Monsters

GP: 82 | W: 45 | L: 32 | OTL: 5 | P: 95
GF: 280 | GA: 263 | PP%: 23.27% | PK%: 83.59%
DG: Benoit Toupin | Morale : 50 | Moyenne d'Équipe : 53
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPÂgeContratSalaire Moyen
1Sheldon DriesXX100.00696170746568776568546360644848050600255700,000$
2Julien GauthierX100.00755285698458855439585558254747050580212925,000$
3Zach Senyshyn (R)X100.00777090707171745350485564534444050570221895,000$
4Marcus KrugerXXX100.005443837458536246824447724763600505502921,000,000$
5Griffen MolinoXX100.00716489606354525265504662455151050530253900,000$
6Tim Soderlund (R)XX100.00665885655856594750434556434444050510214825,834$
7Kasper Bjorkqvist (R)XX100.00777289507249495050385662534444050510222700,000$
8Teemu PulkkinenXX100.00463581715748384736405460454338050500272650,000$
9Alexander KhokhlachevXX100.00413591715540273040303061483936050430261600,000$
10Scott KosmachukX100.00413584685740273135333064443532050430251560,000$
11Adam Tambellini (R)XX100.00354343435133333543353543393230050370242560,000$
12Brian LashoffX100.00838281688268724825364069396364050620292775,000$
13Julian MelchioriX100.00848189688168755025374266404848050600274725,000$
14Keaton MiddletonX100.00828867618864684925404264404444050580212715,000$
15Jimmy Schuldt (R)X100.00767577617561645325464562434444050570242825,000$
16Johnathan Kovacevic (R)X100.00787879637855584825384262404444050560223792,500$
17Jake Christiansen (R)X100.00797199587154584125283961374444050530204925,000$
Rayé
1Todd Burgess (R)X100.00364040405535353640363640383230050370232650,000$
2Kurtis MacDermidX100.00878870668259695928484865255151050610254650,000$
3Jeremy RoyX100.00707181616858644725394062384747050550221825,000$
4Reece Scarlett (R)X100.00746986616949504925404260404444050530262650,000$
5Sergei Boikov (R)X100.00333737376633333337333337353230050370232705,000$
MOYENNE D'ÉQUIPE100.0065617762685356473941446042454405052
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Jake Oettinger100.0059526586636356636362304444050600
2Michael Hutchinson100.0052616681594952555657785959050580
Rayé
1Cory Schneider100.0057616580585253596357726970050600
2Jean-Francois Berube100.0058698266535953625855304748050580
MOYENNE D'ÉQUIPE100.005761707858565460605853555505059
Nom du Coach PH DF OF PD EX LD PO CNT Âge Contrat Salaire


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur Nom de l'ÉquipePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Sheldon DriesMonsters (Clb)C/LW724347902524021226239210528710.97%20171623.844101456170112112007056.71%209300111.05040001245
2Zach SenyshynMonsters (Clb)RW82334174-4420187138379982548.71%22161419.69618246719601131157246.63%16300010.9214000761
3Kurtis MacDermidMonsters (Clb)D791548631713735235110162661069.26%113164520.8261016671670003172110.00%000000.7700412336
4Marcus KrugerMonsters (Clb)C/LW/RW77223759118033231252821898.73%29148319.2777143817911261315262.07%137100000.8003000144
5Griffen MolinoMonsters (Clb)C/LW82203454-8280113137232591458.62%10149018.1851015511900002372353.56%87000000.7201000126
6Gustav LindstromColumbusD577424901608695158451114.43%110135023.696915741470110158000.00%000000.7300000023
7Brian LashoffMonsters (Clb)D70192746145514264124317815.32%106164023.437815451791012174310.00%000000.5600001234
8Julien GauthierMonsters (Clb)RW8218284614300131123229531697.86%10148118.0747114620000011262143.92%25500000.6236000253
9Julian MelchioriMonsters (Clb)D82133245152201098013739949.49%125168820.596713451440003205520.00%000000.5300000133
10Teemu PulkkinenMonsters (Clb)LW/RW8220193988017921736213411.56%11114413.961126630002742135.38%13000000.6800000231
11Jimmy SchuldtMonsters (Clb)D618303814655138458917698.99%79102316.78471124114000141110.00%000000.7400010112
12Kasper BjorkqvistMonsters (Clb)LW/RW82201838-3640199801944712710.31%23128915.7213412510001582050.36%13900100.5901000311
13Tim SoderlundMonsters (Clb)LW/RW82152035-172608982162451129.26%13132416.1513411810000100244.17%12000000.5302000110
14Keaton MiddletonMonsters (Clb)D8292534-863152338185244710.59%103141817.302352771000171400.00%000000.4800021141
15Jeremy RoyMonsters (Clb)D5841822-10180394736142511.11%7394616.32011111000159000.00%000000.4600000002
16Alexander KhokhlachevMonsters (Clb)C/LW8041519-40031286316446.35%17116714.60000017000080135.04%134700000.3311000000
17William CarrierColumbusLW193811414076365521525.45%435518.690229520001530139.57%13900000.6201000101
18Johnathan KovacevicMonsters (Clb)D5601010354107910288210.00%354798.56033433000016000.00%100000.4200101000
19Scott KosmachukMonsters (Clb)RW805510-1006285111399.80%135847.31000150000441127.63%7600000.3400000000
20Adam TambelliniMonsters (Clb)C/LW61134-580142172914.29%04547.4500000000010034.29%34700000.1800000000
21Jake ChristiansenMonsters (Clb)D121230808312168.33%721718.150111400007010.00%000000.2800000000
22Adam ErneColumbusLW/RW11010204331333.33%02222.32000120000010100.00%300000.9000000000
23Reece ScarlettMonsters (Clb)D4011-300510020.00%76716.960000200001000.00%000000.2900000000
24Sergei BoikovMonsters (Clb)D2000-100100000.00%23316.630000000000000.00%000000.0000000000
Stats d'équipe Total ou en Moyenne1445281510791386927021591897302384721239.30%9322464117.05601101705862089347381773432050.06%705400220.64523545384243
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien Nom de l'ÉquipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Jake OettingerMonsters (Clb)79423040.9133.12446410223226780010.80020784682
2Michael HutchinsonMonsters (Clb)123210.9093.3348700272970200.6673478000
Stats d'équipe Total ou en Moyenne91453250.9133.14495110225929750210.783238282682


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du Joueur Nom de l'ÉquipePOS Âge Date de Naissance Nouveau Joueur Poids Taille Non-Échange Disponible pour Échange Ballotage Forcé Contrat Type Salaire Actuel Salaire RestantCap Salariale Cap Salariale Restant Exclus du Cap Salarial Salaire Année 2Salaire Année 3Salaire Année 4Salaire Année 5Salaire Année 6Salaire Année 7Salaire Année 8Salaire Année 9Salaire Année 10Link
Adam TambelliniMonsters (Clb)C/LW241994-11-01Yes169 Lbs6 ft2NoNoNo2Pro & Farm560,000$56,000$0$No560,000$Lien
Alexander KhokhlachevMonsters (Clb)C/LW261993-09-09No181 Lbs5 ft10NoNoNo1Pro & Farm600,000$60,000$0$NoLien
Brian LashoffMonsters (Clb)D291990-07-15No221 Lbs6 ft3NoNoNo2Pro & Farm775,000$77,500$0$No775,000$Lien
Cory SchneiderMonsters (Clb)G331986-03-18No200 Lbs6 ft3NoNoNo3Pro & Farm5,250,000$525,000$0$No5,250,000$5,250,000$Lien
Griffen MolinoMonsters (Clb)C/LW251994-01-21No171 Lbs5 ft11NoNoNo3Pro & Farm900,000$90,000$0$No900,000$900,000$Lien
Jake ChristiansenMonsters (Clb)D201999-09-12Yes194 Lbs6 ft1NoNoNo4Pro & Farm925,000$92,500$0$No925,000$925,000$925,000$
Jake OettingerMonsters (Clb)G201998-12-18No212 Lbs6 ft4NoNoNo3Pro & Farm925,000$92,500$0$No925,000$925,000$Lien
Jean-Francois BerubeMonsters (Clb)G281991-07-13No177 Lbs6 ft1NoNoNo2Pro & Farm999,999$100,000$0$No999,999$Lien
Jeremy RoyMonsters (Clb)D221997-05-14No185 Lbs6 ft0NoNoNo1Pro & Farm825,000$82,500$0$NoLien
Jimmy SchuldtMonsters (Clb)D241995-05-11Yes205 Lbs6 ft1NoNoNo2Pro & Farm825,000$82,500$0$No825,000$Lien
Johnathan KovacevicMonsters (Clb)D221997-07-12Yes207 Lbs6 ft4NoNoNo3Pro & Farm792,500$79,250$0$No792,500$792,500$Lien
Julian MelchioriMonsters (Clb)D271991-12-06No214 Lbs6 ft5NoNoNo4Pro & Farm725,000$72,500$0$No725,000$725,000$725,000$Lien
Julien GauthierMonsters (Clb)RW211997-10-15No225 Lbs6 ft4NoNoNo2Pro & Farm925,000$92,500$0$No925,000$Lien
Kasper BjorkqvistMonsters (Clb)LW/RW221997-07-10Yes198 Lbs6 ft1NoNoNo2Pro & Farm700,000$70,000$0$No700,000$Lien
Keaton MiddletonMonsters (Clb)D211998-02-10No233 Lbs6 ft6NoNoNo2Pro & Farm715,000$71,500$0$No715,000$Lien
Kurtis MacDermidMonsters (Clb)D251994-03-25No208 Lbs6 ft5NoNoNo4Pro & Farm650,000$65,000$0$No650,000$650,000$650,000$Lien
Marcus KrugerMonsters (Clb)C/LW/RW291990-05-27No186 Lbs6 ft0NoNoNo2Pro & Farm1,000,000$100,000$0$No1,000,000$Lien
Michael HutchinsonMonsters (Clb)G291990-03-01No202 Lbs6 ft3YesNoNo2Pro & Farm560,000$56,000$0$No560,000$Lien
Reece ScarlettMonsters (Clb)D261993-05-31Yes185 Lbs6 ft1NoNoNo2Pro & Farm650,000$65,000$0$No650,000$Lien
Scott KosmachukMonsters (Clb)RW251994-01-24No185 Lbs5 ft11NoNoNo1Pro & Farm560,000$56,000$0$NoLien
Sergei BoikovMonsters (Clb)D231996-01-24Yes200 Lbs6 ft2NoNoNo2Pro & Farm705,000$70,500$0$No705,000$Lien
Sheldon DriesMonsters (Clb)C/LW251994-04-23No185 Lbs5 ft9NoNoNo5Pro & Farm700,000$70,000$0$No700,000$700,000$700,000$700,000$Lien
Teemu PulkkinenMonsters (Clb)LW/RW271992-01-02No185 Lbs5 ft10NoNoNo2Pro & Farm650,000$65,000$0$No650,000$Lien
Tim SoderlundMonsters (Clb)LW/RW211998-01-23Yes163 Lbs5 ft9NoNoNo4Pro & Farm825,834$82,583$0$No825,834$825,834$825,834$Lien
Todd BurgessMonsters (Clb)RW231996-04-03Yes178 Lbs6 ft2NoNoNo2Pro & Farm650,000$65,000$0$No650,000$Lien
Zach SenyshynMonsters (Clb)RW221997-03-30Yes192 Lbs6 ft1NoNoNo1Pro & Farm895,000$89,500$0$NoLien
Joueurs TotalÂge MoyenPoids MoyenTaille MoyenneContrat MoyenSalaire Moyen 1e Année
2624.58195 Lbs6 ft12.42934,167$



Attaque à 5 contre 5
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Teemu PulkkinenSheldon DriesJulien Gauthier40023
2Griffen MolinoMarcus KrugerZach Senyshyn30023
3Kasper BjorkqvistAlexander KhokhlachevTim Soderlund20032
4Adam TambelliniSheldon DriesScott Kosmachuk10022
Défense à 5 contre 5
Ligne #DéfenseDéfense% TempsPHYDFOF
1Jake ChristiansenBrian Lashoff40023
2Keaton MiddletonJulian Melchiori30023
3Johnathan KovacevicJimmy Schuldt20122
4Brian LashoffJake Christiansen10122
Attaque en Avantage Numérique
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Teemu PulkkinenSheldon DriesJulien Gauthier60014
2Griffen MolinoMarcus KrugerZach Senyshyn40014
Défense en Avantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Brian LashoffKeaton Middleton60014
2Johnathan KovacevicJimmy Schuldt40014
Attaque à 4 en Désavantage Numérique
Ligne #CentreAilier% TempsPHYDFOF
1Marcus KrugerSheldon Dries60041
2Kasper BjorkqvistZach Senyshyn40041
Défense à 4 en Désavantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Keaton MiddletonBrian Lashoff60050
2Johnathan KovacevicJulian Melchiori40050
3 joueurs en Désavantage Numérique
Ligne #Ailier% TempsPHYDFOFDéfenseDéfense% TempsPHYDFOF
1Marcus Kruger60050Keaton MiddletonBrian Lashoff60050
2Sheldon Dries40050Jimmy SchuldtJulian Melchiori40050
Attaque à 4 contre 4
Ligne #CentreAilier% TempsPHYDFOF
1Marcus KrugerSheldon Dries60122
2Julien GauthierZach Senyshyn40122
Défense à 4 contre 4
Ligne #DéfenseDéfense% TempsPHYDFOF
1Brian LashoffKeaton Middleton60122
2Johnathan KovacevicJulian Melchiori40122
Attaque Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Teemu PulkkinenSheldon DriesJulien GauthierBrian LashoffKeaton Middleton
Défense Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Marcus KrugerSheldon DriesZach SenyshynBrian LashoffJimmy Schuldt
Attaquants Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Kasper Bjorkqvist, Tim Soderlund, Teemu PulkkinenKasper Bjorkqvist, Tim SoderlundTeemu Pulkkinen
Défenseurs Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Keaton Middleton, Jimmy Schuldt, Keaton MiddletonJimmy Schuldt,
Tirs de Pénalité
Tim Soderlund, Sheldon Dries, Julien Gauthier, Zach Senyshyn, Marcus Kruger
Gardien
#1 : Jake Oettinger, #2 : Michael Hutchinson


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
LigueDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals21100000972110000007251010000025-320.500918270010199766679429979875068111848500.00%9188.89%11494288751.75%1412297747.43%674136349.45%1932130619236141099551
2Baby Hawks2020000025-31010000023-11010000002-200.0002350010199766499429979875072221868600.00%9188.89%01494288751.75%1412297747.43%674136349.45%1932130619236141099551
3Bears42100100141132010010069-32200000082650.62514264000101997661349429979875015857248918633.33%11190.91%01494288751.75%1412297747.43%674136349.45%1932130619236141099551
4Bruins311000101091100000104312110000066040.66710162600101997661059429979875010824227710440.00%10280.00%01494288751.75%1412297747.43%674136349.45%1932130619236141099551
5Cabaret Lady Mary Ann3300000018992200000012661100000063361.000183149001019976619094299798750871514984375.00%7185.71%01494288751.75%1412297747.43%674136349.45%1932130619236141099551
6Caroline422000001213-1220000008622020000047-340.50012203200101997661259429979875015451299914321.43%110100.00%01494288751.75%1412297747.43%674136349.45%1932130619236141099551
7Chiefs21000010642110000002111000001043141.000681400101997667394299798750742883510110.00%4175.00%01494288751.75%1412297747.43%674136349.45%1932130619236141099551
8Chill20200000811-31010000046-21010000045-100.00081422101019976666942997987501002016615240.00%8362.50%01494288751.75%1412297747.43%674136349.45%1932130619236141099551
9Comets210000018711000000145-11100000042230.7508142200101997666094299798750801654417228.57%10190.00%01494288751.75%1412297747.43%674136349.45%1932130619236141099551
10Cougars321000001082220000009541010000013-240.6671019290010199766759429979875010328198310440.00%70100.00%01494288751.75%1412297747.43%674136349.45%1932130619236141099551
11Crunch321000001011-1110000006332110000048-440.66710172700101997661059429979875011836367310110.00%12283.33%01494288751.75%1412297747.43%674136349.45%1932130619236141099551
12Heat211000008801010000023-11100000065120.500814220010199766749429979875073201248300.00%60100.00%01494288751.75%1412297747.43%674136349.45%1932130619236141099551
13Jayhawks2020000048-41010000024-21010000024-200.000471100101997666594299798750941720535120.00%10190.00%01494288751.75%1412297747.43%674136349.45%1932130619236141099551
14Las Vegas20100001811-31000000167-11010000024-210.2508132100101997668194299798750702012556233.33%6266.67%01494288751.75%1412297747.43%674136349.45%1932130619236141099551
15Manchots4300100016106210010008622200000084481.00016274300101997661799429979875014342359315640.00%9188.89%01494288751.75%1412297747.43%674136349.45%1932130619236141099551
16Marlies31200000914-51010000025-32110000079-220.33391423001019976684942997987501454135749333.33%10370.00%01494288751.75%1412297747.43%674136349.45%1932130619236141099551
17Minnesota220000001165110000006421100000052341.000112031001019976610594299798750642329592150.00%70100.00%01494288751.75%1412297747.43%674136349.45%1932130619236141099551
18Monarchs2010000159-41010000025-31000000134-110.2505914001019976665942997987501063318586233.33%9366.67%01494288751.75%1412297747.43%674136349.45%1932130619236141099551
19Monsters2110000079-21010000037-41100000042220.5007132000101997667494299798750652724465240.00%12375.00%01494288751.75%1412297747.43%674136349.45%1932130619236141099551
20Oceanics211000008801010000035-21100000053220.500813210010199766739429979875061198511218.33%40100.00%01494288751.75%1412297747.43%674136349.45%1932130619236141099551
21Oil Kings22000000624110000003031100000032141.0006101601101997668294299798750752312556233.33%6183.33%01494288751.75%1412297747.43%674136349.45%1932130619236141099551
22Phantoms40300010813-5201000105502020000038-520.2508142200101997661169429979875013639257210110.00%10280.00%01494288751.75%1412297747.43%674136349.45%1932130619236141099551
23Rocket31200000611-51010000025-32110000046-220.33361117001019976674942997987501153420585120.00%10280.00%01494288751.75%1412297747.43%674136349.45%1932130619236141099551
24Senators3210000015105211000009811100000062440.6671526410010199766118942997987501053718709111.11%7271.43%11494288751.75%1412297747.43%674136349.45%1932130619236141099551
25Sharks22000000633110000003211100000031241.000610160010199766779429979875056815545120.00%5180.00%11494288751.75%1412297747.43%674136349.45%1932130619236141099551
26Sound Tigers4310000011922110000057-22200000062460.750112132001019976614994299798750117372011415426.67%10190.00%01494288751.75%1412297747.43%674136349.45%1932130619236141099551
27Spiders413000001114-3211000008802020000036-320.250111829001019976611794299798750168754093600.00%20480.00%01494288751.75%1412297747.43%674136349.45%1932130619236141099551
28Stars2110000089-11010000025-31100000064220.50081624001019976692942997987506514255610220.00%5260.00%01494288751.75%1412297747.43%674136349.45%1932130619236141099551
29Thunder32100000945211000004401100000050540.6679162501101997661229429979875076241650700.00%7185.71%01494288751.75%1412297747.43%674136349.45%1932130619236141099551
Total82413201233280263174119160112214814264122160011113212111950.5792804907701210199766295394299798750297687566620262455723.27%2624383.59%31494288751.75%1412297747.43%674136349.45%1932130619236141099551
30Wolf Pack4300010017107220000009362100010087170.87517324900101997661579429979875012034249510110.00%11190.91%01494288751.75%1412297747.43%674136349.45%1932130619236141099551
_Since Last GM Reset82413201233280263174119160112214814264122160011113212111950.5792804907701210199766295394299798750297687566620262455723.27%2624383.59%31494288751.75%1412297747.43%674136349.45%1932130619236141099551
_Vs Conference46221801221156142142391001120797812313800101776413530.5761562744301110199766162994299798750166750133410991423222.54%1402681.43%31494288751.75%1412297747.43%674136349.45%1932130619236141099551
_Vs Division287700110898091443000104944514340010040364170.30489158247001019976697794299798750996335197655882123.86%821087.80%01494288751.75%1412297747.43%674136349.45%1932130619236141099551

Total Pour les Joueurs
Matchs JouésPointsSéquenceButsPassesPointsTirs PourTirs ContreTirs BloquésMinutes de PénalitéMises en ÉchecButs en Filet DésertBlanchissage
8295L128049077029532976875666202612
Tous les Matchs
GPWLOTWOTL SOWSOLGFGA
8241321233280263
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
4119161122148142
Matchs Éxtérieurs
GPWLOTWOTL SOWSOLGFGA
4122160111132121
Derniers 10 Matchs
WLOTWOTL SOWSOL
440200
Tentatives en Avantage NumériqueButs en Avantage Numérique% en Avantage NumériqueTentatives en Désavantage NumériqueButs Contre en Désavantage Numérique% en Désavantage NumériqueButs Pour en Désavantage Numérique
2455723.27%2624383.59%3
Tirs en 1e PériodeTirs en 2e PériodeTirs en 3e PériodeTirs en 4e PériodeButs en 1e PériodeButs en 2e PériodeButs en 3e PériodeButs en 4e Période
9429979875010199766
Mises en Jeu
Gagnées en Zone OffensiveTotal en Zone Offensive% Gagnées en Zone Offensive Gagnées en Zone DéfensiveTotal en Zone Défensive% Gagnées en Zone DéfensiveGagnées en Zone NeutreTotal en Zone Neutre% Gagnées en Zone Neutre
1494288751.75%1412297747.43%674136349.45%
Temps Avec la Rondelle
En Zone OffensiveContrôle en Zone OffensiveEn Zone DéfensiveContrôle en Zone DéfensiveEn Zone NeutreContrôle en Zone Neutre
1932130619236141099551


Derniers Match Joués
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe Visiteuse Score Équipe Locale Score ST OT SO RI Lien
3 - 2020-10-2416Marlies5Monsters2LSommaire du Match
4 - 2020-10-2522Monsters4Manchots3WSommaire du Match
6 - 2020-10-2735Crunch3Monsters6WSommaire du Match
10 - 2020-10-3159Admirals2Monsters7WSommaire du Match
11 - 2020-11-0169Monsters1Caroline2LSommaire du Match
15 - 2020-11-0594Stars5Monsters2LSommaire du Match
17 - 2020-11-07110Monsters0Baby Hawks2LSommaire du Match
18 - 2020-11-08120Sound Tigers1Monsters2WSommaire du Match
20 - 2020-11-10129Monsters2Marlies5LSommaire du Match
23 - 2020-11-13148Caroline2Monsters3WSommaire du Match
25 - 2020-11-15165Monsters1Phantoms3LSommaire du Match
29 - 2020-11-19189Oil Kings0Monsters3WSommaire du Match
31 - 2020-11-21200Monsters4Chiefs3WXXSommaire du Match
32 - 2020-11-22212Heat3Monsters2LSommaire du Match
35 - 2020-11-25227Las Vegas7Monsters6LXXSommaire du Match
37 - 2020-11-27246Monsters2Jayhawks4LSommaire du Match
39 - 2020-11-29260Monsters4Monsters2WSommaire du Match
42 - 2020-12-02273Monsters0Rocket3LSommaire du Match
45 - 2020-12-05297Chiefs1Monsters2WSommaire du Match
49 - 2020-12-09322Rocket5Monsters2LSommaire du Match
51 - 2020-12-11337Cougars2Monsters4WSommaire du Match
53 - 2020-12-13352Monsters5Oceanics3WSommaire du Match
55 - 2020-12-15369Senators3Monsters2LSommaire du Match
57 - 2020-12-17384Phantoms2Monsters1LSommaire du Match
59 - 2020-12-19400Manchots3Monsters4WSommaire du Match
60 - 2020-12-20410Monsters3Sound Tigers1WSommaire du Match
63 - 2020-12-23429Jayhawks4Monsters2LSommaire du Match
65 - 2020-12-25444Wolf Pack1Monsters5WSommaire du Match
67 - 2020-12-27458Monsters6Cabaret Lady Mary Ann3WSommaire du Match
69 - 2020-12-29469Monsters5Bears1WSommaire du Match
72 - 2021-01-01490Monsters4Manchots1WSommaire du Match
74 - 2021-01-03501Monsters6Senators2WSommaire du Match
76 - 2021-01-05521Bears3Monsters1LSommaire du Match
77 - 2021-01-06529Monsters1Cougars3LSommaire du Match
79 - 2021-01-08541Monarchs5Monsters2LSommaire du Match
81 - 2021-01-10561Spiders5Monsters3LSommaire du Match
83 - 2021-01-12573Monsters3Sound Tigers1WSommaire du Match
87 - 2021-01-16585Monsters3Bears1WSommaire du Match
89 - 2021-01-18604Baby Hawks3Monsters2LSommaire du Match
91 - 2021-01-20619Cabaret Lady Mary Ann2Monsters6WSommaire du Match
93 - 2021-01-22627Monsters4Bruins3WSommaire du Match
95 - 2021-01-24642Sharks2Monsters3WSommaire du Match
97 - 2021-01-26662Monsters3Monarchs4LXXSommaire du Match
98 - 2021-01-27674Monsters2Admirals5LSommaire du Match
100 - 2021-01-29688Monsters3Sharks1WSommaire du Match
102 - 2021-01-31700Monsters2Las Vegas4LSommaire du Match
105 - 2021-02-03719Bruins3Monsters4WXXSommaire du Match
107 - 2021-02-05733Caroline4Monsters5WSommaire du Match
109 - 2021-02-07751Spiders3Monsters5WSommaire du Match
110 - 2021-02-08758Monsters5Wolf Pack3WSommaire du Match
113 - 2021-02-11766Oceanics5Monsters3LSommaire du Match
123 - 2021-02-21792Monsters3Crunch2WSommaire du Match
124 - 2021-02-22807Monsters4Rocket3WSommaire du Match
126 - 2021-02-24818Cabaret Lady Mary Ann4Monsters6WSommaire du Match
129 - 2021-02-27841Cougars3Monsters5WSommaire du Match
130 - 2021-02-28851Monsters7Monsters3LSommaire du Match
132 - 2021-03-02863Thunder3Monsters1LSommaire du Match
135 - 2021-03-05880Monsters1Crunch6LSommaire du Match
136 - 2021-03-06893Wolf Pack2Monsters4WSommaire du Match
138 - 2021-03-08912Monsters1Spiders3LSommaire du Match
140 - 2021-03-10920Monsters2Phantoms5LSommaire du Match
142 - 2021-03-12936Phantoms3Monsters4WXXSommaire du Match
144 - 2021-03-14955Monsters4Chill5LSommaire du Match
146 - 2021-03-16967Senators5Monsters7WSommaire du Match
Date Limite d'Échange --- Les échange ne peuvent plus se faire après la simulation de cette journée!
147 - 2021-03-17978Monsters5Minnesota2WSommaire du Match
150 - 2021-03-20995Minnesota4Monsters6WSommaire du Match
152 - 2021-03-221013Comets5Monsters4LXXSommaire du Match
155 - 2021-03-251030Monsters6Heat5WSommaire du Match
158 - 2021-03-281058Monsters3Oil Kings2WSommaire du Match
159 - 2021-03-291064Monsters4Comets2WSommaire du Match
163 - 2021-04-021088Manchots3Monsters4WXSommaire du Match
165 - 2021-04-041105Chill6Monsters4LSommaire du Match
167 - 2021-04-061118Monsters2Bruins3LSommaire du Match
170 - 2021-04-091141Bears6Monsters5LXSommaire du Match
172 - 2021-04-111155Monsters5Marlies4WSommaire du Match
174 - 2021-04-131171Monsters2Spiders3LSommaire du Match
175 - 2021-04-141178Monsters3Wolf Pack4LXSommaire du Match
178 - 2021-04-171199Monsters5Thunder0WSommaire du Match
179 - 2021-04-181212Monsters6Stars4WSommaire du Match
181 - 2021-04-201226Sound Tigers6Monsters3LSommaire du Match
184 - 2021-04-231249Thunder1Monsters3WSommaire du Match
185 - 2021-04-241255Monsters3Caroline5LSommaire du Match



Capacité de l'Aréna - Tendance du Prix des Billets - %
Niveau 1Niveau 2
Capacité de l'Aréna20001000
Prix des Billets3515
Assistance78,60739,228
Assistance PCT95.86%95.68%

Revenus
Matchs à domicile RestantsAssistance Moyenne - %Revenus Moyen par MatchRevenus Annuels à ce JourCapacité de l'ArénaPopularité de l'Équipe
0 2874 - 95.80% 81,455$3,339,665$3000100

Dépenses
Dépenses Annuelles à Ce JourSalaire Total des JoueursSalaire Total Moyen des JoueursSalaire des Coachs
2,281,450$ 2,428,833$ 2,428,833$ 0$
Cap Salarial Par JourCap salarial à ce jourJoueurs Inclut dans la Cap SalarialeJoueurs Exclut dans la Cap Salariale
13,058$ 2,281,450$ 26 0

Éstimation
Revenus de la Saison ÉstimésJours Restants de la SaisonDépenses Par JourDépenses de la Saison Éstimées
0$ 0 13,058$ 0$




LigueDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT