Lbs6 ft4NoNoNo3Pro & Farm792,500$79,250$0$No792,500$792,500$Link
Julian MelchioriMonsters (Clb)D271991-12-06No214 Lbs6 ft5NoNoNo4Pro & Farm725,000$72,500$0$No725,000$725,000$725,000$Link
Julien GauthierMonsters (Clb)RW211997-10-15No225 Lbs6 ft4NoNoNo2Pro & Farm925,000$92,500$0$No925,000$Link
Kasper BjorkqvistMonsters (Clb)LW/RW221997-07-10Yes198 Lbs6 ft1NoNoNo2Pro & Farm700,000$70,000$0$No700,000$Link
Keaton MiddletonMonsters (Clb)D211998-02-10No233 Lbs6 ft6NoNoNo2Pro & Farm715,000$71,500$0$No715,000$Link
Kurtis MacDermidMonsters (Clb)D251994-03-25No208 Lbs6 ft5NoNoNo4Pro & Farm650,000$65,000$0$No650,000$650,000$650,000$Link
Marcus KrugerMonsters (Clb)C/LW/RW291990-05-27No186 Lbs6 ft0NoNoNo2Pro & Farm1,000,000$100,000$0$No1,000,000$Link
Michael HutchinsonMonsters (Clb)G291990-03-01No202 Lbs6 ft3YesNoNo2Pro & Farm560,000$56,000$0$No560,000$Link
Reece ScarlettMonsters (Clb)D261993-05-31Yes185 Lbs6 ft1NoNoNo2Pro & Farm650,000$65,000$0$No650,000$Link
Scott KosmachukMonsters (Clb)RW251994-01-24No185 Lbs5 ft11NoNoNo1Pro & Farm560,000$56,000$0$NoLink
Sergei BoikovMonsters (Clb)D231996-01-24Yes200 Lbs6 ft2NoNoNo2Pro & Farm705,000$70,500$0$No705,000$Link
Sheldon DriesMonsters (Clb)C/LW251994-04-23No185 Lbs5 ft9NoNoNo5Pro & Farm700,000$70,000$0$No700,000$700,000$700,000$700,000$Link
Teemu PulkkinenMonsters (Clb)LW/RW271992-01-02No185 Lbs5 ft10NoNoNo2Pro & Farm650,000$65,000$0$No650,000$Link
Tim SoderlundMonsters (Clb)LW/RW211998-01-23Yes163 Lbs5 ft9NoNoNo4Pro & Farm825,834$82,583$0$No825,834$825,834$825,834$Link
Todd BurgessMonsters (Clb)RW231996-04-03Yes178 Lbs6 ft2NoNoNo2Pro & Farm650,000$65,000$0$No650,000$Link
Zach SenyshynMonsters (Clb)RW221997-03-30Yes192 Lbs6 ft1NoNoNo1Pro & Farm895,000$89,500$0$NoLink
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2624.58195 Lbs6 ft12.42934,167$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Teemu PulkkinenSheldon DriesJulien Gauthier40023
2Griffen MolinoMarcus KrugerZach Senyshyn30023
3Kasper BjorkqvistAlexander KhokhlachevTim Soderlund20032
4Adam TambelliniSheldon DriesScott Kosmachuk10022
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Jake ChristiansenBrian Lashoff40023
2Keaton MiddletonJulian Melchiori30023
3Johnathan KovacevicJimmy Schuldt20122
4Brian LashoffJake Christiansen10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Teemu PulkkinenSheldon DriesJulien Gauthier60014
2Griffen MolinoMarcus KrugerZach Senyshyn40014
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Brian LashoffKeaton Middleton60014
2Johnathan KovacevicJimmy Schuldt40014
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Marcus KrugerSheldon Dries60041
2Kasper BjorkqvistZach Senyshyn40041
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Keaton MiddletonBrian Lashoff60050
2Johnathan KovacevicJulian Melchiori40050
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Marcus Kruger60050Keaton MiddletonBrian Lashoff60050
2Sheldon Dries40050Jimmy SchuldtJulian Melchiori40050
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Marcus KrugerSheldon Dries60122
2Julien GauthierZach Senyshyn40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Brian LashoffKeaton Middleton60122
2Johnathan KovacevicJulian Melchiori40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Teemu PulkkinenSheldon DriesJulien GauthierBrian LashoffKeaton Middleton
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Marcus KrugerSheldon DriesZach SenyshynBrian LashoffJimmy Schuldt
Extra Forwards
Normal PowerPlayPenalty Kill
Kasper Bjorkqvist, Tim Soderlund, Teemu PulkkinenKasper Bjorkqvist, Tim SoderlundTeemu Pulkkinen
Extra Defensemen
Normal PowerPlayPenalty Kill
Keaton Middleton, Jimmy Schuldt, Keaton MiddletonJimmy Schuldt,
Penalty Shots
Tim Soderlund, Sheldon Dries, Julien Gauthier, Zach Senyshyn, Marcus Kruger
Goalie
#1 : Jake Oettinger, #2 : Michael Hutchinson


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals21100000972110000007251010000025-320.500918270010199766679429979875068111848500.00%9188.89%11494288751.75%1412297747.43%674136349.45%1932130619236141099551
2Baby Hawks2020000025-31010000023-11010000002-200.0002350010199766499429979875072221868600.00%9188.89%01494288751.75%1412297747.43%674136349.45%1932130619236141099551
3Bears42100100141132010010069-32200000082650.62514264000101997661349429979875015857248918633.33%11190.91%01494288751.75%1412297747.43%674136349.45%1932130619236141099551
4Bruins311000101091100000104312110000066040.66710162600101997661059429979875010824227710440.00%10280.00%01494288751.75%1412297747.43%674136349.45%1932130619236141099551
5Cabaret Lady Mary Ann3300000018992200000012661100000063361.000183149001019976619094299798750871514984375.00%7185.71%01494288751.75%1412297747.43%674136349.45%1932130619236141099551
6Caroline422000001213-1220000008622020000047-340.50012203200101997661259429979875015451299914321.43%110100.00%01494288751.75%1412297747.43%674136349.45%1932130619236141099551
7Chiefs21000010642110000002111000001043141.000681400101997667394299798750742883510110.00%4175.00%01494288751.75%1412297747.43%674136349.45%1932130619236141099551
8Chill20200000811-31010000046-21010000045-100.00081422101019976666942997987501002016615240.00%8362.50%01494288751.75%1412297747.43%674136349.45%1932130619236141099551
9Comets210000018711000000145-11100000042230.7508142200101997666094299798750801654417228.57%10190.00%01494288751.75%1412297747.43%674136349.45%1932130619236141099551
10Cougars321000001082220000009541010000013-240.6671019290010199766759429979875010328198310440.00%70100.00%01494288751.75%1412297747.43%674136349.45%1932130619236141099551
11Crunch321000001011-1110000006332110000048-440.66710172700101997661059429979875011836367310110.00%12283.33%01494288751.75%1412297747.43%674136349.45%1932130619236141099551
12Heat211000008801010000023-11100000065120.500814220010199766749429979875073201248300.00%60100.00%01494288751.75%1412297747.43%674136349.45%1932130619236141099551
13Jayhawks2020000048-41010000024-21010000024-200.000471100101997666594299798750941720535120.00%10190.00%01494288751.75%1412297747.43%674136349.45%1932130619236141099551
14Las Vegas20100001811-31000000167-11010000024-210.2508132100101997668194299798750702012556233.33%6266.67%01494288751.75%1412297747.43%674136349.45%1932130619236141099551
15Manchots4300100016106210010008622200000084481.00016274300101997661799429979875014342359315640.00%9188.89%01494288751.75%1412297747.43%674136349.45%1932130619236141099551
16Marlies31200000914-51010000025-32110000079-220.33391423001019976684942997987501454135749333.33%10370.00%01494288751.75%1412297747.43%674136349.45%1932130619236141099551
17Minnesota220000001165110000006421100000052341.000112031001019976610594299798750642329592150.00%70100.00%01494288751.75%1412297747.43%674136349.45%1932130619236141099551
18Monarchs2010000159-41010000025-31000000134-110.2505914001019976665942997987501063318586233.33%9366.67%01494288751.75%1412297747.43%674136349.45%1932130619236141099551
19Monsters2110000079-21010000037-41100000042220.5007132000101997667494299798750652724465240.00%12375.00%01494288751.75%1412297747.43%674136349.45%1932130619236141099551
20Oceanics211000008801010000035-21100000053220.500813210010199766739429979875061198511218.33%40100.00%01494288751.75%1412297747.43%674136349.45%1932130619236141099551
21Oil Kings22000000624110000003031100000032141.0006101601101997668294299798750752312556233.33%6183.33%01494288751.75%1412297747.43%674136349.45%1932130619236141099551
22Phantoms40300010813-5201000105502020000038-520.2508142200101997661169429979875013639257210110.00%10280.00%01494288751.75%1412297747.43%674136349.45%1932130619236141099551
23Rocket31200000611-51010000025-32110000046-220.33361117001019976674942997987501153420585120.00%10280.00%01494288751.75%1412297747.43%674136349.45%1932130619236141099551
24Senators3210000015105211000009811100000062440.6671526410010199766118942997987501053718709111.11%7271.43%11494288751.75%1412297747.43%674136349.45%1932130619236141099551
25Sharks22000000633110000003211100000031241.000610160010199766779429979875056815545120.00%5180.00%11494288751.75%1412297747.43%674136349.45%1932130619236141099551
26Sound Tigers4310000011922110000057-22200000062460.750112132001019976614994299798750117372011415426.67%10190.00%01494288751.75%1412297747.43%674136349.45%1932130619236141099551
27Spiders413000001114-3211000008802020000036-320.250111829001019976611794299798750168754093600.00%20480.00%01494288751.75%1412297747.43%674136349.45%1932130619236141099551
28Stars2110000089-11010000025-31100000064220.50081624001019976692942997987506514255610220.00%5260.00%01494288751.75%1412297747.43%674136349.45%1932130619236141099551
29Thunder32100000945211000004401100000050540.6679162501101997661229429979875076241650700.00%7185.71%01494288751.75%1412297747.43%674136349.45%1932130619236141099551
Total82413201233280263174119160112214814264122160011113212111950.5792804907701210199766295394299798750297687566620262455723.27%2624383.59%31494288751.75%1412297747.43%674136349.45%1932130619236141099551
30Wolf Pack4300010017107220000009362100010087170.87517324900101997661579429979875012034249510110.00%11190.91%01494288751.75%1412297747.43%674136349.45%1932130619236141099551
_Since Last GM Reset82413201233280263174119160112214814264122160011113212111950.5792804907701210199766295394299798750297687566620262455723.27%2624383.59%31494288751.75%1412297747.43%674136349.45%1932130619236141099551
_Vs Conference46221801221156142142391001120797812313800101776413530.5761562744301110199766162994299798750166750133410991423222.54%1402681.43%31494288751.75%1412297747.43%674136349.45%1932130619236141099551
_Vs Division287700110898091443000104944514340010040364170.30489158247001019976697794299798750996335197655882123.86%821087.80%01494288751.75%1412297747.43%674136349.45%1932130619236141099551

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
8295L128049077029532976875666202612
All Games
GPWLOTWOTL SOWSOLGFGA
8241321233280263
Home Games
GPWLOTWOTL SOWSOLGFGA
4119161122148142
Visitor Games
GPWLOTWOTL SOWSOLGFGA
4122160111132121
Last 10 Games
WLOTWOTL SOWSOL
440200
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
2455723.27%2624383.59%3
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
9429979875010199766
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
1494288751.75%1412297747.43%674136349.45%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
1932130619236141099551


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
3 - 2020-10-2416Marlies5Monsters2LBoxScore
4 - 2020-10-2522Monsters4Manchots3WBoxScore
6 - 2020-10-2735Crunch3Monsters6WBoxScore
10 - 2020-10-3159Admirals2Monsters7WBoxScore
11 - 2020-11-0169Monsters1Caroline2LBoxScore
15 - 2020-11-0594Stars5Monsters2LBoxScore
17 - 2020-11-07110Monsters0Baby Hawks2LBoxScore
18 - 2020-11-08120Sound Tigers1Monsters2WBoxScore
20 - 2020-11-10129Monsters2Marlies5LBoxScore
23 - 2020-11-13148Caroline2Monsters3WBoxScore
25 - 2020-11-15165Monsters1Phantoms3LBoxScore
29 - 2020-11-19189Oil Kings0Monsters3WBoxScore
31 - 2020-11-21200Monsters4Chiefs3WXXBoxScore
32 - 2020-11-22212Heat3Monsters2LBoxScore
35 - 2020-11-25227Las Vegas7Monsters6LXXBoxScore
37 - 2020-11-27246Monsters2Jayhawks4LBoxScore
39 - 2020-11-29260Monsters4Monsters2WBoxScore
42 - 2020-12-02273Monsters0Rocket3LBoxScore
45 - 2020-12-05297Chiefs1Monsters2WBoxScore
49 - 2020-12-09322Rocket5Monsters2LBoxScore
51 - 2020-12-11337Cougars2Monsters4WBoxScore
53 - 2020-12-13352Monsters5Oceanics3WBoxScore
55 - 2020-12-15369Senators3Monsters2LBoxScore
57 - 2020-12-17384Phantoms2Monsters1LBoxScore
59 - 2020-12-19400Manchots3Monsters4WBoxScore
60 - 2020-12-20410Monsters3Sound Tigers1WBoxScore
63 - 2020-12-23429Jayhawks4Monsters2LBoxScore
65 - 2020-12-25444Wolf Pack1Monsters5WBoxScore
67 - 2020-12-27458Monsters6Cabaret Lady Mary Ann3WBoxScore
69 - 2020-12-29469Monsters5Bears1WBoxScore
72 - 2021-01-01490Monsters4Manchots1WBoxScore
74 - 2021-01-03501Monsters6Senators2WBoxScore
76 - 2021-01-05521Bears3Monsters1LBoxScore
77 - 2021-01-06529Monsters1Cougars3LBoxScore
79 - 2021-01-08541Monarchs5Monsters2LBoxScore
81 - 2021-01-10561Spiders5Monsters3LBoxScore
83 - 2021-01-12573Monsters3Sound Tigers1WBoxScore
87 - 2021-01-16585Monsters3Bears1WBoxScore
89 - 2021-01-18604Baby Hawks3Monsters2LBoxScore
91 - 2021-01-20619Cabaret Lady Mary Ann2Monsters6WBoxScore
93 - 2021-01-22627Monsters4Bruins3WBoxScore
95 - 2021-01-24642Sharks2Monsters3WBoxScore
97 - 2021-01-26662Monsters3Monarchs4LXXBoxScore
98 - 2021-01-27674Monsters2Admirals5LBoxScore
100 - 2021-01-29688Monsters3Sharks1WBoxScore
102 - 2021-01-31700Monsters2Las Vegas4LBoxScore
105 - 2021-02-03719Bruins3Monsters4WXXBoxScore
107 - 2021-02-05733Caroline4Monsters5WBoxScore
109 - 2021-02-07751Spiders3Monsters5WBoxScore
110 - 2021-02-08758Monsters5Wolf Pack3WBoxScore
113 - 2021-02-11766Oceanics5Monsters3LBoxScore
123 - 2021-02-21792Monsters3Crunch2WBoxScore
124 - 2021-02-22807Monsters4Rocket3WBoxScore
126 - 2021-02-24818Cabaret Lady Mary Ann4Monsters6WBoxScore
129 - 2021-02-27841Cougars3Monsters5WBoxScore
130 - 2021-02-28851Monsters7Monsters3LBoxScore
132 - 2021-03-02863Thunder3Monsters1LBoxScore
135 - 2021-03-05880Monsters1Crunch6LBoxScore
136 - 2021-03-06893Wolf Pack2Monsters4WBoxScore
138 - 2021-03-08912Monsters1Spiders3LBoxScore
140 - 2021-03-10920Monsters2Phantoms5LBoxScore
142 - 2021-03-12936Phantoms3Monsters4WXXBoxScore
144 - 2021-03-14955Monsters4Chill5LBoxScore
146 - 2021-03-16967Senators5Monsters7WBoxScore
Trade Deadline --- Trades can’t be done after this day is simulated!
147 - 2021-03-17978Monsters5Minnesota2WBoxScore
150 - 2021-03-20995Minnesota4Monsters6WBoxScore
152 - 2021-03-221013Comets5Monsters4LXXBoxScore
155 - 2021-03-251030Monsters6Heat5WBoxScore
158 - 2021-03-281058Monsters3Oil Kings2WBoxScore
159 - 2021-03-291064Monsters4Comets2WBoxScore
163 - 2021-04-021088Manchots3Monsters4WXBoxScore
165 - 2021-04-041105Chill6Monsters4LBoxScore
167 - 2021-04-061118Monsters2Bruins3LBoxScore
170 - 2021-04-091141Bears6Monsters5LXBoxScore
172 - 2021-04-111155Monsters5Marlies4WBoxScore
174 - 2021-04-131171Monsters2Spiders3LBoxScore
175 - 2021-04-141178Monsters3Wolf Pack4LXBoxScore
178 - 2021-04-171199Monsters5Thunder0WBoxScore
179 - 2021-04-181212Monsters6Stars4WBoxScore
181 - 2021-04-201226Sound Tigers6Monsters3LBoxScore
184 - 2021-04-231249Thunder1Monsters3WBoxScore
185 - 2021-04-241255Monsters3Caroline5LBoxScore



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance78,60739,228
Attendance PCT95.86%95.68%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
0 2874 - 95.80% 81,455$3,339,665$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
2,281,450$ 2,428,833$ 2,428,833$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
13,058$ 2,281,450$ 26 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 0 13,058$ 0$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT