Out of Date Version of the STHS! Please update your version!
Login

Manchots
GP: 82 | W: 43 | L: 32 | OTL: 7 | P: 93
GF: 254 | GA: 244 | PP%: 19.29% | PK%: 82.53%
GM : Raphael Belanger | Morale : 50 | Team Overall : 56
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Game Center
Baby Hawks
50-23-9, 109pts
1
FINAL
3 Manchots
43-32-7, 93pts
Team Stats
W1StreakL1
27-9-5Home Record23-14-4
23-14-4Away Record20-18-3
7-3-0Last 10 Games6-4-0
3.61Goals Per Game3.10
2.88Goals Against Per Game2.98
22.11%Power Play Percentage19.29%
86.05%Penalty Kill Percentage82.53%
Manchots
43-32-7, 93pts
2
FINAL
7 Monsters
49-24-9, 107pts
Team Stats
L1StreakW1
23-14-4Home Record24-13-4
20-18-3Away Record25-11-5
6-4-0Last 10 Games4-2-4
3.10Goals Per Game3.50
2.98Goals Against Per Game3.15
19.29%Power Play Percentage19.75%
82.53%Penalty Kill Percentage80.38%
Team Leaders
Goals
C.J. Suess
33
Assists
Shane Pinto
40
Points
Shane Pinto
67
Plus/Minus
Shane Pinto
12
Wins
Nico Daws
33
Save Percentage
Daniel Vladar
0.923

Team Stats
Goals For
254
3.10 GFG
Shots For
2788
34.00 Avg
Power Play Percentage
19.3%
49 GF
Offensive Zone Start
41.4%
Goals Against
244
2.98 GAA
Shots Against
2743
33.45 Avg
Penalty Kill Percentage
82.5%%
40 GA
Defensive Zone Start
38.5%
Team Info

General ManagerRaphael Belanger
DivisionEst
ConferenceEst
Captain
Assistant #1
Assistant #2


Arena Info

Capacity3,000
Attendance1,883
Season Tickets300


Roster Info

Pro Team23
Farm Team20
Contract Limit43 / 50
Prospects11


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPAgeContractSalary Average
1Shane PintoX100.00694376777258466172745478244545050610202925,000$
2Mackenzie MacEachernXX100.00794490717250675925625571255858050600272560,000$
3Paul CareyX100.00747487797458595849575365524748050590332875,000$
4C.J. SuessX100.00756989666965666150566164584444050590272700,000$
5Simon Holmstrom (R)XX100.00817595637563646150615767544444050590202894,167$
6Vitaly Abramov (R)XX100.00686586676558586049585762564444050570232600,000$
7Ivan ChekhovichX100.00767495606758535854585166474444050560222776,667$
8Joel KellmanX100.00716977776946455468564761454646050550272800,000$
9Mikhail VorobyevX100.00534188697248674983535065244747050550241650,000$
10Tyler SteenbergenXXX100.00706693676663675369415861584444050550231650,000$
11Blade Jenkins (R)XX100.00787193637153545265465363504444050540213600,000$
12Pavel Gogolev (R)X100.00777289617247475050474762454444050520214834,167$
13Joel HanleyX100.007944967269586557254848752560600506303021,020,000$
14Ian MitchellX100.00614099766358805625504773254848050610222925,000$
15Dan RenoufX100.00777876627866714825374165395656050590271700,000$
16Steven SantiniX100.008076886376565850254240663854540505802621,000,000$
17Seth Barton (R)X100.00807493677441405025434164394444050550221925,000$
18Clayton Phillips (R)X100.00464477636444583525333046335454050480222575,000$
Scratches
1Tyler Weiss (R)X100.00484262685650614450433545395050050470213650,000$
TEAM AVERAGE100.0071618768705559534751496441484805056
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPAgeContractSalary Average
1Nico Daws (R)100.0063474783695669636562784646050610204850,833$
2Trent Miner (R)100.0044425370454445494545454444050480203560,000$
Scratches
1Hunter Shepard (R)100.0044415173454445494545454444050480252950,000$
2Tomas Vomacka (R)100.0044716464433839413639385450050470222525,000$
TEAM AVERAGE100.004950547351465051484852474605051
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Shane PintoManchots (Pit)C6727406712220852042567917810.55%24152622.78013134116401131543355.82%170900000.88210000641
2C.J. SuessManchots (Pit)LW82333164-42401451032988021811.07%25159919.5166124619112361062244.19%17200000.8024000633
3Mackenzie MacEachernManchots (Pit)LW/RW8225345981801011002246115911.16%16153018.674593620400031966340.15%13700000.77210000313
4Jamie DrysdalePittsburghD71133952314067145128377210.16%98176424.859716712000113175400.00%000010.5900000323
5Simon HolmstromManchots (Pit)LW/RW81183250105620118831723611010.47%14139917.2848123021020251145041.77%15800000.7105112274
6Vitaly AbramovManchots (Pit)LW/RW82252449-522087110259621639.65%16148918.17781543211000003139.29%8400000.6611000323
7Paul CareyManchots (Pit)LW82143448-1335134149270701865.19%18132116.1214511510001154037.40%12300000.7312010141
8Ian MitchellManchots (Pit)D82123648-81204897146471138.22%114170120.7461016671990002175200.00%000000.5600000302
9Joel HanleyManchots (Pit)D8272734-64751768210734806.54%121174721.31448392140113176100.00%000100.3900000013
10Joel KellmanManchots (Pit)C8214203404401231901353310910.37%10137216.742578108000072151.97%160100000.5000000153
11Mikhail VorobyevManchots (Pit)C82102434-512019144156561276.41%5131816.0806610840112410058.05%149700000.5200000012
12Tyler SteenbergenManchots (Pit)C/LW/RW82141529-51606063173531218.09%8124715.22000111000001063.41%8200000.4611000113
13Steven SantiniManchots (Pit)D8232225106010136395516565.45%87129115.76101729011050200.00%000000.3900011011
14Ivan ChekhovichManchots (Pit)LW8251217-3201047388330646.02%126307.680443100003790047.66%10700000.5400200001
15Dan RenoufManchots (Pit)D827916-479151602956173612.50%79146117.8311211111000072110.00%000000.2200012001
16Seth BartonManchots (Pit)D8228101137583242911176.90%6287910.7300025000056000.00%000000.2300000000
17Blade JenkinsManchots (Pit)C/LW78459-18044614212419.52%45186.65000010000480052.68%54100000.3500000002
18Pavel GogolevManchots (Pit)LW401450205111379.09%01012.53011320000000045.83%4800000.9900000000
19Clayton PhillipsManchots (Pit)D5000200200000.00%38917.980000000002000.00%000000.00%00000000
Team Total or Average1408234416650145267016401662260073718579.00%7162299216.33458212742920323710311472361153.38%625900110.57933345293236
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Nico DawsManchots (Pit)58331760.9212.6433686214818800310.70337580792
2Trent MinerManchots (Pit)29101410.8943.40144921827770100.00%02458311
3Daniel VladarPittsburgh42200.9233.0123900121550000.00%0413001
4Hunter ShepardManchots (Pit)50100.9063.08156008850000.00%0024000
Team Total or Average96453470.9142.88521483250289704137869510104


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract Type Current Salary Salary Ave RemainingSalary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10Link
Blade JenkinsManchots (Pit)C/LW212000-08-11Yes194 Lbs6 ft1YesNoNo3Pro & Farm600,000$0$0$No600,000$600,000$Link
C.J. Suess (1 Way Contract)Manchots (Pit)LW271994-03-16No190 Lbs5 ft11NoNoYes2Pro & Farm700,000$0$0$No700,000$Link
Clayton PhillipsManchots (Pit)D221999-09-09Yes182 Lbs5 ft10NoNoNo2Pro & Farm575,000$0$0$No575,000$Link
Dan Renouf (1 Way Contract)Manchots (Pit)D271994-06-01No198 Lbs6 ft3NoNoYes1Pro & Farm700,000$0$0$NoLink
Hunter ShepardManchots (Pit)G251995-11-07Yes201 Lbs6 ft0NoNoYes2Pro & Farm950,000$0$0$No950,000$Link
Ian MitchellManchots (Pit)D221999-01-18No173 Lbs5 ft11NoNoNo2Pro & Farm925,000$0$0$No925,000$Link
Ivan ChekhovichManchots (Pit)LW221999-01-04No187 Lbs5 ft11NoNoNo2Pro & Farm776,667$0$0$No776,667$Link
Joel Hanley (1 Way Contract)Manchots (Pit)D301991-06-08No190 Lbs5 ft11NoNoYes2Pro & Farm1,020,000$120,000$0$No1,020,000$Link
Joel Kellman (1 Way Contract)Manchots (Pit)C271994-05-25No192 Lbs5 ft11NoNoYes2Pro & Farm800,000$0$0$No800,000$Link
Mackenzie MacEachern (1 Way Contract)Manchots (Pit)LW/RW271994-03-08No190 Lbs6 ft2NoNoYes2Pro & Farm560,000$0$0$No560,000$Link
Mikhail VorobyevManchots (Pit)C241997-01-04No194 Lbs6 ft2NoNoYes1Pro & Farm650,000$0$0$NoLink
Nico DawsManchots (Pit)G202000-12-22Yes203 Lbs6 ft4NoNoNo4Pro & Farm850,833$0$0$No850,833$850,833$850,833$Link
Paul Carey (1 Way Contract)Manchots (Pit)LW331988-09-24No200 Lbs6 ft1NoNoYes2Pro & Farm875,000$0$0$No875,000$Link
Pavel GogolevManchots (Pit)LW212000-02-19Yes198 Lbs6 ft1NoNoNo4Pro & Farm834,167$0$0$No834,167$834,167$834,167$Link
Seth BartonManchots (Pit)D221999-08-18Yes196 Lbs6 ft3YesNoNo1Pro & Farm925,000$0$0$NoLink
Shane PintoManchots (Pit)C202000-11-12No192 Lbs6 ft2NoNoNo2Pro & Farm925,000$0$0$No925,000$Link
Simon HolmstromManchots (Pit)LW/RW202001-05-24Yes202 Lbs6 ft2NoNoNo2Pro & Farm894,167$0$0$No894,167$Link
Steven Santini (1 Way Contract)Manchots (Pit)D261995-03-07No205 Lbs6 ft2NoNoYes2Pro & Farm1,000,000$100,000$0$No1,000,000$Link
Tomas VomackaManchots (Pit)G221999-05-02Yes165 Lbs6 ft3NoNoNo2Pro & Farm525,000$0$0$No525,000$Link
Trent MinerManchots (Pit)G202001-02-05Yes185 Lbs6 ft1NoNoNo3Pro & Farm560,000$0$0$No560,000$560,000$Link
Tyler SteenbergenManchots (Pit)C/LW/RW231998-01-07No188 Lbs5 ft10NoNoNo1Pro & Farm650,000$0$0$NoLink
Tyler WeissManchots (Pit)LW212000-01-03Yes151 Lbs5 ft11NoNoNo3Pro & Farm650,000$0$0$No650,000$650,000$Link
Vitaly AbramovManchots (Pit)LW/RW231998-05-08Yes181 Lbs5 ft10YesNoNo2Pro & Farm600,000$0$0$No600,000$Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2323.70189 Lbs6 ft12.13762,862$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Mackenzie MacEachernShane PintoSimon Holmstrom40122
2Paul CareyJoel KellmanVitaly Abramov30122
3C.J. SuessTyler SteenbergenIvan Chekhovich20122
4Ivan ChekhovichMikhail VorobyevShane Pinto10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Joel HanleyIan Mitchell40122
2Dan RenoufSteven Santini30122
3Seth BartonClayton Phillips20122
4Joel HanleyIan Mitchell10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Mackenzie MacEachernShane PintoSimon Holmstrom60122
2Paul CareyJoel KellmanVitaly Abramov40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Joel HanleyIan Mitchell60122
2Dan RenoufSteven Santini40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Shane PintoMackenzie MacEachern60122
2Simon HolmstromPaul Carey40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Joel HanleyIan Mitchell60122
2Dan RenoufSteven Santini40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Shane Pinto60122Joel HanleyIan Mitchell60122
2Mackenzie MacEachern40122Dan RenoufSteven Santini40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Shane PintoMackenzie MacEachern60122
2Simon HolmstromPaul Carey40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Joel HanleyIan Mitchell60122
2Dan RenoufSteven Santini40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Mackenzie MacEachernShane PintoSimon HolmstromJoel HanleyIan Mitchell
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Mackenzie MacEachernShane PintoSimon HolmstromJoel HanleyIan Mitchell
Extra Forwards
Normal PowerPlayPenalty Kill
Blade Jenkins, Pavel Gogolev, C.J. SuessBlade Jenkins, Pavel GogolevC.J. Suess
Extra Defensemen
Normal PowerPlayPenalty Kill
Seth Barton, Clayton Phillips, Dan RenoufSeth BartonClayton Phillips, Dan Renouf
Penalty Shots
Shane Pinto, Mackenzie MacEachern, Simon Holmstrom, Paul Carey, C.J. Suess
Goalie
#1 : Nico Daws, #2 : Trent Miner


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals21100000330110000003121010000002-220.50036900968565126093093088972571314325120.00%7185.71%01528279054.77%1344258951.91%737135354.47%2096145217945901093566
2Baby Hawks21100000770110000003121010000046-220.500712190096856512659309308897273171858500.00%6350.00%01528279054.77%1344258951.91%737135354.47%2096145217945901093566
3Bears30200001811-31010000012-12010000179-210.167816240096856512117930930889728917144816318.75%70100.00%01528279054.77%1344258951.91%737135354.47%2096145217945901093566
4Bruins31200000913-4211000008801010000015-420.33391625009685651289930930889721032031627342.86%13376.92%01528279054.77%1344258951.91%737135354.47%2096145217945901093566
5Cabaret Lady Mary Ann330000001569110000006422200000092761.0001527420096856512167930930889721142023914125.00%9188.89%11528279054.77%1344258951.91%737135354.47%2096145217945901093566
6Caroline422000001192211000005502110000064240.5001119300096856512132930930889721413926649222.22%13192.31%01528279054.77%1344258951.91%737135354.47%2096145217945901093566
7Chiefs211000001091110000005321010000056-120.5001016260096856512709309308897259166418225.00%3233.33%01528279054.77%1344258951.91%737135354.47%2096145217945901093566
8Chill200010101082100000104311000100065141.0001016260096856512729309308897284271466700.00%6266.67%11528279054.77%1344258951.91%737135354.47%2096145217945901093566
9Comets2010010046-21010000034-11000010012-110.250471100968565125793093088972691910348112.50%40100.00%01528279054.77%1344258951.91%737135354.47%2096145217945901093566
10Cougars3200000112931000000156-12200000073450.8331221330096856512115930930889729317165312216.67%8187.50%01528279054.77%1344258951.91%737135354.47%2096145217945901093566
11Crunch3200000111831000000123-12200000095450.833112132009685651211293093088972802622619444.44%11281.82%11528279054.77%1344258951.91%737135354.47%2096145217945901093566
12Heat211000005501010000012-11100000043120.5005101500968565126593093088972731914504250.00%7185.71%01528279054.77%1344258951.91%737135354.47%2096145217945901093566
13Jayhawks2110000046-21010000025-31100000021120.50048120096856512709309308897260248458337.50%4175.00%01528279054.77%1344258951.91%737135354.47%2096145217945901093566
14Las Vegas2010010069-31010000046-21000010023-110.2506121800968565126493093088972631616496116.67%7357.14%01528279054.77%1344258951.91%737135354.47%2096145217945901093566
15Marlies31200000613-720200000312-91100000031220.333611170096856512120930930889728018387710220.00%6183.33%01528279054.77%1344258951.91%737135354.47%2096145217945901093566
16Minnesota20100010660100000102111010000045-120.50069150096856512679309308897270221039300.00%5180.00%01528279054.77%1344258951.91%737135354.47%2096145217945901093566
17Monarchs220000001266110000008351100000043141.00012223400968565121239309308897267222635240.00%10100.00%01528279054.77%1344258951.91%737135354.47%2096145217945901093566
18Monsters422000001314-122000000103720200000311-840.500132336009685651212893093088972116508781715.88%4175.00%01528279054.77%1344258951.91%737135354.47%2096145217945901093566
19Monsters2020000048-41010000034-11010000014-300.00047110096856512579309308897277192244800.00%10190.00%01528279054.77%1344258951.91%737135354.47%2096145217945901093566
20Oceanics210000101055100000102111100000084441.00010162600968565127293093088972632120399333.33%3166.67%01528279054.77%1344258951.91%737135354.47%2096145217945901093566
21Oil Kings20200000610-41010000035-21010000035-200.000611170096856512729309308897276151241600.00%6266.67%01528279054.77%1344258951.91%737135354.47%2096145217945901093566
22Phantoms320010001147220000007161000100043161.0001122330196856512107930930889728529234714321.43%8187.50%01528279054.77%1344258951.91%737135354.47%2096145217945901093566
23Rocket31100001810-21000000145-12110000045-130.5008162400968565128593093088972963720679222.22%9188.89%01528279054.77%1344258951.91%737135354.47%2096145217945901093566
24Seattle2110000035-2110000001011010000025-320.5003690196856512689309308897271108496116.67%40100.00%01528279054.77%1344258951.91%737135354.47%2096145217945901093566
25Senators31200000660211000004311010000023-120.3336121800968565129093093088972923126551119.09%8275.00%01528279054.77%1344258951.91%737135354.47%2096145217945901093566
26Sharks20100010770100000104311010000034-120.500711180096856512649309308897280251438100.00%70100.00%01528279054.77%1344258951.91%737135354.47%2096145217945901093566
27Sound Tigers41200001812-42010000136-32110000056-130.3758152300968565121179309308897213956107610110.00%50100.00%01528279054.77%1344258951.91%737135354.47%2096145217945901093566
28Spiders421000101293220000006332010001066060.75012203200968565121279309308897213432328112325.00%16475.00%01528279054.77%1344258951.91%737135354.47%2096145217945901093566
29Stars2110000067-11010000035-21100000032120.500691510968565124693093088972812325453133.33%7185.71%01528279054.77%1344258951.91%737135354.47%2096145217945901093566
30Thunder330000001046220000006241100000042261.0001015250096856512779309308897210330366312325.00%13192.31%01528279054.77%1344258951.91%737135354.47%2096145217945901093566
31Wolf Pack421010001192210010007522110000044060.75011223301968565121139309308897215549249210110.00%12283.33%11528279054.77%1344258951.91%737135354.47%2096145217945901093566
Total8235320325525424410411814010441281151341171802211126129-3930.5672544547081396856512278893093088972274377956217482544919.29%2294082.53%41528279054.77%1344258951.91%737135354.47%2096145217945901093566
_Since Last GM Reset8235320325525424410411814010441281151341171802211126129-3930.5672544547081396856512278893093088972274377956217482544919.29%2294082.53%41528279054.77%1344258951.91%737135354.47%2096145217945901093566
_Vs Conference4419160304213612412241360103176562020610020116068-8540.614136243379029685651214769309308897214474403069171462718.49%1161983.62%21528279054.77%1344258951.91%737135354.47%2096145217945901093566

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
8293L125445470827882743779562174813
All Games
GPWLOTWOTL SOWSOLGFGA
8235323255254244
Home Games
GPWLOTWOTL SOWSOLGFGA
4118141044128115
Visitor Games
GPWLOTWOTL SOWSOLGFGA
4117182211126129
Last 10 Games
WLOTWOTL SOWSOL
640000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
2544919.29%2294082.53%4
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
9309308897296856512
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
1528279054.77%1344258951.91%737135354.47%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
2096145217945901093566


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
7 - 2022-10-1311Jayhawks5Manchots2BLBoxScore
9 - 2022-10-1531Thunder1Manchots3BWBoxScore
11 - 2022-10-1742Manchots2Rocket4ALBoxScore
14 - 2022-10-2062Monarchs3Manchots8BWBoxScore
16 - 2022-10-2282Manchots1Monsters4ALBoxScore
18 - 2022-10-2494Manchots3Oil Kings5ALBoxScore
19 - 2022-10-25104Manchots4Heat3AWBoxScore
22 - 2022-10-28125Manchots1Comets2ALXBoxScore
23 - 2022-10-29137Manchots2Seattle5ALBoxScore
26 - 2022-11-01147Bruins2Manchots4BWBoxScore
27 - 2022-11-02160Manchots3Crunch2AWBoxScore
30 - 2022-11-05184Seattle0Manchots1BWBoxScore
34 - 2022-11-09208Manchots3Bears4ALBoxScore
36 - 2022-11-11221Manchots3Marlies1AWBoxScore
37 - 2022-11-12229Manchots2Rocket1AWBoxScore
40 - 2022-11-15251Marlies5Manchots2BLBoxScore
42 - 2022-11-17268Manchots4Minnesota5ALBoxScore
44 - 2022-11-19276Manchots8Oceanics4AWBoxScore
45 - 2022-11-20290Manchots4Baby Hawks6ALBoxScore
48 - 2022-11-23306Heat2Manchots1BLBoxScore
50 - 2022-11-25324Manchots4Phantoms3AWXBoxScore
51 - 2022-11-26335Marlies7Manchots1BLBoxScore
54 - 2022-11-29352Caroline3Manchots2BLBoxScore
56 - 2022-12-01368Las Vegas6Manchots4BLBoxScore
58 - 2022-12-03384Chiefs3Manchots5BWBoxScore
61 - 2022-12-06404Monsters2Manchots5BWBoxScore
64 - 2022-12-09426Manchots6Crunch3AWBoxScore
65 - 2022-12-10437Crunch3Manchots2BLXXBoxScore
67 - 2022-12-12449Stars5Manchots3BLBoxScore
70 - 2022-12-15474Manchots4Cabaret Lady Mary Ann1AWBoxScore
73 - 2022-12-18498Manchots0Caroline2ALBoxScore
75 - 2022-12-20511Wolf Pack2Manchots3BWBoxScore
77 - 2022-12-22526Caroline2Manchots3BWBoxScore
82 - 2022-12-27550Manchots4Sound Tigers3AWBoxScore
83 - 2022-12-28560Cougars6Manchots5BLXXBoxScore
85 - 2022-12-30576Spiders2Manchots4BWBoxScore
88 - 2023-01-02595Manchots1Bruins5ALBoxScore
91 - 2023-01-05620Manchots2Las Vegas3ALXBoxScore
94 - 2023-01-08640Manchots2Jayhawks1AWBoxScore
96 - 2023-01-10652Comets4Manchots3BLBoxScore
99 - 2023-01-13674Oceanics1Manchots2BWXXBoxScore
100 - 2023-01-14682Manchots6Caroline2AWBoxScore
102 - 2023-01-16700Admirals1Manchots3BWBoxScore
104 - 2023-01-18712Manchots2Senators3ALBoxScore
106 - 2023-01-20730Senators1Manchots3BWBoxScore
108 - 2023-01-22746Manchots3Spiders2AWXXBoxScore
110 - 2023-01-24756Cabaret Lady Mary Ann4Manchots6BWBoxScore
112 - 2023-01-26773Manchots4Bears5ALXXBoxScore
114 - 2023-01-28793Sharks3Manchots4BWXXBoxScore
124 - 2023-02-07813Monsters4Manchots3BLBoxScore
127 - 2023-02-10831Manchots0Admirals2ALBoxScore
128 - 2023-02-11845Manchots4Monarchs3AWBoxScore
131 - 2023-02-14863Manchots3Sharks4ALBoxScore
134 - 2023-02-17879Manchots1Sound Tigers3ALBoxScore
135 - 2023-02-18886Spiders1Manchots2BWBoxScore
137 - 2023-02-20906Sound Tigers3Manchots2BLXXBoxScore
140 - 2023-02-23922Oil Kings5Manchots3BLBoxScore
142 - 2023-02-25943Manchots5Chiefs6ALBoxScore
143 - 2023-02-26951Thunder1Manchots3BWBoxScore
145 - 2023-02-28963Manchots6Chill5AWXBoxScore
147 - 2023-03-02977Manchots4Thunder2AWBoxScore
Trade Deadline --- Trades can’t be done after this day is simulated!
149 - 2023-03-04993Manchots5Cabaret Lady Mary Ann1AWBoxScore
152 - 2023-03-071013Monsters1Manchots5BWBoxScore
154 - 2023-03-091027Sound Tigers3Manchots1BLBoxScore
156 - 2023-03-111039Phantoms0Manchots4BWBoxScore
157 - 2023-03-121054Wolf Pack3Manchots4BWXBoxScore
159 - 2023-03-141064Rocket5Manchots4BLXXBoxScore
161 - 2023-03-161082Manchots2Wolf Pack0AWBoxScore
163 - 2023-03-181103Manchots2Wolf Pack4ALBoxScore
165 - 2023-03-201115Senators2Manchots1BLBoxScore
167 - 2023-03-221133Manchots1Monsters4ALBoxScore
168 - 2023-03-231143Manchots3Stars2AWBoxScore
170 - 2023-03-251162Bears2Manchots1BLBoxScore
173 - 2023-03-281180Manchots3Cougars2AWBoxScore
175 - 2023-03-301192Chill3Manchots4BWXXBoxScore
177 - 2023-04-011205Bruins6Manchots4BLBoxScore
178 - 2023-04-021221Phantoms1Manchots3BWBoxScore
180 - 2023-04-041233Manchots3Spiders4ALBoxScore
182 - 2023-04-061244Minnesota1Manchots2BWXXBoxScore
184 - 2023-04-081266Manchots4Cougars1AWBoxScore
187 - 2023-04-111286Baby Hawks1Manchots3BWBoxScore
189 - 2023-04-131303Manchots2Monsters7ALBoxScore



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Capacity17501250
Ticket Price5020
Attendance43,49933,684
Attendance PCT60.63%65.72%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueCapacityTeam Popularity
0 1883 - 62.75% 69,479$2,848,630$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
1,279,234$ 1,189,084$ 1,189,084$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
6,258$ 1,279,234$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 0 6,258$ 0$




Manchots Stat Leaders (Regular Season)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Manchots Goalies Stat Leaders (Regular Season)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA

Manchots Career Team Stats

OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT

Manchots Stat Leaders (Play-Off)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Manchots Goalies Stat Leaders (Play-Off)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA