Version obsolète du STHS! Veuillez mettre à jour votre version!
Connexion

Seattle
GP: 82 | W: 60 | L: 20 | OTL: 2 | P: 122
GF: 341 | GA: 205 | PP%: 24.24% | PK%: 81.51%
DG: Yvon Bergeron | Morale : 50 | Moyenne d’équipe : 61
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Centre de jeu
Seattle
60-20-2, 122pts
4
FINAL
2 Las Vegas
33-41-8, 74pts
Team Stats
W3StreakL3
33-7-1Home Record19-19-3
27-13-1Away Record14-22-5
7-2-1Last 10 Games3-6-1
4.16Buts par match 3.52
2.50Buts contre par match 4.12
24.24%Pourcentage en avantage numérique24.03%
81.51%Pourcentage en désavantage numérique72.43%
Las Vegas
33-41-8, 74pts
0
FINAL
5 Seattle
60-20-2, 122pts
Team Stats
L3StreakW3
19-19-3Home Record33-7-1
14-22-5Away Record27-13-1
3-6-1Last 10 Games7-2-1
3.52Buts par match 4.16
4.12Buts contre par match 2.50
24.03%Pourcentage en avantage numérique24.24%
72.43%Pourcentage en désavantage numérique81.51%
Meneurs d'équipe
Buts
Ty Dellandrea
31
Passes
Jake Walman
61
Points
Radim Zohorna
85
Plus/Moins
Kale Clague
59
Victoires
Alex Nedeljkovic
56
Pourcentage d’arrêts
Alex Nedeljkovic
0.931

Statistiques d’équipe
Buts pour
341
4.16 GFG
Tirs pour
3404
41.51 Avg
Pourcentage en avantage numérique
24.2%
64 GF
Début de zone offensive
41.3%
Buts contre
205
2.50 GAA
Tirs contre
2915
35.55 Avg
Pourcentage en désavantage numérique
81.5%%
44 GA
Début de la zone défensive
40.7%
Informations de l'équipe

Directeur généralYvon Bergeron
DivisionMid-Ouest
ConférenceOuest
Capitaine
Assistant #1
Assistant #2


Informations de l’aréna

Capacité6,000
Assistance5,704
Billets de saison600


Informations de la formation

Équipe Pro16
Équipe Mineure23
Limite contact 39 / 50
Espoirs18


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPÂgeContratSalaire moyen
1Oliver WahlstromX100.00795972807762846938627160415859050640212925,001$
2Nicholas MerkleyX100.007543997968627669566760762547470506402411,100,000$
3Nicolas Aube-KubelX100.008454817668568860326368682561610506302511,573,000$
4Radim ZohornaXXX100.00794591688556646737696268254646050620253792,500$
5Ty Dellandrea (R)XX100.00747182757174776480596465614646050620213863,333$
6Kyle RauXXX100.00646172686163636880626862655152050610281600,000$
7Nolan Foote (R)X100.00757476767469726150576164584545050610202894,167$
8Brett MurrayX100.00737867698764766125666061254545050600233775,000$
9Jansen HarkinsXX100.00695293676854775857555965256162050590241750,000$
10Fredrik KarlstromX100.00807397667360615771496165584444050580233700,000$
11Jake WalmanX100.00734293746564646425514874255859050630251910,000$
12Kale ClagueX100.006341837665706769255648662550500506102341,700,000$
13Jeremy DaviesX100.00696676686665685525514360414646050570241925,000$
14Simon Lundmark (R)X100.00807591707551524725384163394444050560204850,833$
Rayé
MOYENNE D’ÉQUIPE100.0074608472726271624558586638505005061
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPÂgeContratSalaire moyen
1Alex Nedeljkovic100.00697673706870697067697555560506702532,800,000$
2Spencer Martin100.0059496173626460656665304444050600262750,000$
Rayé
MOYENNE D’ÉQUIPE100.006463677265676568676753505005064
Nom de l’entraîneur PH DF OF PD EX LD PO CNT Âge Contrat Salaire


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du joueur Nom de l’équipePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Radim ZohornaSeattle (SEA)C/LW/RW7929568530300931512776518410.47%31138317.526222850182000295142.29%171900001.2300000334
2Ty DellandreaSeattle (SEA)C/RW79314879266115145202319852569.72%17153719.465101550205000067259.23%206500011.0300102316
3Jake WalmanSeattle (SEA)D8214617541340146103174641148.05%121191223.3261723852200111191200.00%000000.7800000322
4Kale ClagueSeattle (SEA)D821658745932098961514010410.60%112178221.7351621552070000197610.00%000010.8300000141
5William CarrierSeattleLW61304272384801891102317217312.99%16123120.1987154715201121306046.02%17600001.1703000764
6Mason AppletonSeattleLW/RW64323971268084148323872269.91%23136521.3358135417600011194140.24%16900021.0433000554
7Oliver WahlstromSeattle (SEA)RW7623456830340155105290852317.93%10132817.48591425891013742047.90%11900001.0222000225
8Nicholas MerkleySeattle (SEA)RW50273764580311512525618310.71%14108221.648412391080001976150.91%27500011.1813000634
9Nolan FooteSeattle (SEA)LW7421375814491598109252591618.33%10119816.196713341210000614243.88%13900000.9700102145
10Owen TippettSeattleLW/RW59282553251601221362891092469.69%15140223.7883114916110161586036.45%50200000.7613000464
11Nicolas Aube-KubelSeattle (SEA)RW791437512454015786144541139.72%53118415.000003120000353037.50%3200000.8600000332
12Alex Barre-BouletSeattleC3519254429401381127237514.96%455915.99033432000061442.94%70800011.5700000424
13Kyle RauSeattle (SEA)C/LW/RW78172744328043137207641538.21%10111414.290004170003771059.33%101800010.7900000233
14Daniel SprongSeattleRW4919224127401865199451329.55%1686017.5625723890110311031.58%5700000.9511000124
15Travis DermottSeattleD617283530100985112639895.56%70144023.615611541700000148000.00%000000.4900000020
16Brett MurraySeattle (SEA)LW821715322541511268150357511.33%33110613.49000160000163229.11%7900000.5800001221
17Brendan GuhleSeattleD5631619297315137376718334.48%60109919.6303313125000091200.00%000000.3500101101
18Jeremy DaviesSeattle (SEA)D41513181333570253582014.29%4782120.0355101389000075100.00%000000.4400001010
19Haydn FleurySeattleD100111114120281223790.00%1122922.93011716000021000.00%000000.9600000000
20Fredrik KarlstromSeattle (SEA)C483710510021193072010.00%122886.010111110000271055.24%10500000.6900000000
21Jansen HarkinsSeattle (SEA)C/LW41279112035343814455.26%3152712.8600000000030049.11%11200000.3400000000
22Simon LundmarkSeattle (SEA)D23347820106413164918.75%3539817.34011419000030000.00%000000.3500101011
23Danton HeinenSeattleLW/RW1011-100146440.00%02121.82000000000000100.00%100000.9200000000
Statistiques d’équipe totales ou en moyenne1310360661102153060165195819433726104426559.66%7512387518.23741282026152216235191610611449.68%727600070.86815408485255
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du gardien Nom de l’équipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Alex NedeljkovicSeattle (SEA)76561720.9312.4245056618226290011.00057601553
2Spencer MartinSeattle (SEA)42100.9193.2818300101230000.7508236000
Statistiques d’équipe totales ou en moyenne80581820.9302.4646896619227520011378361553


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du joueur Nom de l’équipePOS Âge Date de naissance Nouveau joueur Poids Taille Non-échange Disponible pour échange Ballotage forcé Contrat Type Salaire actuel Salaire moyen restantPlafond salarial Plafond salarial restant Exclus du plafond salarial Salaire annuel 2Salaire annuel 3Salaire annuel 4Salaire annuel 5Salaire annuel 6Salaire annuel 7Salaire annuel 8Salaire annuel 9Salaire annuel 10Link
Alex NedeljkovicSeattle (SEA)G251996-01-07No189 Lbs6 ft0NoNoNo3Pro & Farm2,800,000$0$0$No2,800,000$2,800,000$Lien
Brett MurraySeattle (SEA)LW231998-07-19No228 Lbs6 ft5NoNoNo3Pro & Farm775,000$0$0$No775,000$775,000$Lien
Fredrik KarlstromSeattle (SEA)C231998-01-12No196 Lbs6 ft2NoNoNo3Pro & Farm700,000$0$0$No700,000$700,000$Lien
Jake WalmanSeattle (SEA)D251996-02-20No170 Lbs6 ft1NoNoNo1Pro & Farm910,000$0$0$NoLien
Jansen HarkinsSeattle (SEA)C/LW241997-05-23No182 Lbs6 ft1NoNoNo1Pro & Farm750,000$0$0$NoLien
Jeremy DaviesSeattle (SEA)D241996-12-04No180 Lbs5 ft11NoNoNo1Pro & Farm925,000$0$0$NoLien
Kale ClagueSeattle (SEA)D231998-06-05No177 Lbs6 ft0NoNoNo4Pro & Farm1,700,000$0$0$No1,700,000$1,700,000$1,700,000$Lien
Kyle Rau (contrat à 1 volet)Seattle (SEA)C/LW/RW281992-10-24No176 Lbs5 ft8YesNoNo1Pro & Farm600,000$0$0$NoLien
Nicholas MerkleySeattle (SEA)RW241997-05-23No194 Lbs5 ft10NoNoYes1Pro & Farm1,100,000$0$0$NoLien
Nicolas Aube-KubelSeattle (SEA)RW251996-05-09No187 Lbs5 ft11NoNoNo1Pro & Farm1,573,000$0$0$NoLien
Nolan FooteSeattle (SEA)LW202000-11-29Yes196 Lbs6 ft3NoNoNo2Pro & Farm894,167$0$0$No894,167$Lien
Oliver WahlstromSeattle (SEA)RW212000-06-13No205 Lbs6 ft2NoNoNo2Pro & Farm925,001$0$0$No925,001$Lien
Radim ZohornaSeattle (SEA)C/LW/RW251996-04-29No220 Lbs6 ft6NoNoNo3Pro & Farm792,500$0$0$No792,500$792,500$Lien
Simon LundmarkSeattle (SEA)D202000-10-08Yes201 Lbs6 ft2NoNoNo4Pro & Farm850,833$0$0$No850,833$850,833$850,833$Lien
Spencer Martin (contrat à 1 volet)Seattle (SEA)G261995-06-08No191 Lbs6 ft1NoNoNo2Pro & Farm750,000$0$0$No750,000$Lien
Ty DellandreaSeattle (SEA)C/RW212000-07-20Yes190 Lbs6 ft1NoNoNo3Pro & Farm863,333$0$0$No863,333$863,333$Lien
Nombre de joueursÂge moyenPoids moyenTaille moyenneContrat moyenSalaire moyen 1e année
1623.56193 Lbs6 ft12.191,056,802$



Attaque à 5 contre 5
Ligne #Ailier gaucheCentreAilier droit% tempsPHYDFOF
1Radim ZohornaTy DellandreaNicholas Merkley40122
2Nolan FooteKyle RauOliver Wahlstrom30122
3Brett MurrayJansen HarkinsNicolas Aube-Kubel20122
4Nicholas MerkleyFredrik KarlstromOliver Wahlstrom10122
Défense à 5 contre 5
Ligne #DéfenseDéfense% tempsPHYDFOF
1Jake WalmanKale Clague40122
2Jeremy DaviesSimon Lundmark30122
3Fredrik Karlstrom20122
4Jake WalmanKale Clague10122
Attaque en avantage numérique
Ligne #Ailier gaucheCentreAilier droit% tempsPHYDFOF
1Radim ZohornaTy DellandreaNicholas Merkley60122
2Nolan FooteKyle RauOliver Wahlstrom40122
Défense en avantage numérique
Ligne #DéfenseDéfense% tempsPHYDFOF
1Jake WalmanKale Clague60122
2Jeremy DaviesSimon Lundmark40122
Attaque à 4 en désavantage numérique
Ligne #CentreAilier% tempsPHYDFOF
1Nicholas MerkleyOliver Wahlstrom60122
2Nicolas Aube-KubelTy Dellandrea40122
Défense à 4 en désavantage numérique
Ligne #DéfenseDéfense% tempsPHYDFOF
1Jake WalmanKale Clague60122
2Jeremy DaviesSimon Lundmark40122
3 joueurs en désavantage numérique
Ligne #Ailier% tempsPHYDFOFDéfenseDéfense% tempsPHYDFOF
1Nicholas Merkley60122Jake WalmanKale Clague60122
2Oliver Wahlstrom40122Jeremy DaviesSimon Lundmark40122
Attaque à 4 contre 4
Ligne #CentreAilier% tempsPHYDFOF
1Nicholas MerkleyOliver Wahlstrom60122
2Nicolas Aube-KubelTy Dellandrea40122
Défense à 4 contre 4
Ligne #DéfenseDéfense% tempsPHYDFOF
1Jake WalmanKale Clague60122
2Jeremy DaviesSimon Lundmark40122
Attaque dernière minute
Ailier gaucheCentreAilier droitDéfenseDéfense
Radim ZohornaTy DellandreaNicholas MerkleyJake WalmanKale Clague
Défense dernière minute
Ailier gaucheCentreAilier droitDéfenseDéfense
Radim ZohornaTy DellandreaNicholas MerkleyJake WalmanKale Clague
Attaquants supplémentaires
Normal Avantage numériqueDésavantage numérique
Brett Murray, Jansen Harkins, Radim ZohornaBrett Murray, Jansen HarkinsRadim Zohorna
Défenseurs supplémentaires
Normal Avantage numériqueDésavantage numérique
Jeremy Davies, Simon Lundmark, Jake WalmanJeremy DaviesSimon Lundmark, Jake Walman
Tirs de pénalité
Nicholas Merkley, Oliver Wahlstrom, Nicolas Aube-Kubel, Ty Dellandrea, Radim Zohorna
Gardien
#1 : Alex Nedeljkovic, #2 : Spencer Martin


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
TotalDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals4400000023518220000001028220000001331081.00023436600132117869189113011541101331422535898450.00%15193.33%01495303749.23%1417299247.36%658132149.81%2087147017965791064549
2Baby Hawks30300000513-81010000004-42020000059-400.00059140013211786972113011541101331192850717114.29%12283.33%01495303749.23%1417299247.36%658132149.81%2087147017965791064549
3Bears211000009721010000035-21100000062420.5009172600132117869661130115411013358158439444.44%40100.00%01495303749.23%1417299247.36%658132149.81%2087147017965791064549
4Bruins220000001037110000006151100000042241.0001018280013211786910211301154110133541614388112.50%60100.00%01495303749.23%1417299247.36%658132149.81%2087147017965791064549
5Cabaret Lady Mary Ann2200000017413110000009271100000082641.00017335000132117869132113011541101336615126122100.00%6183.33%01495303749.23%1417299247.36%658132149.81%2087147017965791064549
6Caroline211000001046110000009181010000013-220.5001020300013211786910511301154110133722116645120.00%8362.50%01495303749.23%1417299247.36%658132149.81%2087147017965791064549
7Chiefs3300000014682200000010461100000042261.0001424380013211786913211301154110133872214651119.09%7185.71%01495303749.23%1417299247.36%658132149.81%2087147017965791064549
8Chill3300000014771100000041322000000106461.000142539001321178691181130115411013310117248311327.27%11190.91%01495303749.23%1417299247.36%658132149.81%2087147017965791064549
9Comets4210100016115211000007612100100095460.750162844011321178691651130115411013316839417612433.33%19668.42%01495303749.23%1417299247.36%658132149.81%2087147017965791064549
10Cougars20200000610-41010000057-21010000013-200.00061016101321178698511301154110133972616496116.67%8275.00%01495303749.23%1417299247.36%658132149.81%2087147017965791064549
11Crunch21100000642110000004131010000023-120.5006121800132117869901130115411013373138586116.67%30100.00%01495303749.23%1417299247.36%658132149.81%2087147017965791064549
12Heat31001010151142100001010731000100054161.0001526410013211786912511301154110133121391665200.00%7185.71%01495303749.23%1417299247.36%658132149.81%2087147017965791064549
13Jayhawks32000100171342100010010911100000074350.833172845001321178691341130115411013310432207110330.00%8362.50%01495303749.23%1417299247.36%658132149.81%2087147017965791064549
14Las Vegas43100000188102200000012392110000065160.750183553011321178691801130115411013312529349815426.67%12283.33%01495303749.23%1417299247.36%658132149.81%2087147017965791064549
15Manchots21100000532110000005231010000001-120.500591400132117869711130115411013368141250400.00%6183.33%11495303749.23%1417299247.36%658132149.81%2087147017965791064549
16Marlies220000001046110000006241100000042241.00010182800132117869721130115411013361176389222.22%30100.00%01495303749.23%1417299247.36%658132149.81%2087147017965791064549
17Minnesota321000001183110000005322110000065140.6671121320013211786911511301154110133121292377500.00%9277.78%01495303749.23%1417299247.36%658132149.81%2087147017965791064549
18Monarchs44000000177102200000074322000000103781.000173148001321178691961130115411013313032169814321.43%7185.71%01495303749.23%1417299247.36%658132149.81%2087147017965791064549
19Monsters211000006601010000045-11100000021120.500691500132117869811130115411013392196365120.00%30100.00%01495303749.23%1417299247.36%658132149.81%2087147017965791064549
20Monsters310000201385100000106512100001073461.00013213401132117869104113011541101338930166716318.75%8362.50%01495303749.23%1417299247.36%658132149.81%2087147017965791064549
21Oceanics3200001013762100001010641100000031261.00013233600132117869132113011541101331212687519421.05%4175.00%01495303749.23%1417299247.36%658132149.81%2087147017965791064549
22Oil Kings422000001415-12200000094520200000511-640.50014274100132117869140113011541101331393858871218.33%17288.24%01495303749.23%1417299247.36%658132149.81%2087147017965791064549
23Phantoms22000000725110000004221100000030341.00071219011321178697511301154110133102166466116.67%30100.00%01495303749.23%1417299247.36%658132149.81%2087147017965791064549
24Rocket22000000853110000004221100000043141.0008132100132117869101113011541101335919145611327.27%7357.14%01495303749.23%1417299247.36%658132149.81%2087147017965791064549
25Senators22000000927110000005141100000041341.00091726001321178697711301154110133631814466466.67%7185.71%01495303749.23%1417299247.36%658132149.81%2087147017965791064549
26Sharks320001001569110000006242100010094550.83315274201132117869136113011541101331063118688450.00%90100.00%11495303749.23%1417299247.36%658132149.81%2087147017965791064549
27Sound Tigers21100000761110000004131010000035-220.500714210013211786989113011541101336318104313430.77%5260.00%01495303749.23%1417299247.36%658132149.81%2087147017965791064549
28Spiders22000000642110000003211100000032141.00061016001321178697511301154110133761712367114.29%6350.00%01495303749.23%1417299247.36%658132149.81%2087147017965791064549
29Stars32100000752211000004401100000031240.667713200013211786991113011541101331024720686116.67%8187.50%01495303749.23%1417299247.36%658132149.81%2087147017965791064549
30Thunder21100000734110000005051010000023-120.500713200113211786978113011541101335111848700.00%40100.00%01495303749.23%1417299247.36%658132149.81%2087147017965791064549
31Wolf Pack2020000068-21010000023-11010000045-100.00061117001321178697611301154110133852712494250.00%6183.33%01495303749.23%1417299247.36%658132149.81%2087147017965791064549
Total8254200224034120513641307001301881018741241302110153104491220.74434161795816132117869340411301154110133291574656719192646424.24%2384481.51%21495303749.23%1417299247.36%658132149.81%2087147017965791064549
_Since Last GM Reset8254200224034120513641307001301881018741241302110153104491220.74434161795816132117869340411301154110133291574656719192646424.24%2384481.51%21495303749.23%1417299247.36%658132149.81%2087147017965791064549
_Vs Conference432413021301771255222154001201046242219902010736310590.68617732049713132117869177111301154110133154242735810331262620.63%1393276.98%01495303749.23%1417299247.36%658132149.81%2087147017965791064549
_Vs Division2687000001186355135200000612833133500000573522160.30811821733503132117869113111301154110133931233218581712028.17%861384.88%11495303749.23%1417299247.36%658132149.81%2087147017965791064549

Total pour les joueurs
Matchs jouésPointsSéquenceButsPassesPointsTirs pourTirs contreTirs bloquésMinutes de pénalitésMises en échecButs en filet désertBlanchissages
82122W334161795834042915746567191916
Tous les matchs
GPWLOTWOTL SOWSOLGFGA
8254202240341205
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
413070130188101
Matchs extérieurs
GPWLOTWOTL SOWSOLGFGA
4124132110153104
Derniers 10 matchs
WLOTWOTL SOWSOL
720100
Tentatives en avantage numériqueButs en avantage numérique% en avantage numériqueTentatives en désavantage numériqueButs contre en désavantage numérique% en désavantage numériqueButs pour en désavantage numérique
2646424.24%2384481.51%2
Tirs en 1e périodeTirs en 2e périodeTirs en 3e périodeTirs en 4e périodeButs en 1e périodeButs en 2e périodeButs en 3e périodeButs en 4e période
11301154110133132117869
Mises en jeu
Gagnées en zone offensiveTotal en zone offensive% gagnées en zone offensive Gagnées en zone défensiveTotal en zone défensive% gagnées en zone défensiveGagnées en zone neutreTotal en zone neutre% gagnées en zone neutre
1495303749.23%1417299247.36%658132149.81%
Temps avec la rondelle
En zone offensiveContrôle en zone offensiveEn zone défensiveContrôle en zone défensiveEn zone neutreContrôle en zone neutre
2087147017965791064549


Derniers matchs joués
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe visiteuse Score Équipe locale Score ST OT SO RI Lien
6 - 2022-10-129Seattle8Admirals2AWSommaire du match
7 - 2022-10-1320Seattle6Monarchs1AWSommaire du match
9 - 2022-10-1536Las Vegas3Seattle7BWSommaire du match
11 - 2022-10-1747Caroline1Seattle9BWSommaire du match
13 - 2022-10-1958Chiefs2Seattle3BWSommaire du match
15 - 2022-10-2173Seattle3Monsters0AWSommaire du match
17 - 2022-10-2387Seattle3Baby Hawks4ALSommaire du match
19 - 2022-10-25105Crunch1Seattle4BWSommaire du match
21 - 2022-10-27118Comets5Seattle3BLSommaire du match
23 - 2022-10-29137Manchots2Seattle5BWSommaire du match
26 - 2022-11-01155Seattle5Heat4AWXSommaire du match
28 - 2022-11-03167Seattle4Minnesota1AWSommaire du match
30 - 2022-11-05184Seattle0Manchots1ALSommaire du match
33 - 2022-11-08205Chill1Seattle4BWSommaire du match
36 - 2022-11-11224Minnesota3Seattle5BWSommaire du match
38 - 2022-11-13243Oceanics4Seattle5BWXXSommaire du match
42 - 2022-11-17271Wolf Pack3Seattle2BLSommaire du match
44 - 2022-11-19286Monarchs2Seattle3BWSommaire du match
48 - 2022-11-23316Sharks2Seattle6BWSommaire du match
50 - 2022-11-25329Seattle2Las Vegas3ALSommaire du match
52 - 2022-11-27343Seattle5Admirals1AWSommaire du match
54 - 2022-11-29360Seattle4Monarchs2AWSommaire du match
56 - 2022-12-01374Bears5Seattle3BLSommaire du match
58 - 2022-12-03389Cabaret Lady Mary Ann2Seattle9BWSommaire du match
61 - 2022-12-06411Rocket2Seattle4BWSommaire du match
64 - 2022-12-09427Seattle6Bears2AWSommaire du match
66 - 2022-12-11444Seattle8Cabaret Lady Mary Ann2AWSommaire du match
68 - 2022-12-13459Seattle2Thunder3ALSommaire du match
70 - 2022-12-15475Seattle1Caroline3ALSommaire du match
73 - 2022-12-18500Oceanics2Seattle5BWSommaire du match
75 - 2022-12-20515Chiefs2Seattle7BWSommaire du match
77 - 2022-12-22530Seattle3Comets0AWSommaire du match
83 - 2022-12-28561Heat4Seattle6BWSommaire du match
85 - 2022-12-30577Oil Kings1Seattle2BWSommaire du match
87 - 2023-01-01594Sound Tigers1Seattle4BWSommaire du match
89 - 2023-01-03606Seattle1Oil Kings4ALSommaire du match
91 - 2023-01-05615Seattle4Marlies2AWSommaire du match
93 - 2023-01-07632Seattle4Senators1AWSommaire du match
95 - 2023-01-09646Seattle4Rocket3AWSommaire du match
96 - 2023-01-10651Seattle2Crunch3ALSommaire du match
98 - 2023-01-12665Seattle4Bruins2AWSommaire du match
100 - 2023-01-14687Seattle2Baby Hawks5ALSommaire du match
102 - 2023-01-16698Thunder0Seattle5BWSommaire du match
103 - 2023-01-17711Seattle4Oil Kings7ALSommaire du match
105 - 2023-01-19728Spiders2Seattle3BWSommaire du match
107 - 2023-01-21743Monsters5Seattle6BWXXSommaire du match
111 - 2023-01-25770Comets1Seattle4BWSommaire du match
113 - 2023-01-27786Heat3Seattle4BWXXSommaire du match
114 - 2023-01-28797Monsters5Seattle4BLSommaire du match
124 - 2023-02-07816Seattle3Sound Tigers5ALSommaire du match
126 - 2023-02-09824Seattle3Spiders2AWSommaire du match
127 - 2023-02-10828Seattle4Wolf Pack5ALSommaire du match
129 - 2023-02-12848Seattle3Phantoms0AWSommaire du match
131 - 2023-02-14860Seattle3Oceanics1AWSommaire du match
133 - 2023-02-16876Phantoms2Seattle4BWSommaire du match
135 - 2023-02-18894Cougars7Seattle5BLSommaire du match
137 - 2023-02-20904Seattle3Sharks4ALXSommaire du match
140 - 2023-02-23927Bruins1Seattle6BWSommaire du match
143 - 2023-02-26952Marlies2Seattle6BWSommaire du match
145 - 2023-02-28964Seattle4Chiefs2AWSommaire du match
147 - 2023-03-02978Seattle1Cougars3ALSommaire du match
148 - 2023-03-03984Seattle2Monsters1AWSommaire du match
Date limite d’échanges --- Les échanges ne peuvent plus se faire après la simulation de cette journée!
150 - 2023-03-051005Seattle4Monsters3AWXXSommaire du match
152 - 2023-03-071021Admirals1Seattle4BWSommaire du match
154 - 2023-03-091035Senators1Seattle5BWSommaire du match
156 - 2023-03-111049Stars3Seattle4BWSommaire du match
158 - 2023-03-131063Stars1Seattle0BLSommaire du match
161 - 2023-03-161090Seattle6Sharks0AWSommaire du match
163 - 2023-03-181098Oil Kings3Seattle7BWSommaire du match
166 - 2023-03-211130Seattle3Stars1AWSommaire du match
168 - 2023-03-231142Seattle7Chill4AWSommaire du match
170 - 2023-03-251152Seattle3Chill2AWSommaire du match
172 - 2023-03-271173Seattle2Minnesota4ALSommaire du match
175 - 2023-03-301198Admirals1Seattle6BWSommaire du match
177 - 2023-04-011213Monarchs2Seattle4BWSommaire du match
179 - 2023-04-031228Jayhawks4Seattle6BWSommaire du match
180 - 2023-04-041238Seattle6Comets5AWXSommaire du match
182 - 2023-04-061253Jayhawks5Seattle4BLXSommaire du match
184 - 2023-04-081271Baby Hawks4Seattle0BLSommaire du match
186 - 2023-04-101283Seattle7Jayhawks4AWSommaire du match
187 - 2023-04-111293Seattle4Las Vegas2AWSommaire du match
189 - 2023-04-131312Las Vegas0Seattle5BWSommaire du match



Capacité de l’aréna - Tendance du prix des billets - %
Niveau 1Niveau 2
Capacité40002000
Prix des billets3515
Assistance155,83678,045
Assistance PCT95.02%95.18%

Revenu
Matchs à domicile restantsAssistance moyenne - %Revenu moyen par matchRevenu annuel à ce jourCapacitéPopularité de l’équipe
0 5704 - 95.07% 161,584$6,624,935$6000100

Dépenses
Dépenses annuelles à ce jourSalaire total des joueursSalaire total moyen des joueursSalaire des entraineurs
1,761,492$ 1,555,883$ 1,555,883$ 0$
Plafond salarial par jourPlafond salarial à ce jourJoueurs Inclus dans le plafond salarialJoueurs exclut du plafond Salarial
8,189$ 1,761,492$ 0 0

Estimation
Revenus de la saison estimésJours restants de la saisonDépenses par jourDépenses de la saison estimées
0$ 0 8,189$ 0$




Seattle Leaders statistiques (saison régulière)

# Nom du joueur GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Seattle Leaders des statistiques des gardiens (saison régulière)

# Nom du gardien GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA

Seattle Statistiques de l'Équipe de Carrière

TotalDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT

Seattle Leaders statistiques (séries éliminatoires)

# Nom du joueur GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Seattle Leaders des statistiques des gardiens (séries éliminatoires)

# Nom du gardien GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA