Out of Date Version of the STHS! Please update your version!
Login

Thunder
GP: 82 | W: 39 | L: 39 | OTL: 4 | P: 82
GF: 262 | GA: 263 | PP%: 21.91% | PK%: 84.25%
GM : Jean-Francois Lemelin | Morale : 50 | Team Overall : 55
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Game Center
Marlies
42-32-8, 92pts
5
FINAL
0 Thunder
39-39-4, 82pts
Team Stats
SOL1StreakL2
23-15-3Home Record20-18-3
19-17-5Away Record19-21-1
5-4-1Last 10 Games3-7-0
3.48Goals Per Game3.20
3.32Goals Against Per Game3.21
19.83%Power Play Percentage21.91%
79.86%Penalty Kill Percentage84.25%
Cougars
47-29-6, 100pts
4
FINAL
3 Thunder
39-39-4, 82pts
Team Stats
W1StreakL2
20-18-3Home Record20-18-3
27-11-3Away Record19-21-1
6-4-0Last 10 Games3-7-0
4.11Goals Per Game3.20
3.66Goals Against Per Game3.21
20.08%Power Play Percentage21.91%
72.16%Penalty Kill Percentage84.25%
Team Leaders
Goals
Chris Wagner
43
Assists
Urho Vaakanainen
56
Points
Chris Wagner
79
Plus/Minus
Jacob Larsson
13
Wins
Calvin Pickard
27
Save Percentage
Olivier Rodrigue
0.95

Team Stats
Goals For
262
3.20 GFG
Shots For
2883
35.16 Avg
Power Play Percentage
21.9%
55 GF
Offensive Zone Start
40.0%
Goals Against
263
3.21 GAA
Shots Against
2851
34.77 Avg
Penalty Kill Percentage
84.2%%
43 GA
Defensive Zone Start
40.7%
Team Info

General ManagerJean-Francois Lemelin
DivisionEst
ConferenceEst
Captain
Assistant #1
Assistant #2


Arena Info

Capacity3,000
Attendance2,858
Season Tickets300


Roster Info

Pro Team26
Farm Team21
Contract Limit47 / 50
Prospects20


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPAgeContractSalary Average
1Jayson MegnaXX100.00794493747257655867625577256161050620314560,000$
2Chris WagnerXX100.007471827771737859504960695767690506203041,000,000$
3Curtis McKenzieX100.00747669687665666350596068576061050610304560,000$
4Jack Drury (R)X100.00676375716362626379626060574444050590213925,000$
5Adam Beckman (R)X100.00746987686964665950585663534444050580202925,000$
6Gabriel Fortier (R)XX100.00894587666254826225505961254444050570213791,667$
7Ilya Nikolaev (R)X100.00484399686973955562544646485454050560204700,000$
8Ethan Keppen (R)X100.00817888637838374450384463424444050500203560,000$
9Artur Kayumov (R)XX100.00374545455334343745363645413230050390231750,000$
10Tobias BjornfotX100.00734396747371785725494776255757050640202925,000$
11Urho VaakanainenX100.00734389786978636025554777254848050640221925,000$
12Jacob LarssonX100.007472797772727950254240653863630506202411,000,000$
13Anthony BitettoX100.00788072708054565125404368416465050600311770,000$
14Nikita NesterovX100.00724383696963675425464469244747050590281700,000$
15Jett Woo (R)X100.00757477587454564725374160394444050540213860,833$
16Ole Bjorgvik Holm (R)X100.00727284607253564725403861384444050540194845,333$
17Jackson Lacombe (R)X100.00514799637459794225472947305454050530204825,000$
18Maxwell Crozier (R)X100.00494599647155724125403446365858050520214560,000$
Scratches
1Ryan O'Rourke (R)X100.00676974596958634525353757374444050530192886,667$
2Filip Johansson (R)X100.00474390636757803725273845425050050500213895,000$
3Antti Tuomisto (R)X100.00535199597852753125302745285454050490204825,000$
TEAM AVERAGE100.0067588466715967513746456038515105056
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPAgeContractSalary Average
1Calvin Pickard100.0058445578646056636261305858050600291915,000$
2Jake Kielly (R)100.0046506278434549504445294441050500253700,000$
Scratches
1Olivier Rodrigue (R)100.0046445563464650534848304444050490213795,000$
2John Lethemon (R)100.0044405079454445494545454444050480254825,000$
3Samuel Ersson (R)100.0044405068454445494545454444050470213859,167$
TEAM AVERAGE100.004844547349484953494936474605051
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Chris WagnerThunder (Tam)LW/RW82433679139520719842111429710.21%25185722.65136198921810152574447.86%14000020.8516010837
2Jayson MegnaThunder (Tam)C/RW82245377-7340163319310982737.74%40185422.61322254620402252253253.40%252800100.8336000282
3Jack DruryThunder (Tam)C823245770260722493189326010.06%11165120.15711185319700031327057.65%190100000.9301000615
4Urho VaakanainenThunder (Tam)D79165672-14640194172193691248.29%145185223.4551419851991122186210.00%000000.7800000266
5Curtis McKenzieThunder (Tam)LW82343771-23951941874121062798.25%28164020.0167138319801121215548.19%24900000.8715001692
6Adam BeckmanThunder (Tam)LW82343064-4180691532627018312.98%14139617.0351613440002512242.11%11400000.9201000432
7Gabriel FortierThunder (Tam)C/LW82233255-7715202159257671728.95%11133716.310114200001427127.08%153600000.8200000406
8Jacob LarssonThunder (Tam)D821536511346011172122367512.30%88168620.57681456202000219730100.00%100000.6000000123
9Anthony BitettoThunder (Tam)D8211354613103351936113438668.21%108163519.946111757190000118610100.00%100000.5600025126
10Nikita NesterovThunder (Tam)D8253237-6280989711438884.39%107146317.842810441820005199100.00%000000.5100000020
11Ilya NikolaevThunder (Tam)C8241822-90037510330733.88%5176521.54077112130001840054.07%30700000.2500000001
12Ethan KeppenThunder (Tam)LW8241620-65715100407315655.48%14145417.74101121560000171047.58%12400000.2700201100
13Tobias BjornfotThunder (Tam)D8161117-3100343154133111.11%515436.70156205110129401100.00%100000.6300000011
14Jett WooThunder (Tam)D8211213-35515148343215223.13%60119914.6300000000084000.00%000000.2200210000
15Ole Bjorgvik HolmThunder (Tam)D694812-13692562365415387.41%25109715.9000000000000133.33%5100000.2200203010
16Jackson LacombeThunder (Tam)D823710-21401611123925.00%46123015.0000022300000000.00%100000.1600000001
17Artur KayumovThunder (Tam)LW/RW82022080615110.00%04285.220110350000100021.88%3200000.0900000000
18Ryan O'RourkeThunder (Tam)D42011-3802353000.00%8962.290000000000000.00%000000.2100000000
19Filip JohanssonThunder (Tam)D4000000000000.00%110.290000000000000.00%000000.00%00000000
20Maxwell CrozierThunder (Tam)D19000000010000.00%180.450000300000000.00%000000.00%00000000
Team Total or Average1442259467726-7167910518951901287982120569.00%7882420016.78551021575752142347311892361747.94%698600120.605196410353842
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Calvin PickardThunder (Tam)58272740.9123.03346412217519920120.78919580823
2Jake KiellyThunder (Tam)26121100.9033.31143100798150320.00%02479010
3Olivier RodrigueThunder (Tam)20100.9502.0060002400000.00%003000
Team Total or Average86393940.9103.1049551222562847044198282833


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract Type Current Salary Salary Ave RemainingSalary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10Link
Adam BeckmanThunder (Tam)LW202001-05-10Yes187 Lbs6 ft1NoNoNo2Pro & Farm925,000$0$0$No925,000$Link
Anthony Bitetto (1 Way Contract)Thunder (Tam)D311990-07-15No222 Lbs6 ft1NoNoYes1Pro & Farm770,000$0$0$NoLink
Antti TuomistoThunder (Tam)D202001-01-20Yes205 Lbs6 ft5NoNoNo4Pro & Farm825,000$0$0$No825,000$825,000$825,000$Link
Artur KayumovThunder (Tam)LW/RW231998-02-14Yes176 Lbs5 ft11NoNoNo1Pro & Farm750,000$0$0$NoLink
Calvin Pickard (1 Way Contract)Thunder (Tam)G291992-04-14No210 Lbs6 ft1NoNoYes1Pro & Farm915,000$15,000$0$NoLink
Chris Wagner (1 Way Contract)Thunder (Tam)LW/RW301991-05-26No198 Lbs6 ft0NoNoYes4Pro & Farm1,000,000$100,000$0$No1,000,000$1,000,000$1,000,000$Link
Curtis McKenzie (1 Way Contract)Thunder (Tam)LW301991-02-22No205 Lbs6 ft2NoNoYes4Pro & Farm560,000$0$0$No560,000$560,000$560,000$Link
Ethan KeppenThunder (Tam)LW202001-03-20Yes212 Lbs6 ft2NoNoNo3Pro & Farm560,000$0$0$No560,000$560,000$Link
Filip JohanssonThunder (Tam)D212000-03-23Yes181 Lbs6 ft1NoNoNo3Pro & Farm895,000$0$0$No895,000$895,000$Link
Gabriel FortierThunder (Tam)C/LW212000-02-06Yes174 Lbs5 ft10NoNoNo3Pro & Farm791,667$0$0$No791,667$791,667$Link
Ilya NikolaevThunder (Tam)C202001-06-26Yes190 Lbs6 ft0NoNoNo4Pro & Farm700,000$0$0$No700,000$700,000$700,000$Link
Jack DruryThunder (Tam)C212000-02-03Yes174 Lbs5 ft11NoNoNo3Pro & Farm925,000$0$0$No925,000$925,000$Link
Jackson LacombeThunder (Tam)D202001-01-09Yes201 Lbs6 ft2NoNoNo4Pro & Farm825,000$0$0$No825,000$825,000$825,000$Link
Jacob LarssonThunder (Tam)D241997-04-29No190 Lbs6 ft2NoNoYes1Pro & Farm1,000,000$0$0$NoLink
Jake KiellyThunder (Tam)G251996-09-10Yes201 Lbs6 ft2NoNoYes3Pro & Farm700,000$0$0$No700,000$700,000$Link
Jayson Megna (1 Way Contract)Thunder (Tam)C/RW311990-02-01No195 Lbs6 ft1NoNoYes4Pro & Farm560,000$0$0$No560,000$560,000$560,000$Link
Jett WooThunder (Tam)D212000-07-27Yes205 Lbs6 ft0NoNoNo3Pro & Farm860,833$0$0$No860,833$860,833$Link
John LethemonThunder (Tam)G251996-08-15Yes196 Lbs6 ft3NoNoYes4Pro & Farm825,000$0$0$No825,000$825,000$825,000$
Maxwell CrozierThunder (Tam)D212000-04-19Yes194 Lbs6 ft2NoNoNo4Pro & Farm560,000$0$0$No560,000$560,000$560,000$Link
Nikita Nesterov (1 Way Contract)Thunder (Tam)D281993-03-28No191 Lbs5 ft11NoNoYes1Pro & Farm700,000$0$0$NoLink
Ole Bjorgvik HolmThunder (Tam)D192002-05-23Yes190 Lbs6 ft2NoNoNo4Pro & Farm845,333$0$0$No845,333$845,333$845,333$Link
Olivier RodrigueThunder (Tam)G212000-07-06Yes170 Lbs6 ft1NoNoNo3Pro & Farm795,000$0$0$No795,000$795,000$Link
Ryan O'RourkeThunder (Tam)D192002-05-16Yes181 Lbs6 ft2NoNoNo2Pro & Farm886,667$0$0$No886,667$Link
Samuel ErssonThunder (Tam)G211999-10-20Yes176 Lbs6 ft2NoNoNo3Pro & Farm859,167$0$0$No859,167$859,167$Link
Tobias BjornfotThunder (Tam)D202001-04-06No203 Lbs6 ft0NoNoNo2Pro & Farm925,000$0$0$No925,000$Link
Urho VaakanainenThunder (Tam)D221999-01-01No185 Lbs6 ft1NoNoNo1Pro & Farm925,000$0$0$NoLink
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2623.19193 Lbs6 ft12.77803,218$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Chris WagnerJayson MegnaArtur Kayumov40122
2Curtis McKenzieJack DruryIlya Nikolaev30122
3Adam BeckmanGabriel FortierEthan Keppen20122
4Ethan KeppenIlya NikolaevJayson Megna10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Tobias BjornfotOle Bjorgvik Holm40122
2Jacob LarssonAnthony Bitetto30122
3Nikita NesterovJett Woo20122
4Jackson LacombeTobias Bjornfot10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Chris WagnerJayson MegnaArtur Kayumov60122
2Curtis McKenzieJack DruryIlya Nikolaev40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Tobias BjornfotNikita Nesterov60122
2Jacob LarssonAnthony Bitetto40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Jayson MegnaChris Wagner60122
2Curtis McKenzieJack Drury40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Tobias BjornfotJett Woo60122
2Jacob LarssonAnthony Bitetto40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Jayson Megna60122Tobias BjornfotJett Woo60122
2Chris Wagner40122Jacob LarssonAnthony Bitetto40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Jayson MegnaChris Wagner60122
2Curtis McKenzieJack Drury40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Tobias BjornfotNikita Nesterov60122
2Jacob LarssonAnthony Bitetto40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Chris WagnerJayson MegnaArtur KayumovTobias BjornfotJacob Larsson
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Chris WagnerJayson MegnaArtur KayumovTobias BjornfotJacob Larsson
Extra Forwards
Normal PowerPlayPenalty Kill
Adam Beckman, Gabriel Fortier, Ethan KeppenAdam Beckman, Gabriel FortierEthan Keppen
Extra Defensemen
Normal PowerPlayPenalty Kill
Maxwell Crozier, Nikita Nesterov, Jett WooMaxwell CrozierNikita Nesterov, Jett Woo
Penalty Shots
Jayson Megna, Chris Wagner, Curtis McKenzie, Jack Drury, Adam Beckman
Goalie
#1 : Calvin Pickard, #2 : Jake Kielly


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals2020000015-41010000002-21010000013-200.000112009687747589209659704767152531800.00%8275.00%01365279648.82%1350284247.50%634134847.03%1981135418956191085543
2Baby Hawks22000000523110000003211100000020241.00059140196877477792096597047522019378225.00%70100.00%01365279648.82%1350284247.50%634134847.03%1981135418956191085543
3Bears312000001012-2211000008801010000024-220.33310182810968774797920965970471072516718112.50%8275.00%11365279648.82%1350284247.50%634134847.03%1981135418956191085543
4Bruins42200000161422110000010822110000066040.50016294500968774714392096597047144373610117211.76%14192.86%01365279648.82%1350284247.50%634134847.03%1981135418956191085543
5Cabaret Lady Mary Ann440000002191222000000105522000000114781.0002140610096877472449209659704713532371055240.00%16287.50%01365279648.82%1350284247.50%634134847.03%1981135418956191085543
6Caroline3210000011101110000003212110000088040.6671121320096877471039209659704710120165315426.67%8187.50%01365279648.82%1350284247.50%634134847.03%1981135418956191085543
7Chiefs200000116601000000123-11000001043130.75069150096877477392096597047581111352150.00%30100.00%01365279648.82%1350284247.50%634134847.03%1981135418956191085543
8Chill2010100067-1100010005411010000013-220.500610160096877476992096597047813415495120.00%5180.00%01365279648.82%1350284247.50%634134847.03%1981135418956191085543
9Comets220000001046110000004221100000062441.0001017270096877478592096597047672614407228.57%70100.00%01365279648.82%1350284247.50%634134847.03%1981135418956191085543
10Cougars41300000151502110000085320200000710-320.25015284300968774714592096597047142402010115533.33%10190.00%01365279648.82%1350284247.50%634134847.03%1981135418956191085543
11Crunch430000101587210000108622200000072581.0001524390196877471609209659704713132429519736.84%14192.86%11365279648.82%1350284247.50%634134847.03%1981135418956191085543
12Heat2010100078-11010000035-21000100043120.500712191096877477692096597047751616457114.29%80100.00%01365279648.82%1350284247.50%634134847.03%1981135418956191085543
13Jayhawks22000000963110000004311100000053241.0009172600968774757920965970478120233811100.00%9188.89%01365279648.82%1350284247.50%634134847.03%1981135418956191085543
14Las Vegas20200000110-91010000004-41010000016-500.000123009687747689209659704794283542800.00%10460.00%01365279648.82%1350284247.50%634134847.03%1981135418956191085543
15Manchots30300000410-61010000024-22020000026-400.000471100968774710392096597047772634571317.69%12375.00%01365279648.82%1350284247.50%634134847.03%1981135418956191085543
16Marlies3120000028-62020000007-71100000021120.3332460096877478192096597047113172483700.00%10190.00%01365279648.82%1350284247.50%634134847.03%1981135418956191085543
17Minnesota22000000826110000005141100000031241.00081523009687747819209659704745118436116.67%40100.00%01365279648.82%1350284247.50%634134847.03%1981135418956191085543
18Monarchs20100100710-31010000046-21000010034-110.25071421009687747769209659704772201651400.00%7357.14%01365279648.82%1350284247.50%634134847.03%1981135418956191085543
19Monsters30200001712-52010000147-31010000035-210.167711180096877478392096597047113282474700.00%12375.00%01365279648.82%1350284247.50%634134847.03%1981135418956191085543
20Monsters211000008711010000024-21100000063320.500813211096877477092096597047571412436233.33%50100.00%01365279648.82%1350284247.50%634134847.03%1981135418956191085543
21Oceanics21100000880110000005321010000035-220.50081624009687747669209659704790301049400.00%5180.00%01365279648.82%1350284247.50%634134847.03%1981135418956191085543
22Oil Kings211000007611010000035-21100000041320.50071421009687747699209659704755301837200.00%9277.78%01365279648.82%1350284247.50%634134847.03%1981135418956191085543
23Phantoms3200001017892200000013581000001043161.000173148009687747120920965970478927197312650.00%7185.71%01365279648.82%1350284247.50%634134847.03%1981135418956191085543
24Rocket42100001161422100000110912110000065150.6251627430096877471299209659704713839449312650.00%16287.50%11365279648.82%1350284247.50%634134847.03%1981135418956191085543
25Seattle2110000037-4110000003211010000005-520.500358009687747519209659704778171441400.00%70100.00%01365279648.82%1350284247.50%634134847.03%1981135418956191085543
26Senators3210000011831010000034-12200000084440.66711213200968774783920965970471094043667342.86%14285.71%01365279648.82%1350284247.50%634134847.03%1981135418956191085543
27Sharks21100000761110000005321010000023-120.50071219009687747879209659704774272547342.86%110.00%01365279648.82%1350284247.50%634134847.03%1981135418956191085543
28Sound Tigers30300000712-52020000037-41010000045-100.00071219009687747101920965970471214131819222.22%11372.73%01365279648.82%1350284247.50%634134847.03%1981135418956191085543
29Spiders312000001012-21100000042220200000610-420.33310182800968774787920965970471112718967228.57%9366.67%01365279648.82%1350284247.50%634134847.03%1981135418956191085543
30Stars2020000015-41010000013-21010000002-200.000123109687747539209659704759201446900.00%70100.00%01365279648.82%1350284247.50%634134847.03%1981135418956191085543
31Wolf Pack30300000612-61010000026-42020000046-200.0006121800968774788920965970471152137711000.00%10280.00%01365279648.82%1350284247.50%634134847.03%1981135418956191085543
Total82343902133262263-141181801013137137041162101120125126-1820.500262471733429687747288392096597047285179169319012515521.91%2734384.25%31365279648.82%1350284247.50%634134847.03%1981135418956191085543
_Since Last GM Reset82343902133262263-141181801013137137041162101120125126-1820.500262471733429687747288392096597047285179169319012515521.91%2734384.25%31365279648.82%1350284247.50%634134847.03%1981135418956191085543
_Vs Conference41112601111119144-2521712010016876-820414001105168-17280.341119216335109687747134292096597047148341535010071252116.80%1332978.20%11365279648.82%1350284247.50%634134847.03%1981135418956191085543

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
8282L226247173328832851791693190142
All Games
GPWLOTWOTL SOWSOLGFGA
8234392133262263
Home Games
GPWLOTWOTL SOWSOLGFGA
4118181013137137
Visitor Games
GPWLOTWOTL SOWSOLGFGA
4116211120125126
Last 10 Games
WLOTWOTL SOWSOL
370000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
2515521.91%2734384.25%3
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
920965970479687747
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
1365279648.82%1350284247.50%634134847.03%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
1981135418956191085543


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
5 - 2022-10-113Thunder3Wolf Pack4ALBoxScore
8 - 2022-10-1421Thunder3Monsters5ALBoxScore
9 - 2022-10-1531Thunder1Manchots3ALBoxScore
12 - 2022-10-1853Phantoms2Thunder5BWBoxScore
15 - 2022-10-2171Thunder4Cabaret Lady Mary Ann1AWBoxScore
16 - 2022-10-2281Sound Tigers3Thunder1BLBoxScore
19 - 2022-10-25106Thunder3Monarchs4ALXBoxScore
20 - 2022-10-26110Thunder1Admirals3ALBoxScore
23 - 2022-10-29128Thunder2Sharks3ALBoxScore
26 - 2022-11-01148Senators4Thunder3BLBoxScore
28 - 2022-11-03162Caroline2Thunder3BWBoxScore
30 - 2022-11-05181Crunch4Thunder5BWXXBoxScore
33 - 2022-11-08202Oil Kings5Thunder3BLBoxScore
36 - 2022-11-11222Thunder2Bears4ALBoxScore
38 - 2022-11-13242Bears6Thunder4BLBoxScore
40 - 2022-11-15248Stars3Thunder1BLBoxScore
42 - 2022-11-17260Heat5Thunder3BLBoxScore
44 - 2022-11-19285Thunder1Chill3ALBoxScore
46 - 2022-11-21291Bruins4Thunder7BWBoxScore
50 - 2022-11-25328Chiefs3Thunder2BLXXBoxScore
53 - 2022-11-28347Thunder4Crunch2AWBoxScore
54 - 2022-11-29355Thunder4Bruins2AWBoxScore
56 - 2022-12-01367Thunder4Phantoms3AWXXBoxScore
58 - 2022-12-03385Marlies2Thunder0BLBoxScore
61 - 2022-12-06405Cougars1Thunder5BWBoxScore
63 - 2022-12-08421Chill4Thunder5BWXBoxScore
65 - 2022-12-10436Cabaret Lady Mary Ann1Thunder5BWBoxScore
68 - 2022-12-13459Seattle2Thunder3BWBoxScore
70 - 2022-12-15470Monsters5Thunder3BLBoxScore
72 - 2022-12-17490Thunder1Rocket2ALBoxScore
75 - 2022-12-20513Thunder2Marlies1AWBoxScore
76 - 2022-12-21519Thunder4Cougars5ALBoxScore
78 - 2022-12-23536Thunder3Crunch0AWBoxScore
83 - 2022-12-28559Rocket2Thunder4BWBoxScore
84 - 2022-12-29565Wolf Pack6Thunder2BLBoxScore
86 - 2022-12-31583Jayhawks3Thunder4BWBoxScore
89 - 2023-01-03605Thunder2Baby Hawks0AWBoxScore
90 - 2023-01-04610Thunder3Minnesota1AWBoxScore
92 - 2023-01-06624Thunder3Oceanics5ALBoxScore
96 - 2023-01-10648Monsters2Thunder1BLXXBoxScore
98 - 2023-01-12667Comets2Thunder4BWBoxScore
100 - 2023-01-14688Thunder4Chiefs3AWXXBoxScore
102 - 2023-01-16698Thunder0Seattle5ALBoxScore
104 - 2023-01-18714Thunder6Comets2AWBoxScore
105 - 2023-01-19725Thunder4Oil Kings1AWBoxScore
107 - 2023-01-21733Thunder4Heat3AWXBoxScore
110 - 2023-01-24758Minnesota1Thunder5BWBoxScore
112 - 2023-01-26771Bruins4Thunder3BLBoxScore
114 - 2023-01-28791Monarchs6Thunder4BLBoxScore
123 - 2023-02-06808Thunder7Cabaret Lady Mary Ann3AWBoxScore
124 - 2023-02-07814Sharks3Thunder5BWBoxScore
126 - 2023-02-09821Monsters4Thunder2BLBoxScore
128 - 2023-02-11837Thunder0Stars2ALBoxScore
131 - 2023-02-14862Thunder6Monsters3AWBoxScore
132 - 2023-02-15865Thunder5Jayhawks3AWBoxScore
135 - 2023-02-18895Thunder1Las Vegas6ALBoxScore
138 - 2023-02-21908Admirals2Thunder0BLBoxScore
140 - 2023-02-23921Crunch2Thunder3BWBoxScore
142 - 2023-02-25942Thunder3Cougars5ALBoxScore
143 - 2023-02-26951Thunder1Manchots3ALBoxScore
145 - 2023-02-28960Cabaret Lady Mary Ann4Thunder5BWBoxScore
147 - 2023-03-02977Manchots4Thunder2BLBoxScore
Trade Deadline --- Trades can’t be done after this day is simulated!
150 - 2023-03-051001Thunder5Caroline3AWBoxScore
152 - 2023-03-071014Phantoms3Thunder8BWBoxScore
154 - 2023-03-091031Las Vegas4Thunder0BLBoxScore
156 - 2023-03-111042Baby Hawks2Thunder3BWBoxScore
157 - 2023-03-121057Oceanics3Thunder5BWBoxScore
159 - 2023-03-141065Thunder4Spiders6ALBoxScore
161 - 2023-03-161083Thunder2Spiders4ALBoxScore
163 - 2023-03-181101Rocket7Thunder6BLXXBoxScore
164 - 2023-03-191113Spiders2Thunder4BWBoxScore
166 - 2023-03-211126Thunder5Rocket3AWBoxScore
168 - 2023-03-231139Thunder4Senators2AWBoxScore
170 - 2023-03-251151Thunder2Bruins4ALBoxScore
173 - 2023-03-281179Thunder3Caroline5ALBoxScore
175 - 2023-03-301194Bears2Thunder4BWBoxScore
177 - 2023-04-011209Sound Tigers4Thunder2BLBoxScore
181 - 2023-04-051241Thunder1Wolf Pack2ALBoxScore
182 - 2023-04-061249Thunder4Sound Tigers5ALBoxScore
184 - 2023-04-081267Thunder4Senators2AWBoxScore
187 - 2023-04-111289Marlies5Thunder0BLBoxScore
189 - 2023-04-131300Cougars4Thunder3BLBoxScore



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Capacity20001000
Ticket Price3515
Attendance77,75639,442
Attendance PCT94.82%96.20%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueCapacityTeam Popularity
0 2858 - 95.28% 80,807$3,313,090$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
1,684,413$ 1,637,867$ 1,637,867$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
8,620$ 1,684,413$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 0 8,620$ 0$




Thunder Stat Leaders (Regular Season)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Thunder Goalies Stat Leaders (Regular Season)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA

Thunder Career Team Stats

OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT

Thunder Stat Leaders (Play-Off)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Thunder Goalies Stat Leaders (Play-Off)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA