Version obsolète du STHS! Veuillez mettre à jour votre version!
Connexion

Bears
GP: 82 | W: 50 | L: 25 | OTL: 7 | P: 107
GF: 296 | GA: 241 | PP%: 20.00% | PK%: 84.51%
DG: JF Langlais | Morale : 50 | Moyenne d’équipe : 56
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Centre de jeu
Bears
50-25-7, 107pts
3
FINAL
4 Bruins
38-35-9, 85pts
Team Stats
L2StreakL1
30-11-0Home Record19-18-4
20-14-7Away Record19-17-5
6-4-0Last 10 Games6-3-1
3.61Buts par match 3.33
2.94Buts contre par match 3.46
20.00%Pourcentage en avantage numérique22.53%
84.51%Pourcentage en désavantage numérique78.21%
Spiders
59-20-3, 121pts
2
FINAL
1 Bears
50-25-7, 107pts
Team Stats
W5StreakL2
33-6-2Home Record30-11-0
26-14-1Away Record20-14-7
9-0-1Last 10 Games6-4-0
3.84Buts par match 3.61
2.49Buts contre par match 2.94
26.10%Pourcentage en avantage numérique20.00%
81.28%Pourcentage en désavantage numérique84.51%
Meneurs d'équipe
Buts
Joe Veleno
44
Passes
Philip Tomasino
63
Points
Philip Tomasino
106
Plus/Moins
Joe Veleno
33
Victoires
Alex Lyon
48
Pourcentage d’arrêts
Colton Point
0.947

Statistiques d’équipe
Buts pour
296
3.61 GFG
Tirs pour
2999
36.57 Avg
Pourcentage en avantage numérique
20.0%
50 GF
Début de zone offensive
40.1%
Buts contre
241
2.94 GAA
Tirs contre
2880
35.12 Avg
Pourcentage en désavantage numérique
84.5%%
46 GA
Début de la zone défensive
40.7%
Informations de l'équipe

Directeur généralJF Langlais
DivisionEst
ConférenceEst
Capitaine
Assistant #1
Assistant #2


Informations de l’aréna

Capacité3,000
Assistance2,178
Billets de saison300


Informations de la formation

Équipe Pro23
Équipe Mineure20
Limite contact 43 / 50
Espoirs14


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPÂgeContratSalaire moyen
1Philip Tomasino (R)X100.00674295786559787038736662255454050640203894,167$
2Joe VelenoXX100.00844589827565646272606269255252050630213894,167$
3Boris KatchoukX100.00885781727756716136575774255050050610232750,000$
4John HaydenXX100.00849959788558685731545670636464050610266800,000$
5Byron FroeseXX100.00757476627459586480566568625959050600302850,000$
6Michael Dal ColleXX100.00817692667660616150575970565757050600252750,000$
7Tim SchallerXX100.008076886376646756705054705162630505903041,000,000$
8Antoine MorandX100.00726687676662665063474760454444050540222778,334$
9Sam MileticXX100.00797196657154555164504763454444050540243894,167$
10Otto Kivenmaki (R)X100.00454081696055645155474445485050050500213560,000$
11Sean DayX100.00828086668071765525514566434444050610232750,000$
12Alex Vlasic (R)X100.00754495757764435525464973254545050600204916,667$
13Mikko LehtonenX100.00734489677163615825534467244646050590273925,000$
14Dakota MermisX100.00687161677158605425494161395555050570272655,000$
15Jack RathboneX100.00674192716364605825394765254545050570222925,000$
16Kaedan Korczak (R)X100.00767482737456584925434061384444050570202795,000$
17Layton Ahac (R)X100.00767091617047484725393961374444050530202897,500$
18Kim Nousiainen (R)X100.00423599676058754425423842405858050510204859,167$
Rayé
1Ethan Phillips (R)X100.00393099685453684146383637385454050460204650,000$
MOYENNE D’ÉQUIPE100.0071608669715963554250496240515105057
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPÂgeContratSalaire moyen
1Alex Lyon100.0059445575616168696868954646050610284800,000$
2Colton Point (R)100.0045465895454545504545454444050510232750,000$
Rayé
1Kaden Fulcher (R)100.0044425380454445494545454444050490232800,000$
2Daniil Chechelev (R)100.0044405076454445494545454444050480204650,000$
MOYENNE D’ÉQUIPE100.004843548249495154515158454505052
Nom de l’entraîneur PH DF OF PD EX LD PO CNT Âge Contrat Salaire


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du joueur Nom de l’équipePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Philip TomasinoBears (Was)C8243631063060292172987725714.43%21189223.07813215120702282739336.22%268100001.12580006106
2Joe VelenoBears (Was)C/LW82445296332201281683779725711.67%33190623.26791659211213112818461.36%13200111.0138000646
3Boris KatchoukBears (Was)LW82304777247202091853191022369.40%21166220.27510154118800041712140.88%13700000.93260001063
4John HaydenBears (Was)LW/RW8229457424106302711342606516611.15%23159019.40312155220800091397237.23%27400110.9338032643
5Michael Dal ColleBears (Was)LW/RW7920476723481077119282642107.09%13141717.940161648186000022045.76%11800000.9501101154
6Byron FroeseBears (Was)C/RW823133642120081197318862139.75%16152418.599716601920002414360.47%191000010.8401000628
7Alex VlasicBears (Was)D8213425522360969415942968.18%152175421.3951419732160226252310.00%000000.6300000221
8Tim SchallerBears (Was)C/LW82292251172101321722835920010.25%26131516.040005230000232054.95%140300010.7800011332
9Mikko LehtonenBears (Was)D82113041936011079110288110.00%122160919.629413521930002222220.00%000000.5100000004
10Sean DayBears (Was)D8263339129610253488429717.14%123190023.17279302170112229000.00%000000.4100101023
11Sam MileticBears (Was)C/LW8214223652558386177721237.91%24135816.570110110121053056.29%15100000.5300100121
12Antoine MorandBears (Was)C829233212007488116351107.76%13112513.7210112000041056.25%28800000.5700000022
13Jack RathboneBears (Was)D82027272226062658120490.00%73112113.68000718000037000.00%000000.4800000020
14Kaedan KorczakBears (Was)D82413178640183416620376.06%97159519.46134251910001206200.00%000000.2100000013
15Layton AhacBears (Was)D8261117283601312631102019.35%6793811.450000400005920100.00%100000.3600000021
16Dakota MermisBears (Was)D654812320079162071320.00%255208.010000170000140150.00%200000.4600000000
17Kim NousiainenBears (Was)D82011100194140.00%175216.3500000000224000.00%000000.0400000000
18Otto KivenmakiBears (Was)C82000-1100069450.00%11581.93000231000000030.30%6600000.00%00000000
19Ethan PhillipsBears (Was)RW20000200045320.00%131915.9700007000000022.22%2700000.00%00000000
Statistiques d’équipe totales ou en moyenne14762935198122587056519991754299982121509.77%8682423116.4250961465062122369492089471748.19%719000240.671332345414747
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du gardien Nom de l’équipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Alex LyonBears (Was)82482460.9172.8647164322527090420.51729820758
2Colton PointBears (Was)72110.9472.182480091690000.6673082000
Statistiques d’équipe totales ou en moyenne89502570.9192.834965432342878042328282758


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du joueur Nom de l’équipePOS Âge Date de naissance Nouveau joueur Poids Taille Non-échange Disponible pour échange Ballotage forcé Contrat Type Salaire actuel Salaire moyen restantPlafond salarial Plafond salarial restant Exclus du plafond salarial Salaire annuel 2Salaire annuel 3Salaire annuel 4Salaire annuel 5Salaire annuel 6Salaire annuel 7Salaire annuel 8Salaire annuel 9Salaire annuel 10Link
Alex Lyon (contrat à 1 volet)Bears (Was)G281992-12-08No201 Lbs6 ft1NoNoYes4Pro & Farm800,000$0$0$No800,000$800,000$800,000$Lien
Alex VlasicBears (Was)D202001-06-05Yes198 Lbs6 ft6NoNoNo4Pro & Farm916,667$0$0$No916,667$916,667$916,667$Lien
Antoine MorandBears (Was)C221999-02-18No184 Lbs5 ft11NoNoNo2Pro & Farm778,334$0$0$No778,334$Lien
Boris KatchoukBears (Was)LW231998-06-17No206 Lbs6 ft2NoNoNo2Pro & Farm750,000$0$0$No750,000$Lien
Byron Froese (contrat à 1 volet)Bears (Was)C/RW301991-03-12No202 Lbs6 ft1NoNoYes2Pro & Farm850,000$0$0$No850,000$Lien
Colton PointBears (Was)G231998-03-04Yes230 Lbs6 ft5YesNoNo2Pro & Farm750,000$0$0$No750,000$Lien
Dakota Mermis (contrat à 1 volet)Bears (Was)D271994-01-05No196 Lbs6 ft0NoNoYes2Pro & Farm655,000$0$0$No655,000$Lien
Daniil ChechelevBears (Was)G202001-02-23Yes187 Lbs6 ft3NoNoNo4Pro & Farm650,000$0$0$No650,000$650,000$650,000$Lien
Ethan PhillipsBears (Was)RW202001-05-07Yes154 Lbs5 ft9NoNoNo4Pro & Farm650,000$0$0$No650,000$650,000$650,000$Lien
Jack RathboneBears (Was)D221999-05-20No177 Lbs5 ft10NoNoNo2Pro & Farm925,000$0$0$No925,000$Lien
Joe VelenoBears (Was)C/LW212000-01-13No206 Lbs6 ft1NoNoNo3Pro & Farm894,167$0$0$No894,167$894,167$Lien
John Hayden (contrat à 1 volet)Bears (Was)LW/RW261995-02-14No223 Lbs6 ft3NoNoYes6Pro & Farm800,000$0$0$No800,000$800,000$800,000$800,000$800,000$Lien
Kaden FulcherBears (Was)G231998-09-23Yes201 Lbs6 ft3NoNoNo2Pro & Farm800,000$0$0$No800,000$Lien
Kaedan KorczakBears (Was)D202001-01-29Yes192 Lbs6 ft4NoNoNo2Pro & Farm795,000$0$0$No795,000$Lien
Kim NousiainenBears (Was)D202000-11-14Yes170 Lbs5 ft9NoNoNo4Pro & Farm859,167$0$0$No859,167$859,167$859,167$Lien
Layton AhacBears (Was)D202001-02-22Yes187 Lbs6 ft2NoNoNo2Pro & Farm897,500$0$0$No897,500$Lien
Michael Dal ColleBears (Was)LW/RW251996-06-20No200 Lbs6 ft3NoNoYes2Pro & Farm750,000$0$0$No750,000$Lien
Mikko Lehtonen (contrat à 1 volet)Bears (Was)D271994-01-16No196 Lbs6 ft0NoNoYes3Pro & Farm925,000$25,000$0$No925,000$925,000$Lien
Otto KivenmakiBears (Was)C212000-03-24Yes172 Lbs5 ft9NoNoNo3Pro & Farm560,000$0$0$No560,000$560,000$Lien
Philip TomasinoBears (Was)C202001-07-28Yes179 Lbs6 ft0NoNoNo3Pro & Farm894,167$0$0$No894,167$894,167$Lien
Sam MileticBears (Was)C/LW241997-05-04No196 Lbs6 ft0NoNoYes3Pro & Farm894,167$0$0$No894,167$894,167$Lien
Sean DayBears (Was)D231998-01-09No218 Lbs6 ft3NoNoNo2Pro & Farm750,000$0$0$No750,000$Lien
Tim Schaller (contrat à 1 volet)Bears (Was)C/LW301990-11-16No205 Lbs6 ft2NoNoYes4Pro & Farm1,000,000$100,000$0$No1,000,000$1,000,000$1,000,000$Lien
Nombre de joueursÂge moyenPoids moyenTaille moyenneContrat moyenSalaire moyen 1e année
2323.26195 Lbs6 ft12.91806,268$



Attaque à 5 contre 5
Ligne #Ailier gaucheCentreAilier droit% tempsPHYDFOF
1Joe VelenoPhilip TomasinoJohn Hayden40122
2Boris KatchoukByron FroeseMichael Dal Colle30122
3Sam MileticTim SchallerAntoine Morand20122
4Philip TomasinoAntoine MorandJoe Veleno10122
Défense à 5 contre 5
Ligne #DéfenseDéfense% tempsPHYDFOF
1Sean DayAlex Vlasic40122
2Mikko LehtonenKaedan Korczak30122
3Dakota MermisJack Rathbone20122
4Layton AhacKim Nousiainen10122
Attaque en avantage numérique
Ligne #Ailier gaucheCentreAilier droit% tempsPHYDFOF
1Joe VelenoPhilip TomasinoJohn Hayden60122
2Boris KatchoukByron FroeseMichael Dal Colle40122
Défense en avantage numérique
Ligne #DéfenseDéfense% tempsPHYDFOF
1Sean DayAlex Vlasic60122
2Mikko LehtonenKaedan Korczak40122
Attaque à 4 en désavantage numérique
Ligne #CentreAilier% tempsPHYDFOF
1Philip TomasinoJoe Veleno60122
2John HaydenBoris Katchouk40122
Défense à 4 en désavantage numérique
Ligne #DéfenseDéfense% tempsPHYDFOF
1Sean DayAlex Vlasic60122
2Mikko LehtonenKaedan Korczak40122
3 joueurs en désavantage numérique
Ligne #Ailier% tempsPHYDFOFDéfenseDéfense% tempsPHYDFOF
1Philip Tomasino60122Sean DayAlex Vlasic60122
2Joe Veleno40122Mikko LehtonenKaedan Korczak40122
Attaque à 4 contre 4
Ligne #CentreAilier% tempsPHYDFOF
1Philip TomasinoJoe Veleno60122
2John HaydenBoris Katchouk40122
Défense à 4 contre 4
Ligne #DéfenseDéfense% tempsPHYDFOF
1Sean DayAlex Vlasic60122
2Mikko LehtonenKaedan Korczak40122
Attaque dernière minute
Ailier gaucheCentreAilier droitDéfenseDéfense
Joe VelenoPhilip TomasinoJohn HaydenSean DayAlex Vlasic
Défense dernière minute
Ailier gaucheCentreAilier droitDéfenseDéfense
Joe VelenoPhilip TomasinoJohn HaydenSean DayAlex Vlasic
Attaquants supplémentaires
Normal Avantage numériqueDésavantage numérique
Otto Kivenmaki, Tim Schaller, Sam MileticOtto Kivenmaki, Tim SchallerSam Miletic
Défenseurs supplémentaires
Normal Avantage numériqueDésavantage numérique
Dakota Mermis, Jack Rathbone, Layton AhacDakota MermisJack Rathbone, Layton Ahac
Tirs de pénalité
Philip Tomasino, Joe Veleno, John Hayden, Boris Katchouk, Michael Dal Colle
Gardien
#1 : Alex Lyon, #2 : Colton Point


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
TotalDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals22000000945110000004311100000051441.0009152400113102761510198410219576983193360300.00%80100.00%01429288649.51%1390292847.47%646137646.95%1991136518896161088540
2Baby Hawks2020000016-51010000002-21010000014-300.0001230011310276154998410219576962312231500.00%10280.00%01429288649.51%1390292847.47%646137646.95%1991136518896161088540
3Bruins321000001385110000004312110000095440.66713243700113102761510798410219576910439227514642.86%10280.00%01429288649.51%1390292847.47%646137646.95%1991136518896161088540
4Cabaret Lady Mary Ann330000002041622000000142121100000062461.0002036560011310276151739841021957691133321884250.00%8187.50%01429288649.51%1390292847.47%646137646.95%1991136518896161088540
5Caroline320001001055110000005232100010053250.833101525011131027615105984102195769741716699111.11%8187.50%01429288649.51%1390292847.47%646137646.95%1991136518896161088540
6Chiefs21100000910-11010000047-31100000053220.5009152400113102761598984102195769822018436350.00%9277.78%01429288649.51%1390292847.47%646137646.95%1991136518896161088540
7Chill220000001174110000005411100000063341.00011193000113102761587984102195769781714425240.00%7271.43%01429288649.51%1390292847.47%646137646.95%1991136518896161088540
8Comets22000000743110000003211100000042241.000712190011310276156298410219576971172166100.00%8187.50%01429288649.51%1390292847.47%646137646.95%1991136518896161088540
9Cougars330000001165220000008441100000032161.000112031001131027615979841021957691163830648225.00%14192.86%01429288649.51%1390292847.47%646137646.95%1991136518896161088540
10Crunch321000001697211000009631100000073440.66716304600113102761514698410219576911129318013430.77%11190.91%01429288649.51%1390292847.47%646137646.95%1991136518896161088540
11Heat22000000954110000004311100000052341.0009172600113102761568984102195769642414505120.00%6183.33%01429288649.51%1390292847.47%646137646.95%1991136518896161088540
12Jayhawks2020000046-21010000023-11010000023-100.000471100113102761566984102195769651520359111.11%10370.00%01429288649.51%1390292847.47%646137646.95%1991136518896161088540
13Las Vegas210010001275110000008441000100043141.00012233500113102761581984102195769812310569444.44%50100.00%01429288649.51%1390292847.47%646137646.95%1991136518896161088540
14Manchots320000101183210000109721100000021161.00011172800113102761589984102195769117403265700.00%16381.25%01429288649.51%1390292847.47%646137646.95%1991136518896161088540
15Marlies31100001121201100000042220100001810-230.5001220320011310276151039841021957691183347749222.22%16287.50%01429288649.51%1390292847.47%646137646.95%1991136518896161088540
16Minnesota21100000660110000004131010000025-320.5006111700113102761577984102195769532121496233.33%30100.00%01429288649.51%1390292847.47%646137646.95%1991136518896161088540
17Monarchs210000011156110000008171000000134-130.7501120310011310276159298410219576960144585240.00%20100.00%01429288649.51%1390292847.47%646137646.95%1991136518896161088540
18Monsters412000011016-62020000029-72100000187130.37510182800113102761513698410219576915553381061417.14%18194.44%01429288649.51%1390292847.47%646137646.95%1991136518896161088540
19Monsters2010000158-31010000035-21000000123-110.2505101500113102761575984102195769931214395120.00%7185.71%01429288649.51%1390292847.47%646137646.95%1991136518896161088540
20Oceanics21001000752110000003211000100043141.00071320001131027615779841021957695524104510110.00%50100.00%01429288649.51%1390292847.47%646137646.95%1991136518896161088540
21Oil Kings21100000633110000004041010000023-120.50069150111310276158098410219576951221235900.00%60100.00%01429288649.51%1390292847.47%646137646.95%1991136518896161088540
22Phantoms4210010014113211000005322100010098150.62514233701113102761512898410219576912136319819421.05%12375.00%01429288649.51%1390292847.47%646137646.95%1991136518896161088540
23Rocket320000101293210000108621100000043161.000121628001131027615959841021957691022525718225.00%8362.50%01429288649.51%1390292847.47%646137646.95%1991136518896161088540
24Seattle2110000079-21010000026-41100000053220.500712190011310276155898410219576966191843400.00%9455.56%01429288649.51%1390292847.47%646137646.95%1991136518896161088540
25Senators32100000871110000005412110000033040.6678162400113102761588984102195769962914521500.00%6266.67%01429288649.51%1390292847.47%646137646.95%1991136518896161088540
26Sharks20200000411-71010000015-41010000036-300.00048120011310276156998410219576990333045500.00%14378.57%01429288649.51%1390292847.47%646137646.95%1991136518896161088540
27Sound Tigers4110001114140210000109632010000158-350.62514243810113102761513298410219576914844201119111.11%9277.78%01429288649.51%1390292847.47%646137646.95%1991136518896161088540
28Spiders41300000610-4211000003302020000037-420.2506111710113102761512498410219576913135551028225.00%19384.21%01429288649.51%1390292847.47%646137646.95%1991136518896161088540
29Stars2110000047-3110000004221010000005-520.50048120011310276157998410219576957271839600.00%90100.00%31429288649.51%1390292847.47%646137646.95%1991136518896161088540
30Thunder3210000012102110000004222110000088040.667122234001131027615107984102195769973416698225.00%8187.50%01429288649.51%1390292847.47%646137646.95%1991136518896161088540
31Wolf Pack431000001596220000009362110000066060.750152641001131027615150984102195769166453213912433.33%16193.75%01429288649.51%1390292847.47%646137646.95%1991136518896161088540
Total8245250223529624155412711000301571124541181402205139129101070.6522965198152311310276152999984102195769288086870919992505020.00%2974684.51%31429288649.51%1390292847.47%646137646.95%1991136518896161088540
_Since Last GM Reset8245250223529624155412711000301571124541181402205139129101070.6522965198152311310276152999984102195769288086870919992505020.00%2974684.51%31429288649.51%1390292847.47%646137646.95%1991136518896161088540
_Vs Conference4523140112415713720211450002075571824990110482802570.6331572764332111310276151590984102195769161949539811411432718.88%1662584.94%01429288649.51%1390292847.47%646137646.95%1991136518896161088540

Total pour les joueurs
Matchs jouésPointsSéquenceButsPassesPointsTirs pourTirs contreTirs bloquésMinutes de pénalitésMises en échecButs en filet désertBlanchissages
82107L229651981529992880868709199923
Tous les matchs
GPWLOTWOTL SOWSOLGFGA
8245252235296241
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
4127110030157112
Matchs extérieurs
GPWLOTWOTL SOWSOLGFGA
4118142205139129
Derniers 10 matchs
WLOTWOTL SOWSOL
640000
Tentatives en avantage numériqueButs en avantage numérique% en avantage numériqueTentatives en désavantage numériqueButs contre en désavantage numérique% en désavantage numériqueButs pour en désavantage numérique
2505020.00%2974684.51%3
Tirs en 1e périodeTirs en 2e périodeTirs en 3e périodeTirs en 4e périodeButs en 1e périodeButs en 2e périodeButs en 3e périodeButs en 4e période
9841021957691131027615
Mises en jeu
Gagnées en zone offensiveTotal en zone offensive% gagnées en zone offensive Gagnées en zone défensiveTotal en zone défensive% gagnées en zone défensiveGagnées en zone neutreTotal en zone neutre% gagnées en zone neutre
1429288649.51%1390292847.47%646137646.95%
Temps avec la rondelle
En zone offensiveContrôle en zone offensiveEn zone défensiveContrôle en zone défensiveEn zone neutreContrôle en zone neutre
1991136518896161088540


Derniers matchs joués
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe visiteuse Score Équipe locale Score ST OT SO RI Lien
6 - 2022-10-125Bruins3Bears4BWSommaire du match
7 - 2022-10-1315Bears3Marlies4ALSommaire du match
9 - 2022-10-1529Rocket3Bears4BWXXSommaire du match
11 - 2022-10-1743Comets2Bears3BWSommaire du match
14 - 2022-10-2065Bears2Senators1AWSommaire du match
16 - 2022-10-2280Monarchs1Bears8BWSommaire du match
18 - 2022-10-2493Bears1Spiders3ALSommaire du match
21 - 2022-10-27117Bears0Stars5ALSommaire du match
23 - 2022-10-29136Bears6Chill3AWSommaire du match
25 - 2022-10-31145Bears3Caroline0AWSommaire du match
26 - 2022-11-01150Las Vegas4Bears8BWSommaire du match
28 - 2022-11-03164Bears3Cougars2AWSommaire du match
30 - 2022-11-05179Jayhawks3Bears2BLSommaire du match
32 - 2022-11-07195Oil Kings0Bears4BWSommaire du match
34 - 2022-11-09208Manchots3Bears4BWSommaire du match
36 - 2022-11-11222Thunder2Bears4BWSommaire du match
38 - 2022-11-13242Bears6Thunder4AWSommaire du match
40 - 2022-11-15253Bears6Cabaret Lady Mary Ann2AWSommaire du match
42 - 2022-11-17269Bears5Chiefs3AWSommaire du match
44 - 2022-11-19279Monsters5Bears3BLSommaire du match
48 - 2022-11-23312Phantoms0Bears4BWSommaire du match
50 - 2022-11-25322Heat3Bears4BWSommaire du match
51 - 2022-11-26336Bears2Spiders4ALSommaire du match
54 - 2022-11-29359Bears4Comets2AWSommaire du match
56 - 2022-12-01374Bears5Seattle3AWSommaire du match
58 - 2022-12-03390Bears5Heat2AWSommaire du match
60 - 2022-12-05400Bears2Oil Kings3ALSommaire du match
62 - 2022-12-07413Bears5Phantoms6ALXSommaire du match
64 - 2022-12-09427Seattle6Bears2BLSommaire du match
66 - 2022-12-11446Bears4Oceanics3AWXSommaire du match
68 - 2022-12-13463Bears1Baby Hawks4ALSommaire du match
70 - 2022-12-15471Stars2Bears4BWSommaire du match
72 - 2022-12-17491Marlies2Bears4BWSommaire du match
74 - 2022-12-19503Cougars3Bears6BWSommaire du match
77 - 2022-12-22528Bears1Senators2ALSommaire du match
78 - 2022-12-23537Oceanics2Bears3BWSommaire du match
82 - 2022-12-27549Bears4Wolf Pack3AWSommaire du match
84 - 2022-12-29566Senators4Bears5BWSommaire du match
86 - 2022-12-31581Rocket3Bears4BWSommaire du match
89 - 2023-01-03599Crunch4Bears3BLSommaire du match
91 - 2023-01-05617Bears6Monsters4AWSommaire du match
92 - 2023-01-06622Chill4Bears5BWSommaire du match
94 - 2023-01-08639Monsters4Bears1BLSommaire du match
97 - 2023-01-11659Bears4Phantoms2AWSommaire du match
100 - 2023-01-14681Phantoms3Bears1BLSommaire du match
102 - 2023-01-16702Bears4Sound Tigers5ALXXSommaire du match
103 - 2023-01-17707Minnesota1Bears4BWSommaire du match
105 - 2023-01-19726Bears2Jayhawks3ALSommaire du match
107 - 2023-01-21745Bears4Las Vegas3AWXSommaire du match
110 - 2023-01-24764Bears2Monsters3ALXXSommaire du match
112 - 2023-01-26773Manchots4Bears5BWXXSommaire du match
115 - 2023-01-29800Bears5Marlies6ALXXSommaire du match
117 - 2023-01-31804Bears2Monsters3ALXXSommaire du match
128 - 2023-02-11838Bears6Bruins1AWSommaire du match
129 - 2023-02-12847Sharks5Bears1BLSommaire du match
131 - 2023-02-14855Caroline2Bears5BWSommaire du match
133 - 2023-02-16870Cabaret Lady Mary Ann1Bears6BWSommaire du match
135 - 2023-02-18889Bears2Caroline3ALXSommaire du match
138 - 2023-02-21909Cougars1Bears2BWSommaire du match
140 - 2023-02-23920Admirals3Bears4BWSommaire du match
142 - 2023-02-25937Wolf Pack1Bears3BWSommaire du match
143 - 2023-02-26947Bears7Crunch3AWSommaire du match
146 - 2023-03-01973Bears5Admirals1AWSommaire du match
Date limite d’échanges --- Les échanges ne peuvent plus se faire après la simulation de cette journée!
149 - 2023-03-04992Bears3Sharks6ALSommaire du match
151 - 2023-03-061011Bears3Monarchs4ALXXSommaire du match
154 - 2023-03-091029Spiders1Bears2BWSommaire du match
156 - 2023-03-111048Bears1Sound Tigers3ALSommaire du match
159 - 2023-03-141067Bears2Wolf Pack3ALSommaire du match
160 - 2023-03-151076Crunch2Bears6BWSommaire du match
162 - 2023-03-171093Chiefs7Bears4BLSommaire du match
164 - 2023-03-191109Bears2Minnesota5ALSommaire du match
166 - 2023-03-211121Monsters5Bears1BLSommaire du match
168 - 2023-03-231135Baby Hawks2Bears0BLSommaire du match
170 - 2023-03-251162Bears2Manchots1AWSommaire du match
174 - 2023-03-291187Sound Tigers3Bears5BWSommaire du match
175 - 2023-03-301194Bears2Thunder4ALSommaire du match
178 - 2023-04-021217Wolf Pack2Bears6BWSommaire du match
182 - 2023-04-061247Bears4Rocket3AWSommaire du match
184 - 2023-04-081262Cabaret Lady Mary Ann1Bears8BWSommaire du match
186 - 2023-04-101278Sound Tigers3Bears4BWXXSommaire du match
187 - 2023-04-111290Bears3Bruins4ALSommaire du match
189 - 2023-04-131301Spiders2Bears1BLSommaire du match



Capacité de l’aréna - Tendance du prix des billets - %
Niveau 1Niveau 2
Capacité20001000
Prix des billets4020
Assistance62,62626,681
Assistance PCT76.37%65.08%

Revenu
Matchs à domicile restantsAssistance moyenne - %Revenu moyen par matchRevenu annuel à ce jourCapacitéPopularité de l’équipe
0 2178 - 72.61% 74,114$3,038,660$3000100

Dépenses
Dépenses annuelles à ce jourSalaire total des joueursSalaire total moyen des joueursSalaire des entraineurs
1,358,002$ 1,351,418$ 1,351,418$ 0$
Plafond salarial par jourPlafond salarial à ce jourJoueurs Inclus dans le plafond salarialJoueurs exclut du plafond Salarial
7,113$ 1,358,002$ 0 0

Estimation
Revenus de la saison estimésJours restants de la saisonDépenses par jourDépenses de la saison estimées
0$ 0 7,113$ 0$




Bears Leaders statistiques (saison régulière)

# Nom du joueur GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Bears Leaders des statistiques des gardiens (saison régulière)

# Nom du gardien GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA

Bears Statistiques de l'Équipe de Carrière

TotalDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT

Bears Leaders statistiques (séries éliminatoires)

# Nom du joueur GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Bears Leaders des statistiques des gardiens (séries éliminatoires)

# Nom du gardien GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA