Version obsolète du STHS! Veuillez mettre à jour votre version!
Connexion

Monsters
GP: 82 | W: 45 | L: 31 | OTL: 6 | P: 96
GF: 292 | GA: 280 | PP%: 20.15% | PK%: 78.35%
DG: Paul-André Desrochers | Morale : 50 | Moyenne d’équipe : 57
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Centre de jeu
Oil Kings
46-24-12, 104pts
4
FINAL
3 Monsters
45-31-6, 96pts
Team Stats
L1StreakL2
23-12-6Home Record22-16-3
23-12-6Away Record23-15-3
7-3-0Last 10 Games3-7-0
3.56Buts par match 3.56
3.02Buts contre par match 3.41
20.47%Pourcentage en avantage numérique20.15%
87.25%Pourcentage en désavantage numérique78.35%
Oceanics
47-26-9, 103pts
4
FINAL
2 Monsters
45-31-6, 96pts
Team Stats
W2StreakL2
26-13-2Home Record22-16-3
21-13-7Away Record23-15-3
6-3-1Last 10 Games3-7-0
3.68Buts par match 3.56
3.49Buts contre par match 3.41
24.05%Pourcentage en avantage numérique20.15%
81.07%Pourcentage en désavantage numérique78.35%
Meneurs d'équipe
Buts
Peyton Krebs
35
Passes
Peyton Krebs
52
Points
Peyton Krebs
87
Plus/Moins
Ben Jones
20
Victoires
Jon Gillies
41
Pourcentage d’arrêts
Tyler Parsons
0.963

Statistiques d’équipe
Buts pour
292
3.56 GFG
Tirs pour
3051
37.21 Avg
Pourcentage en avantage numérique
20.1%
54 GF
Début de zone offensive
41.2%
Buts contre
280
3.41 GAA
Tirs contre
2875
35.06 Avg
Pourcentage en désavantage numérique
78.4%%
63 GA
Début de la zone défensive
38.9%
Informations de l'équipe

Directeur généralPaul-André Desrochers
DivisionNord
ConférenceOuest
Capitaine
Assistant #1
Assistant #2


Informations de l’aréna

Capacité3,000
Assistance2,875
Billets de saison300


Informations de la formation

Équipe Pro23
Équipe Mineure22
Limite contact 45 / 50
Espoirs18


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPÂgeContratSalaire moyen
1Peyton Krebs (R)XX100.00634188806668697448716263255151050630202894,167$
2Vasily Podkolzin (R)X100.00764489787164656237627165255454050620204925,000$
3Brett SeneyXX100.00595665775671736780676259594949050610251782,500$
4Otto KoivulaXX100.00754599718458686267705563254545050610232700,000$
5Aliaksei Protas (R)X100.00674499728661646655645959254747050600203795,000$
6Oskar SteenXX100.00814490686559736031655970254646050600232809,168$
7Paul CotterXX100.00747571637574786176536463614444050600215900,000$
8Ben JonesX100.00686869666875796176526560624444050590223760,000$
9Marian StudenicX100.00714293726259666131565775254747050590222750,000$
10Ty RonningX100.00696187636161626150566261594444050570233750,833$
11Curtis Hall (R)X100.00868197708153554658424566434444050540213925,000$
12Grant MismashXX100.00746889656851524961454860464444050520222825,000$
13Vladislav Kolyachonok (R)X100.00774493777169646325454875254646050630203795,000$
14Steven KampferX100.00714392677065495725474669246364050600332750,000$
15Alexander AlexeyevX100.00808079718062664925433963374444050580213863,333$
16Jordan GrossX100.00716879666862626325615162484444050580261700,000$
17Brayden PachalX100.00707363667366714625374058384444050550221600,000$
18Matthew Robertson (R)X100.00797784637753554625373962374444050550204797,500$
Rayé
1Olle Lycksell (R)X100.00454089676361804753414444485454050500223837,000$
2Lucas CarlssonXHO7543917170606557255149642550500506002400$
3Danila Zhuravlyov (R)X100.00453983676055724325393646405050050500214600,000$
MOYENNE D’ÉQUIPE100.0070568570706266574453526238484805058
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPÂgeContratSalaire moyen
1Tyler Parsons100.0043485870394149484243294441050470241650,000$
2Filip Larsson (R)100.0041495871444447464041274441050470231836,666$
Rayé
MOYENNE D’ÉQUIPE100.004249587142434847414228444105047
Nom de l’entraîneur PH DF OF PD EX LD PO CNT Âge Contrat Salaire


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du joueur Nom de l’équipePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Peyton KrebsMonsters (Col)C/LW793552875405921934010228110.29%22172121.799112055214000101254345.03%125700001.01260005141
2Brett SeneyMonsters (Col)C/LW8234518510260941253088020811.04%12143917.56622285522701151207462.42%33000021.1826000805
3Otto KoivulaMonsters (Col)C/LW822242641151574151237721779.28%14148818.164812422050001831457.85%56700010.8634010415
4Oskar SteenMonsters (Col)C/RW822833610460161164297711659.43%21143517.5058134013200021013038.66%35700000.8500000335
5Jordan GrossMonsters (Col)D82134255133209872116387711.21%125176621.548816602150003223210.00%000000.6200000112
6Aliaksei ProtasMonsters (Col)C8217375448045153202561338.42%7121014.763710201060000382251.36%135900000.8901000223
7Vladislav KolyachonokMonsters (Col)D77134154462013893174381007.47%138178723.215914671930110204210.00%000100.6000000450
8Ben JonesMonsters (Col)C82252752207351251471574312015.92%12124815.22000522000023057.85%136900000.8312010342
9Vasily PodkolzinMonsters (Col)RW62202949336012996230831728.70%20135221.8238114317710131274035.24%10500000.7215000131
10Paul CotterMonsters (Col)C/RW8216264215375139130176701419.09%12124215.154373213101131662057.11%90000000.6822001055
11Marian StudenicMonsters (Col)RW82182139910053100189431199.52%2687310.6601171500051431025.35%7100000.8900000151
12Alexander AlexeyevMonsters (Col)D8262531128220189457921497.59%117171920.97268302040112209200.00%000000.3600211302
13Grant MismashMonsters (Col)C/LW82111526-9180685611730729.40%10103412.6213414105000062150.75%6700000.5000000011
14Steven KampferMonsters (Col)D757182532201055410337726.80%103174723.30325371940002213100.00%000000.2900000111
15Brayden PachalMonsters (Col)D82220225620155264919384.08%79137816.81134768000051000.00%000000.3200000104
16Matthew RobertsonMonsters (Col)D824182286515140354911258.16%79132716.19000224000070100.00%000000.3300003002
17Ty RonningMonsters (Col)RW8211819-61002857129451268.53%36087.4200000101133046.67%3000000.6200000100
18Curtis HallMonsters (Col)C8241014-1439566719024614.44%105957.260003150001590050.00%65200000.4700100000
19Danila ZhuravlyovMonsters (Col)D13123-1003120050.00%917613.6000003000012010.00%000000.3400000001
20Olle LycksellMonsters (Col)RW22022000137460.00%01285.8200002000000018.18%1100000.3101000000
Statistiques d’équipe totales ou en moyenne1476287519806926835518701798305188721429.41%8192428216.4554991535192260246381964401751.92%707500130.661127335384541
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du gardien Nom de l’équipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Jon GilliesColorado67412060.9063.1638564220321640010.67928670301
2Filip LarssonMonsters (Col)2141100.8904.11100720696270010.00%01567100
3Tyler ParsonsMonsters (Col)40000.9631.62111003820000.00%0015000
Statistiques d’équipe totales ou en moyenne92453160.9043.324975622752873002288282401


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du joueur Nom de l’équipePOS Âge Date de naissance Nouveau joueur Poids Taille Non-échange Disponible pour échange Ballotage forcé Contrat Type Salaire actuel Salaire moyen restantPlafond salarial Plafond salarial restant Exclus du plafond salarial Salaire annuel 2Salaire annuel 3Salaire annuel 4Salaire annuel 5Salaire annuel 6Salaire annuel 7Salaire annuel 8Salaire annuel 9Salaire annuel 10Link
Alexander AlexeyevMonsters (Col)D211999-11-15No210 Lbs6 ft4NoNoNo3Pro & Farm863,333$0$0$No863,333$863,333$Lien
Aliaksei ProtasMonsters (Col)C202001-01-06Yes225 Lbs6 ft6NoNoNo3Pro & Farm795,000$0$0$No795,000$795,000$Lien
Ben JonesMonsters (Col)C221999-02-25No187 Lbs6 ft0NoNoNo3Pro & Farm760,000$0$0$No760,000$760,000$Lien
Brayden PachalMonsters (Col)D221999-08-23No201 Lbs6 ft0YesNoNo1Pro & Farm600,000$0$0$NoLien
Brett SeneyMonsters (Col)C/LW251996-02-27No156 Lbs5 ft9NoNoYes1Pro & Farm782,500$0$0$NoLien
Curtis HallMonsters (Col)C212000-04-26Yes216 Lbs6 ft4NoNoNo3Pro & Farm925,000$0$0$No925,000$925,000$Lien
Danila ZhuravlyovMonsters (Col)D212000-04-08Yes163 Lbs6 ft0YesNoNo4Pro & Farm600,000$0$0$No600,000$600,000$600,000$Lien
Filip LarssonMonsters (Col)G231998-08-17Yes181 Lbs6 ft2NoNoNo1Pro & Farm836,666$0$0$NoLien
Grant MismashMonsters (Col)C/LW221999-02-19No185 Lbs6 ft0NoNoNo2Pro & Farm825,000$0$0$No825,000$Lien
Jordan Gross (contrat à 1 volet)Monsters (Col)D261995-05-09No190 Lbs5 ft10NoNoYes1Pro & Farm700,000$0$0$NoLien
Lucas CarlssonMonsters (Col)D241997-07-05No190 Lbs6 ft0NoNoYes0Pro & Farm0$0$NoLien
Marian StudenicMonsters (Col)RW221998-10-28No163 Lbs6 ft1NoNoNo2Pro & Farm750,000$0$0$No750,000$Lien
Matthew RobertsonMonsters (Col)D202001-03-09Yes201 Lbs6 ft4NoNoNo4Pro & Farm797,500$0$0$No797,500$797,500$797,500$Lien
Olle LycksellMonsters (Col)RW221999-08-24Yes176 Lbs5 ft11NoNoNo3Pro & Farm837,000$0$0$No837,000$837,000$Lien
Oskar SteenMonsters (Col)C/RW231998-03-09No188 Lbs5 ft9NoNoNo2Pro & Farm809,168$0$0$No809,168$Lien
Otto KoivulaMonsters (Col)C/LW231998-09-01No223 Lbs6 ft5NoNoNo2Pro & Farm700,000$0$0$No700,000$Lien
Paul CotterMonsters (Col)C/RW211999-11-16No206 Lbs6 ft1YesNoNo5Pro & Farm900,000$0$0$No900,000$900,000$900,000$900,000$Lien
Peyton KrebsMonsters (Col)C/LW202001-01-26Yes180 Lbs5 ft11NoNoNo2Pro & Farm894,167$0$0$No894,167$Lien
Steven Kampfer (contrat à 1 volet)Monsters (Col)D331988-09-24No198 Lbs5 ft11NoNoYes2Pro & Farm750,000$0$0$No750,000$Lien
Ty RonningMonsters (Col)RW231997-10-20No172 Lbs5 ft9NoNoNo3Pro & Farm750,833$0$0$No750,833$750,833$Lien
Tyler ParsonsMonsters (Col)G241997-09-17No185 Lbs6 ft1NoNoYes1Pro & Farm650,000$0$0$NoLien
Vasily PodkolzinMonsters (Col)RW202001-06-24Yes190 Lbs6 ft1NoNoNo4Pro & Farm925,000$0$0$No925,000$925,000$925,000$Lien
Vladislav KolyachonokMonsters (Col)D202001-05-26Yes194 Lbs6 ft1NoNoNo3Pro & Farm795,000$0$0$No795,000$795,000$Lien
Nombre de joueursÂge moyenPoids moyenTaille moyenneContrat moyenSalaire moyen 1e année
2322.52190 Lbs6 ft12.39749,833$



Attaque à 5 contre 5
Ligne #Ailier gaucheCentreAilier droit% tempsPHYDFOF
1Brett SeneyPeyton KrebsVasily Podkolzin40122
2Otto KoivulaBen JonesOskar Steen30122
3Grant MismashAliaksei ProtasPaul Cotter20122
4Grant MismashCurtis HallTy Ronning10122
Défense à 5 contre 5
Ligne #DéfenseDéfense% tempsPHYDFOF
1Vladislav KolyachonokSteven Kampfer40122
2Jordan GrossAlexander Alexeyev30122
3Brayden PachalMatthew Robertson20122
4Vladislav KolyachonokSteven Kampfer10122
Attaque en avantage numérique
Ligne #Ailier gaucheCentreAilier droit% tempsPHYDFOF
1Brett SeneyPeyton KrebsVasily Podkolzin60122
2Grant MismashOtto KoivulaPaul Cotter40122
Défense en avantage numérique
Ligne #DéfenseDéfense% tempsPHYDFOF
1Vladislav KolyachonokSteven Kampfer60122
2Jordan GrossAlexander Alexeyev40122
Attaque à 4 en désavantage numérique
Ligne #CentreAilier% tempsPHYDFOF
1Peyton KrebsVasily Podkolzin60122
2Brett SeneyOtto Koivula40122
Défense à 4 en désavantage numérique
Ligne #DéfenseDéfense% tempsPHYDFOF
1Vladislav KolyachonokSteven Kampfer60122
2Jordan GrossAlexander Alexeyev40122
3 joueurs en désavantage numérique
Ligne #Ailier% tempsPHYDFOFDéfenseDéfense% tempsPHYDFOF
1Peyton Krebs60122Vladislav KolyachonokSteven Kampfer60122
2Vasily Podkolzin40122Jordan GrossAlexander Alexeyev40122
Attaque à 4 contre 4
Ligne #CentreAilier% tempsPHYDFOF
1Peyton KrebsVasily Podkolzin60122
2Brett SeneyOtto Koivula40122
Défense à 4 contre 4
Ligne #DéfenseDéfense% tempsPHYDFOF
1Vladislav KolyachonokSteven Kampfer60122
2Jordan GrossAlexander Alexeyev40122
Attaque dernière minute
Ailier gaucheCentreAilier droitDéfenseDéfense
Brett SeneyPeyton KrebsVasily PodkolzinVladislav KolyachonokSteven Kampfer
Défense dernière minute
Ailier gaucheCentreAilier droitDéfenseDéfense
Brett SeneyPeyton KrebsVasily PodkolzinVladislav KolyachonokSteven Kampfer
Attaquants supplémentaires
Normal Avantage numériqueDésavantage numérique
Ben Jones, Curtis Hall, Oskar SteenBen Jones, Curtis HallOskar Steen
Défenseurs supplémentaires
Normal Avantage numériqueDésavantage numérique
Brayden Pachal, Matthew Robertson, Jordan GrossBrayden PachalMatthew Robertson, Jordan Gross
Tirs de pénalité
Peyton Krebs, Vasily Podkolzin, Brett Seney, Otto Koivula, Paul Cotter
Gardien
#1 : Filip Larsson, #2 : Tyler Parsons


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
TotalDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals3200100015871000100043122000000115661.00015294400107839117859789681062709427166013323.08%8362.50%01518291552.08%1422275551.62%733140552.17%2028140418766011074541
2Baby Hawks30300000716-920200000510-51010000026-400.0007132000107839117759789681062701354126548112.50%12466.67%01518291552.08%1422275551.62%733140552.17%2028140418766011074541
3Bears21000010853100000103211100000053241.000812200010783911793978968106270751510517114.29%5180.00%01518291552.08%1422275551.62%733140552.17%2028140418766011074541
4Bruins21000100972110000004131000010056-130.750918270010783911756978968106270792029453266.67%12283.33%01518291552.08%1422275551.62%733140552.17%2028140418766011074541
5Cabaret Lady Mary Ann220000001239110000005141100000072541.00012213300107839117119978968106270691965511100.00%30100.00%01518291552.08%1422275551.62%733140552.17%2028140418766011074541
6Caroline22000000844110000005321100000031241.000816240010783911786978968106270532112468112.50%5180.00%01518291552.08%1422275551.62%733140552.17%2028140418766011074541
7Chiefs4110101015132210010009542010001068-260.7501526410010783911712697896810627013744317521419.05%100100.00%01518291552.08%1422275551.62%733140552.17%2028140418766011074541
8Chill4310000016115220000009542110000076160.75016294500107839117152978968106270139334410412216.67%17382.35%01518291552.08%1422275551.62%733140552.17%2028140418766011074541
9Comets30300000717-101010000023-120200000514-900.0007132000107839117999789681062701213131729333.33%12375.00%01518291552.08%1422275551.62%733140552.17%2028140418766011074541
10Cougars20200000411-71010000025-31010000026-400.00047110010783911771978968106270813412395120.00%6350.00%01518291552.08%1422275551.62%733140552.17%2028140418766011074541
11Crunch22000000963110000005321100000043141.0009152400107839117979789681062706217204710330.00%9277.78%01518291552.08%1422275551.62%733140552.17%2028140418766011074541
12Heat3300000016881100000065122000000103761.000162743001078391171479789681062701542920699444.44%9455.56%01518291552.08%1422275551.62%733140552.17%2028140418766011074541
13Jayhawks413000001215-320200000611-52110000064220.250122133111078391171819789681062701584040838112.50%17382.35%01518291552.08%1422275551.62%733140552.17%2028140418766011074541
14Las Vegas321000001284211000007701100000051440.667122234001078391171019789681062708731147210110.00%7357.14%01518291552.08%1422275551.62%733140552.17%2028140418766011074541
15Manchots22000000844110000004131100000043141.0008162400107839117779789681062705718184310110.00%80100.00%01518291552.08%1422275551.62%733140552.17%2028140418766011074541
16Marlies21100000752110000006241010000013-220.500710170010783911766978968106270691314478225.00%7185.71%01518291552.08%1422275551.62%733140552.17%2028140418766011074541
17Minnesota312000001112-11010000034-12110000088020.333111627001078391171059789681062701032826726116.67%13376.92%01518291552.08%1422275551.62%733140552.17%2028140418766011074541
18Monarchs320010001376210010009451100000043161.000132437001078391171559789681062707925178415746.67%50100.00%01518291552.08%1422275551.62%733140552.17%2028140418766011074541
19Monsters210000016511000000123-11100000042230.750612180010783911765978968106270662414616116.67%7271.43%01518291552.08%1422275551.62%733140552.17%2028140418766011074541
20Oceanics413000001317-420200000510-52110000087120.250132538101078391171489789681062701183832841915.26%15380.00%01518291552.08%1422275551.62%733140552.17%2028140418766011074541
21Oil Kings30201000810-22020000058-31000100032120.3338152300107839117112978968106270892133596116.67%13376.92%01518291552.08%1422275551.62%733140552.17%2028140418766011074541
22Phantoms220000001147110000006241100000052341.00011203100107839117829789681062705012143412325.00%6183.33%01518291552.08%1422275551.62%733140552.17%2028140418766011074541
23Rocket20001010972100010004311000001054141.00091524001078391177897896810627069171943800.00%6183.33%01518291552.08%1422275551.62%733140552.17%2028140418766011074541
24Seattle30100002813-52010000137-41000000156-120.3338152300107839117899789681062701043332608337.50%16381.25%01518291552.08%1422275551.62%733140552.17%2028140418766011074541
25Senators2010001089-1100000104311010000046-220.500813210010783911785978968106270721614438225.00%6183.33%01518291552.08%1422275551.62%733140552.17%2028140418766011074541
26Sharks30200010714-71000001043120200000311-820.333712190010783911795978968106270122414793800.00%18572.22%01518291552.08%1422275551.62%733140552.17%2028140418766011074541
27Sound Tigers2010010047-31000010034-11010000013-210.2504711001078391176997896810627091241648400.00%7185.71%01518291552.08%1422275551.62%733140552.17%2028140418766011074541
28Spiders21000100871110000005321000010034-130.750813210010783911784978968106270662423436233.33%9188.89%11518291552.08%1422275551.62%733140552.17%2028140418766011074541
29Stars41300000816-82020000028-62110000068-220.250814220010783911712297896810627014939241079111.11%11463.64%01518291552.08%1422275551.62%733140552.17%2028140418766011074541
30Thunder2110000078-11010000036-31100000042220.50071219001078391175797896810627070171436500.00%6266.67%01518291552.08%1422275551.62%733140552.17%2028140418766011074541
31Wolf Pack21001000633100010004311100000020241.000611170110783911774978968106270572721416116.67%60100.00%11518291552.08%1422275551.62%733140552.17%2028140418766011074541
Total8234310635329228012411416051321441386412015012211481426960.585292519811221078391173051978968106270287581968918702685420.15%2916378.35%21518291552.08%1422275551.62%733140552.17%2028140418766011074541
_Since Last GM Reset8234310635329228012411416051321441386412015012211481426960.585292519811221078391173051978968106270287581968918702685420.15%2916378.35%21518291552.08%1422275551.62%733140552.17%2028140418766011074541
_Vs Conference43152103022146159-1322613020016983-1421980102177761420.48814625640211107839117160897896810627015714453469531262620.63%1493775.17%01518291552.08%1422275551.62%733140552.17%2028140418766011074541
_Vs Division26360101082100-181313010003953-141323000104347-4100.1928214422621107839117909978968106270939263223579831113.25%952078.95%01518291552.08%1422275551.62%733140552.17%2028140418766011074541

Total pour les joueurs
Matchs jouésPointsSéquenceButsPassesPointsTirs pourTirs contreTirs bloquésMinutes de pénalitésMises en échecButs en filet désertBlanchissages
8296L229251981130512875819689187022
Tous les matchs
GPWLOTWOTL SOWSOLGFGA
8234316353292280
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
4114165132144138
Matchs extérieurs
GPWLOTWOTL SOWSOLGFGA
4120151221148142
Derniers 10 matchs
WLOTWOTL SOWSOL
370000
Tentatives en avantage numériqueButs en avantage numérique% en avantage numériqueTentatives en désavantage numériqueButs contre en désavantage numérique% en désavantage numériqueButs pour en désavantage numérique
2685420.15%2916378.35%2
Tirs en 1e périodeTirs en 2e périodeTirs en 3e périodeTirs en 4e périodeButs en 1e périodeButs en 2e périodeButs en 3e périodeButs en 4e période
978968106270107839117
Mises en jeu
Gagnées en zone offensiveTotal en zone offensive% gagnées en zone offensive Gagnées en zone défensiveTotal en zone défensive% gagnées en zone défensiveGagnées en zone neutreTotal en zone neutre% gagnées en zone neutre
1518291552.08%1422275551.62%733140552.17%
Temps avec la rondelle
En zone offensiveContrôle en zone offensiveEn zone défensiveContrôle en zone défensiveEn zone neutreContrôle en zone neutre
2028140418766011074541


Derniers matchs joués
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe visiteuse Score Équipe locale Score ST OT SO RI Lien
6 - 2022-10-128Baby Hawks6Monsters2BLSommaire du match
7 - 2022-10-1318Monsters7Heat2AWSommaire du match
11 - 2022-10-1745Monsters5Minnesota4AWSommaire du match
13 - 2022-10-1957Oceanics6Monsters3BLSommaire du match
15 - 2022-10-2173Seattle3Monsters0BLSommaire du match
16 - 2022-10-2285Monsters5Las Vegas1AWSommaire du match
19 - 2022-10-2599Monsters2Wolf Pack0AWSommaire du match
22 - 2022-10-28123Monsters3Spiders4ALXSommaire du match
23 - 2022-10-29135Monsters1Sound Tigers3ALSommaire du match
29 - 2022-11-04174Monsters3Monsters2BLXXSommaire du match
30 - 2022-11-05176Monsters4Monsters2AWSommaire du match
35 - 2022-11-10219Chill3Monsters4BWSommaire du match
37 - 2022-11-12233Caroline3Monsters5BWSommaire du match
39 - 2022-11-14247Chiefs2Monsters5BWSommaire du match
42 - 2022-11-17261Monsters3Caroline1AWSommaire du match
44 - 2022-11-19279Monsters5Bears3AWSommaire du match
46 - 2022-11-21298Monsters1Stars4ALSommaire du match
48 - 2022-11-23317Comets3Monsters2BLSommaire du match
50 - 2022-11-25319Monsters4Chill2AWSommaire du match
51 - 2022-11-26339Stars4Monsters2BLSommaire du match
54 - 2022-11-29357Monsters5Oceanics3AWSommaire du match
56 - 2022-12-01365Monsters4Crunch3AWSommaire du match
58 - 2022-12-03381Monsters5Bruins6ALXSommaire du match
60 - 2022-12-05397Monsters5Phantoms2AWSommaire du match
62 - 2022-12-07415Bruins1Monsters4BWSommaire du match
64 - 2022-12-09430Wolf Pack3Monsters4BWXSommaire du match
66 - 2022-12-11442Monsters2Chiefs5ALSommaire du match
68 - 2022-12-13464Phantoms2Monsters6BWSommaire du match
70 - 2022-12-15479Crunch3Monsters5BWSommaire du match
72 - 2022-12-17493Chill2Monsters5BWSommaire du match
74 - 2022-12-19506Sound Tigers4Monsters3BLXSommaire du match
76 - 2022-12-21520Rocket3Monsters4BWXSommaire du match
78 - 2022-12-23539Monsters3Chill4ALSommaire du match
82 - 2022-12-27554Monsters4Jayhawks0AWSommaire du match
84 - 2022-12-29571Monarchs1Monsters5BWSommaire du match
86 - 2022-12-31582Marlies2Monsters6BWSommaire du match
88 - 2023-01-02596Las Vegas2Monsters5BWSommaire du match
91 - 2023-01-05619Monsters2Comets8ALSommaire du match
93 - 2023-01-07635Monsters3Oil Kings2AWXSommaire du match
96 - 2023-01-10656Cabaret Lady Mary Ann1Monsters5BWSommaire du match
98 - 2023-01-12671Monsters2Baby Hawks6ALSommaire du match
100 - 2023-01-14678Senators3Monsters4BWXXSommaire du match
102 - 2023-01-16696Cougars5Monsters2BLSommaire du match
104 - 2023-01-18715Monsters3Heat1AWSommaire du match
106 - 2023-01-20731Monsters3Comets6ALSommaire du match
107 - 2023-01-21743Monsters5Seattle6ALXXSommaire du match
110 - 2023-01-24764Bears2Monsters3BWXXSommaire du match
112 - 2023-01-26776Admirals3Monsters4BWXSommaire du match
114 - 2023-01-28788Chiefs3Monsters4BWXSommaire du match
124 - 2023-02-07813Monsters4Manchots3AWSommaire du match
126 - 2023-02-09821Monsters4Thunder2AWSommaire du match
128 - 2023-02-11839Monsters7Cabaret Lady Mary Ann2AWSommaire du match
131 - 2023-02-14862Thunder6Monsters3BLSommaire du match
132 - 2023-02-15867Monsters3Minnesota4ALSommaire du match
135 - 2023-02-18883Monsters4Chiefs3AWXXSommaire du match
136 - 2023-02-19898Oil Kings4Monsters2BLSommaire du match
141 - 2023-02-24935Monsters3Oceanics4ALSommaire du match
142 - 2023-02-25945Heat5Monsters6BWSommaire du match
144 - 2023-02-27956Las Vegas5Monsters2BLSommaire du match
146 - 2023-03-01971Spiders3Monsters5BWSommaire du match
Date limite d’échanges --- Les échanges ne peuvent plus se faire après la simulation de cette journée!
149 - 2023-03-04997Monsters5Stars4AWSommaire du match
150 - 2023-03-051005Seattle4Monsters3BLXXSommaire du match
152 - 2023-03-071019Sharks3Monsters4BWXXSommaire du match
154 - 2023-03-091033Monarchs3Monsters4BWXSommaire du match
156 - 2023-03-111041Jayhawks5Monsters3BLSommaire du match
158 - 2023-03-131062Monsters5Rocket4AWXXSommaire du match
160 - 2023-03-151077Monsters1Marlies3ALSommaire du match
161 - 2023-03-161080Monsters4Senators6ALSommaire du match
163 - 2023-03-181095Monsters2Cougars6ALSommaire du match
165 - 2023-03-201117Baby Hawks4Monsters3BLSommaire du match
167 - 2023-03-221133Manchots1Monsters4BWSommaire du match
169 - 2023-03-241149Jayhawks6Monsters3BLSommaire du match
171 - 2023-03-261165Monsters2Jayhawks4ALSommaire du match
172 - 2023-03-271174Monsters7Admirals2AWSommaire du match
174 - 2023-03-291188Minnesota4Monsters3BLSommaire du match
177 - 2023-04-011212Stars4Monsters0BLSommaire du match
180 - 2023-04-041239Monsters1Sharks5ALSommaire du match
182 - 2023-04-061256Monsters2Sharks6ALSommaire du match
184 - 2023-04-081272Monsters4Monarchs3AWSommaire du match
185 - 2023-04-091274Monsters4Admirals3AWSommaire du match
187 - 2023-04-111292Oil Kings4Monsters3BLSommaire du match
189 - 2023-04-131309Oceanics4Monsters2BLSommaire du match



Capacité de l’aréna - Tendance du prix des billets - %
Niveau 1Niveau 2
Capacité20001000
Prix des billets3515
Assistance78,77139,113
Assistance PCT96.06%95.40%

Revenu
Matchs à domicile restantsAssistance moyenne - %Revenu moyen par matchRevenu annuel à ce jourCapacitéPopularité de l’équipe
0 2875 - 95.84% 81,553$3,343,680$3000100

Dépenses
Dépenses annuelles à ce jourSalaire total des joueursSalaire total moyen des joueursSalaire des entraineurs
1,560,492$ 1,579,617$ 1,579,617$ 0$
Plafond salarial par jourPlafond salarial à ce jourJoueurs Inclus dans le plafond salarialJoueurs exclut du plafond Salarial
8,314$ 1,560,492$ 0 0

Estimation
Revenus de la saison estimésJours restants de la saisonDépenses par jourDépenses de la saison estimées
0$ 0 8,314$ 0$




Monsters Leaders statistiques (saison régulière)

# Nom du joueur GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Monsters Leaders des statistiques des gardiens (saison régulière)

# Nom du gardien GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA

Monsters Statistiques de l'Équipe de Carrière

TotalDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT

Monsters Leaders statistiques (séries éliminatoires)

# Nom du joueur GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Monsters Leaders des statistiques des gardiens (séries éliminatoires)

# Nom du gardien GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA