Out of Date Version of the STHS! Please update your version!
Login

Seattle
GP: 82 | W: 60 | L: 20 | OTL: 2 | P: 122
GF: 341 | GA: 205 | PP%: 24.24% | PK%: 81.51%
GM : Yvon Bergeron | Morale : 50 | Team Overall : 61
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Game Center
Seattle
60-20-2, 122pts
4
FINAL
2 Las Vegas
33-41-8, 74pts
Team Stats
W3StreakL3
33-7-1Home Record19-19-3
27-13-1Away Record14-22-5
7-2-1Last 10 Games3-6-1
4.16Goals Per Game3.52
2.50Goals Against Per Game4.12
24.24%Power Play Percentage24.03%
81.51%Penalty Kill Percentage72.43%
Las Vegas
33-41-8, 74pts
0
FINAL
5 Seattle
60-20-2, 122pts
Team Stats
L3StreakW3
19-19-3Home Record33-7-1
14-22-5Away Record27-13-1
3-6-1Last 10 Games7-2-1
3.52Goals Per Game4.16
4.12Goals Against Per Game2.50
24.03%Power Play Percentage24.24%
72.43%Penalty Kill Percentage81.51%
Team Leaders
Goals
Ty Dellandrea
31
Assists
Jake Walman
61
Points
Radim Zohorna
85
Plus/Minus
Kale Clague
59
Wins
Alex Nedeljkovic
56
Save Percentage
Alex Nedeljkovic
0.931

Team Stats
Goals For
341
4.16 GFG
Shots For
3404
41.51 Avg
Power Play Percentage
24.2%
64 GF
Offensive Zone Start
41.3%
Goals Against
205
2.50 GAA
Shots Against
2915
35.55 Avg
Penalty Kill Percentage
81.5%%
44 GA
Defensive Zone Start
40.7%
Team Info

General ManagerYvon Bergeron
DivisionMid-Ouest
ConferenceOuest
Captain
Assistant #1
Assistant #2


Arena Info

Capacity6,000
Attendance5,704
Season Tickets600


Roster Info

Pro Team16
Farm Team23
Contract Limit39 / 50
Prospects18


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPAgeContractSalary Average
1Oliver WahlstromX100.00795972807762846938627160415859050640212925,001$
2Nicholas MerkleyX100.007543997968627669566760762547470506402411,100,000$
3Nicolas Aube-KubelX100.008454817668568860326368682561610506302511,573,000$
4Radim ZohornaXXX100.00794591688556646737696268254646050620253792,500$
5Ty Dellandrea (R)XX100.00747182757174776480596465614646050620213863,333$
6Kyle RauXXX100.00646172686163636880626862655152050610281600,000$
7Nolan Foote (R)X100.00757476767469726150576164584545050610202894,167$
8Brett MurrayX100.00737867698764766125666061254545050600233775,000$
9Jansen HarkinsXX100.00695293676854775857555965256162050590241750,000$
10Fredrik KarlstromX100.00807397667360615771496165584444050580233700,000$
11Jake WalmanX100.00734293746564646425514874255859050630251910,000$
12Kale ClagueX100.006341837665706769255648662550500506102341,700,000$
13Jeremy DaviesX100.00696676686665685525514360414646050570241925,000$
14Simon Lundmark (R)X100.00807591707551524725384163394444050560204850,833$
Scratches
TEAM AVERAGE100.0074608472726271624558586638505005061
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPAgeContractSalary Average
1Alex Nedeljkovic100.00697673706870697067697555560506702532,800,000$
2Spencer Martin100.0059496173626460656665304444050600262750,000$
Scratches
TEAM AVERAGE100.006463677265676568676753505005064
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Radim ZohornaSeattle (SEA)C/LW/RW7929568530300931512776518410.47%31138317.526222850182000295142.29%171900001.2300000334
2Ty DellandreaSeattle (SEA)C/RW79314879266115145202319852569.72%17153719.465101550205000067259.23%206500011.0300102316
3Jake WalmanSeattle (SEA)D8214617541340146103174641148.05%121191223.3261723852200111191200.00%000000.7800000322
4Kale ClagueSeattle (SEA)D821658745932098961514010410.60%112178221.7351621552070000197610.00%000010.8300000141
5William CarrierSeattleLW61304272384801891102317217312.99%16123120.1987154715201121306046.02%17600001.1703000764
6Mason AppletonSeattleLW/RW64323971268084148323872269.91%23136521.3358135417600011194140.24%16900021.0433000554
7Oliver WahlstromSeattle (SEA)RW7623456830340155105290852317.93%10132817.48591425891013742047.90%11900001.0222000225
8Nicholas MerkleySeattle (SEA)RW50273764580311512525618310.71%14108221.648412391080001976150.91%27500011.1813000634
9Nolan FooteSeattle (SEA)LW7421375814491598109252591618.33%10119816.196713341210000614243.88%13900000.9700102145
10Owen TippettSeattleLW/RW59282553251601221362891092469.69%15140223.7883114916110161586036.45%50200000.7613000464
11Nicolas Aube-KubelSeattle (SEA)RW791437512454015786144541139.72%53118415.000003120000353037.50%3200000.8600000332
12Alex Barre-BouletSeattleC3519254429401381127237514.96%455915.99033432000061442.94%70800011.5700000424
13Kyle RauSeattle (SEA)C/LW/RW78172744328043137207641538.21%10111414.290004170003771059.33%101800010.7900000233
14Daniel SprongSeattleRW4919224127401865199451329.55%1686017.5625723890110311031.58%5700000.9511000124
15Travis DermottSeattleD617283530100985112639895.56%70144023.615611541700000148000.00%000000.4900000020
16Brett MurraySeattle (SEA)LW821715322541511268150357511.33%33110613.49000160000163229.11%7900000.5800001221
17Brendan GuhleSeattleD5631619297315137376718334.48%60109919.6303313125000091200.00%000000.3500101101
18Jeremy DaviesSeattle (SEA)D41513181333570253582014.29%4782120.0355101389000075100.00%000000.4400001010
19Haydn FleurySeattleD100111114120281223790.00%1122922.93011716000021000.00%000000.9600000000
20Fredrik KarlstromSeattle (SEA)C483710510021193072010.00%122886.010111110000271055.24%10500000.6900000000
21Jansen HarkinsSeattle (SEA)C/LW41279112035343814455.26%3152712.8600000000030049.11%11200000.3400000000
22Simon LundmarkSeattle (SEA)D23347820106413164918.75%3539817.34011419000030000.00%000000.3500101011
23Danton HeinenSeattleLW/RW1011-100146440.00%02121.82000000000000100.00%100000.9200000000
Team Total or Average1310360661102153060165195819433726104426559.66%7512387518.23741282026152216235191610611449.68%727600070.86815408485255
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Alex NedeljkovicSeattle (SEA)76561720.9312.4245056618226290011.00057601553
2Spencer MartinSeattle (SEA)42100.9193.2818300101230000.7508236000
Team Total or Average80581820.9302.4646896619227520011378361553


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract Type Current Salary Salary Ave RemainingSalary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10Link
Alex NedeljkovicSeattle (SEA)G251996-01-07No189 Lbs6 ft0NoNoNo3Pro & Farm2,800,000$0$0$No2,800,000$2,800,000$Link
Brett MurraySeattle (SEA)LW231998-07-19No228 Lbs6 ft5NoNoNo3Pro & Farm775,000$0$0$No775,000$775,000$Link
Fredrik KarlstromSeattle (SEA)C231998-01-12No196 Lbs6 ft2NoNoNo3Pro & Farm700,000$0$0$No700,000$700,000$Link
Jake WalmanSeattle (SEA)D251996-02-20No170 Lbs6 ft1NoNoNo1Pro & Farm910,000$0$0$NoLink
Jansen HarkinsSeattle (SEA)C/LW241997-05-23No182 Lbs6 ft1NoNoNo1Pro & Farm750,000$0$0$NoLink
Jeremy DaviesSeattle (SEA)D241996-12-04No180 Lbs5 ft11NoNoNo1Pro & Farm925,000$0$0$NoLink
Kale ClagueSeattle (SEA)D231998-06-05No177 Lbs6 ft0NoNoNo4Pro & Farm1,700,000$0$0$No1,700,000$1,700,000$1,700,000$Link
Kyle Rau (1 Way Contract)Seattle (SEA)C/LW/RW281992-10-24No176 Lbs5 ft8YesNoNo1Pro & Farm600,000$0$0$NoLink
Nicholas MerkleySeattle (SEA)RW241997-05-23No194 Lbs5 ft10NoNoYes1Pro & Farm1,100,000$0$0$NoLink
Nicolas Aube-KubelSeattle (SEA)RW251996-05-09No187 Lbs5 ft11NoNoNo1Pro & Farm1,573,000$0$0$NoLink
Nolan FooteSeattle (SEA)LW202000-11-29Yes196 Lbs6 ft3NoNoNo2Pro & Farm894,167$0$0$No894,167$Link
Oliver WahlstromSeattle (SEA)RW212000-06-13No205 Lbs6 ft2NoNoNo2Pro & Farm925,001$0$0$No925,001$Link
Radim ZohornaSeattle (SEA)C/LW/RW251996-04-29No220 Lbs6 ft6NoNoNo3Pro & Farm792,500$0$0$No792,500$792,500$Link
Simon LundmarkSeattle (SEA)D202000-10-08Yes201 Lbs6 ft2NoNoNo4Pro & Farm850,833$0$0$No850,833$850,833$850,833$Link
Spencer Martin (1 Way Contract)Seattle (SEA)G261995-06-08No191 Lbs6 ft1NoNoNo2Pro & Farm750,000$0$0$No750,000$Link
Ty DellandreaSeattle (SEA)C/RW212000-07-20Yes190 Lbs6 ft1NoNoNo3Pro & Farm863,333$0$0$No863,333$863,333$Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
1623.56193 Lbs6 ft12.191,056,802$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Radim ZohornaTy DellandreaNicholas Merkley40122
2Nolan FooteKyle RauOliver Wahlstrom30122
3Brett MurrayJansen HarkinsNicolas Aube-Kubel20122
4Nicholas MerkleyFredrik KarlstromOliver Wahlstrom10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Jake WalmanKale Clague40122
2Jeremy DaviesSimon Lundmark30122
3Fredrik Karlstrom20122
4Jake WalmanKale Clague10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Radim ZohornaTy DellandreaNicholas Merkley60122
2Nolan FooteKyle RauOliver Wahlstrom40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Jake WalmanKale Clague60122
2Jeremy DaviesSimon Lundmark40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Nicholas MerkleyOliver Wahlstrom60122
2Nicolas Aube-KubelTy Dellandrea40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Jake WalmanKale Clague60122
2Jeremy DaviesSimon Lundmark40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Nicholas Merkley60122Jake WalmanKale Clague60122
2Oliver Wahlstrom40122Jeremy DaviesSimon Lundmark40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Nicholas MerkleyOliver Wahlstrom60122
2Nicolas Aube-KubelTy Dellandrea40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Jake WalmanKale Clague60122
2Jeremy DaviesSimon Lundmark40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Radim ZohornaTy DellandreaNicholas MerkleyJake WalmanKale Clague
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Radim ZohornaTy DellandreaNicholas MerkleyJake WalmanKale Clague
Extra Forwards
Normal PowerPlayPenalty Kill
Brett Murray, Jansen Harkins, Radim ZohornaBrett Murray, Jansen HarkinsRadim Zohorna
Extra Defensemen
Normal PowerPlayPenalty Kill
Jeremy Davies, Simon Lundmark, Jake WalmanJeremy DaviesSimon Lundmark, Jake Walman
Penalty Shots
Nicholas Merkley, Oliver Wahlstrom, Nicolas Aube-Kubel, Ty Dellandrea, Radim Zohorna
Goalie
#1 : Alex Nedeljkovic, #2 : Spencer Martin


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals4400000023518220000001028220000001331081.00023436600132117869189113011541101331422535898450.00%15193.33%01495303749.23%1417299247.36%658132149.81%2087147017965791064549
2Baby Hawks30300000513-81010000004-42020000059-400.00059140013211786972113011541101331192850717114.29%12283.33%01495303749.23%1417299247.36%658132149.81%2087147017965791064549
3Bears211000009721010000035-21100000062420.5009172600132117869661130115411013358158439444.44%40100.00%01495303749.23%1417299247.36%658132149.81%2087147017965791064549
4Bruins220000001037110000006151100000042241.0001018280013211786910211301154110133541614388112.50%60100.00%01495303749.23%1417299247.36%658132149.81%2087147017965791064549
5Cabaret Lady Mary Ann2200000017413110000009271100000082641.00017335000132117869132113011541101336615126122100.00%6183.33%01495303749.23%1417299247.36%658132149.81%2087147017965791064549
6Caroline211000001046110000009181010000013-220.5001020300013211786910511301154110133722116645120.00%8362.50%01495303749.23%1417299247.36%658132149.81%2087147017965791064549
7Chiefs3300000014682200000010461100000042261.0001424380013211786913211301154110133872214651119.09%7185.71%01495303749.23%1417299247.36%658132149.81%2087147017965791064549
8Chill3300000014771100000041322000000106461.000142539001321178691181130115411013310117248311327.27%11190.91%01495303749.23%1417299247.36%658132149.81%2087147017965791064549
9Comets4210100016115211000007612100100095460.750162844011321178691651130115411013316839417612433.33%19668.42%01495303749.23%1417299247.36%658132149.81%2087147017965791064549
10Cougars20200000610-41010000057-21010000013-200.00061016101321178698511301154110133972616496116.67%8275.00%01495303749.23%1417299247.36%658132149.81%2087147017965791064549
11Crunch21100000642110000004131010000023-120.5006121800132117869901130115411013373138586116.67%30100.00%01495303749.23%1417299247.36%658132149.81%2087147017965791064549
12Heat31001010151142100001010731000100054161.0001526410013211786912511301154110133121391665200.00%7185.71%01495303749.23%1417299247.36%658132149.81%2087147017965791064549
13Jayhawks32000100171342100010010911100000074350.833172845001321178691341130115411013310432207110330.00%8362.50%01495303749.23%1417299247.36%658132149.81%2087147017965791064549
14Las Vegas43100000188102200000012392110000065160.750183553011321178691801130115411013312529349815426.67%12283.33%01495303749.23%1417299247.36%658132149.81%2087147017965791064549
15Manchots21100000532110000005231010000001-120.500591400132117869711130115411013368141250400.00%6183.33%11495303749.23%1417299247.36%658132149.81%2087147017965791064549
16Marlies220000001046110000006241100000042241.00010182800132117869721130115411013361176389222.22%30100.00%01495303749.23%1417299247.36%658132149.81%2087147017965791064549
17Minnesota321000001183110000005322110000065140.6671121320013211786911511301154110133121292377500.00%9277.78%01495303749.23%1417299247.36%658132149.81%2087147017965791064549
18Monarchs44000000177102200000074322000000103781.000173148001321178691961130115411013313032169814321.43%7185.71%01495303749.23%1417299247.36%658132149.81%2087147017965791064549
19Monsters211000006601010000045-11100000021120.500691500132117869811130115411013392196365120.00%30100.00%01495303749.23%1417299247.36%658132149.81%2087147017965791064549
20Monsters310000201385100000106512100001073461.00013213401132117869104113011541101338930166716318.75%8362.50%01495303749.23%1417299247.36%658132149.81%2087147017965791064549
21Oceanics3200001013762100001010641100000031261.00013233600132117869132113011541101331212687519421.05%4175.00%01495303749.23%1417299247.36%658132149.81%2087147017965791064549
22Oil Kings422000001415-12200000094520200000511-640.50014274100132117869140113011541101331393858871218.33%17288.24%01495303749.23%1417299247.36%658132149.81%2087147017965791064549
23Phantoms22000000725110000004221100000030341.00071219011321178697511301154110133102166466116.67%30100.00%01495303749.23%1417299247.36%658132149.81%2087147017965791064549
24Rocket22000000853110000004221100000043141.0008132100132117869101113011541101335919145611327.27%7357.14%01495303749.23%1417299247.36%658132149.81%2087147017965791064549
25Senators22000000927110000005141100000041341.00091726001321178697711301154110133631814466466.67%7185.71%01495303749.23%1417299247.36%658132149.81%2087147017965791064549
26Sharks320001001569110000006242100010094550.83315274201132117869136113011541101331063118688450.00%90100.00%11495303749.23%1417299247.36%658132149.81%2087147017965791064549
27Sound Tigers21100000761110000004131010000035-220.500714210013211786989113011541101336318104313430.77%5260.00%01495303749.23%1417299247.36%658132149.81%2087147017965791064549
28Spiders22000000642110000003211100000032141.00061016001321178697511301154110133761712367114.29%6350.00%01495303749.23%1417299247.36%658132149.81%2087147017965791064549
29Stars32100000752211000004401100000031240.667713200013211786991113011541101331024720686116.67%8187.50%01495303749.23%1417299247.36%658132149.81%2087147017965791064549
30Thunder21100000734110000005051010000023-120.500713200113211786978113011541101335111848700.00%40100.00%01495303749.23%1417299247.36%658132149.81%2087147017965791064549
31Wolf Pack2020000068-21010000023-11010000045-100.00061117001321178697611301154110133852712494250.00%6183.33%01495303749.23%1417299247.36%658132149.81%2087147017965791064549
Total8254200224034120513641307001301881018741241302110153104491220.74434161795816132117869340411301154110133291574656719192646424.24%2384481.51%21495303749.23%1417299247.36%658132149.81%2087147017965791064549
_Since Last GM Reset8254200224034120513641307001301881018741241302110153104491220.74434161795816132117869340411301154110133291574656719192646424.24%2384481.51%21495303749.23%1417299247.36%658132149.81%2087147017965791064549
_Vs Conference432413021301771255222154001201046242219902010736310590.68617732049713132117869177111301154110133154242735810331262620.63%1393276.98%01495303749.23%1417299247.36%658132149.81%2087147017965791064549
_Vs Division2687000001186355135200000612833133500000573522160.30811821733503132117869113111301154110133931233218581712028.17%861384.88%11495303749.23%1417299247.36%658132149.81%2087147017965791064549

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
82122W334161795834042915746567191916
All Games
GPWLOTWOTL SOWSOLGFGA
8254202240341205
Home Games
GPWLOTWOTL SOWSOLGFGA
413070130188101
Visitor Games
GPWLOTWOTL SOWSOLGFGA
4124132110153104
Last 10 Games
WLOTWOTL SOWSOL
720100
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
2646424.24%2384481.51%2
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
11301154110133132117869
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
1495303749.23%1417299247.36%658132149.81%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
2087147017965791064549


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
6 - 2022-10-129Seattle8Admirals2AWBoxScore
7 - 2022-10-1320Seattle6Monarchs1AWBoxScore
9 - 2022-10-1536Las Vegas3Seattle7BWBoxScore
11 - 2022-10-1747Caroline1Seattle9BWBoxScore
13 - 2022-10-1958Chiefs2Seattle3BWBoxScore
15 - 2022-10-2173Seattle3Monsters0AWBoxScore
17 - 2022-10-2387Seattle3Baby Hawks4ALBoxScore
19 - 2022-10-25105Crunch1Seattle4BWBoxScore
21 - 2022-10-27118Comets5Seattle3BLBoxScore
23 - 2022-10-29137Manchots2Seattle5BWBoxScore
26 - 2022-11-01155Seattle5Heat4AWXBoxScore
28 - 2022-11-03167Seattle4Minnesota1AWBoxScore
30 - 2022-11-05184Seattle0Manchots1ALBoxScore
33 - 2022-11-08205Chill1Seattle4BWBoxScore
36 - 2022-11-11224Minnesota3Seattle5BWBoxScore
38 - 2022-11-13243Oceanics4Seattle5BWXXBoxScore
42 - 2022-11-17271Wolf Pack3Seattle2BLBoxScore
44 - 2022-11-19286Monarchs2Seattle3BWBoxScore
48 - 2022-11-23316Sharks2Seattle6BWBoxScore
50 - 2022-11-25329Seattle2Las Vegas3ALBoxScore
52 - 2022-11-27343Seattle5Admirals1AWBoxScore
54 - 2022-11-29360Seattle4Monarchs2AWBoxScore
56 - 2022-12-01374Bears5Seattle3BLBoxScore
58 - 2022-12-03389Cabaret Lady Mary Ann2Seattle9BWBoxScore
61 - 2022-12-06411Rocket2Seattle4BWBoxScore
64 - 2022-12-09427Seattle6Bears2AWBoxScore
66 - 2022-12-11444Seattle8Cabaret Lady Mary Ann2AWBoxScore
68 - 2022-12-13459Seattle2Thunder3ALBoxScore
70 - 2022-12-15475Seattle1Caroline3ALBoxScore
73 - 2022-12-18500Oceanics2Seattle5BWBoxScore
75 - 2022-12-20515Chiefs2Seattle7BWBoxScore
77 - 2022-12-22530Seattle3Comets0AWBoxScore
83 - 2022-12-28561Heat4Seattle6BWBoxScore
85 - 2022-12-30577Oil Kings1Seattle2BWBoxScore
87 - 2023-01-01594Sound Tigers1Seattle4BWBoxScore
89 - 2023-01-03606Seattle1Oil Kings4ALBoxScore
91 - 2023-01-05615Seattle4Marlies2AWBoxScore
93 - 2023-01-07632Seattle4Senators1AWBoxScore
95 - 2023-01-09646Seattle4Rocket3AWBoxScore
96 - 2023-01-10651Seattle2Crunch3ALBoxScore
98 - 2023-01-12665Seattle4Bruins2AWBoxScore
100 - 2023-01-14687Seattle2Baby Hawks5ALBoxScore
102 - 2023-01-16698Thunder0Seattle5BWBoxScore
103 - 2023-01-17711Seattle4Oil Kings7ALBoxScore
105 - 2023-01-19728Spiders2Seattle3BWBoxScore
107 - 2023-01-21743Monsters5Seattle6BWXXBoxScore
111 - 2023-01-25770Comets1Seattle4BWBoxScore
113 - 2023-01-27786Heat3Seattle4BWXXBoxScore
114 - 2023-01-28797Monsters5Seattle4BLBoxScore
124 - 2023-02-07816Seattle3Sound Tigers5ALBoxScore
126 - 2023-02-09824Seattle3Spiders2AWBoxScore
127 - 2023-02-10828Seattle4Wolf Pack5ALBoxScore
129 - 2023-02-12848Seattle3Phantoms0AWBoxScore
131 - 2023-02-14860Seattle3Oceanics1AWBoxScore
133 - 2023-02-16876Phantoms2Seattle4BWBoxScore
135 - 2023-02-18894Cougars7Seattle5BLBoxScore
137 - 2023-02-20904Seattle3Sharks4ALXBoxScore
140 - 2023-02-23927Bruins1Seattle6BWBoxScore
143 - 2023-02-26952Marlies2Seattle6BWBoxScore
145 - 2023-02-28964Seattle4Chiefs2AWBoxScore
147 - 2023-03-02978Seattle1Cougars3ALBoxScore
148 - 2023-03-03984Seattle2Monsters1AWBoxScore
Trade Deadline --- Trades can’t be done after this day is simulated!
150 - 2023-03-051005Seattle4Monsters3AWXXBoxScore
152 - 2023-03-071021Admirals1Seattle4BWBoxScore
154 - 2023-03-091035Senators1Seattle5BWBoxScore
156 - 2023-03-111049Stars3Seattle4BWBoxScore
158 - 2023-03-131063Stars1Seattle0BLBoxScore
161 - 2023-03-161090Seattle6Sharks0AWBoxScore
163 - 2023-03-181098Oil Kings3Seattle7BWBoxScore
166 - 2023-03-211130Seattle3Stars1AWBoxScore
168 - 2023-03-231142Seattle7Chill4AWBoxScore
170 - 2023-03-251152Seattle3Chill2AWBoxScore
172 - 2023-03-271173Seattle2Minnesota4ALBoxScore
175 - 2023-03-301198Admirals1Seattle6BWBoxScore
177 - 2023-04-011213Monarchs2Seattle4BWBoxScore
179 - 2023-04-031228Jayhawks4Seattle6BWBoxScore
180 - 2023-04-041238Seattle6Comets5AWXBoxScore
182 - 2023-04-061253Jayhawks5Seattle4BLXBoxScore
184 - 2023-04-081271Baby Hawks4Seattle0BLBoxScore
186 - 2023-04-101283Seattle7Jayhawks4AWBoxScore
187 - 2023-04-111293Seattle4Las Vegas2AWBoxScore
189 - 2023-04-131312Las Vegas0Seattle5BWBoxScore



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Capacity40002000
Ticket Price3515
Attendance155,83678,045
Attendance PCT95.02%95.18%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueCapacityTeam Popularity
0 5704 - 95.07% 161,584$6,624,935$6000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
1,761,492$ 1,555,883$ 1,555,883$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
8,189$ 1,761,492$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 0 8,189$ 0$




Seattle Stat Leaders (Regular Season)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Seattle Goalies Stat Leaders (Regular Season)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA

Seattle Career Team Stats

OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT

Seattle Stat Leaders (Play-Off)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Seattle Goalies Stat Leaders (Play-Off)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA