Out of Date Version of the STHS! Please update your version!
Login

Monsters
GP: 82 | W: 45 | L: 31 | OTL: 6 | P: 96
GF: 292 | GA: 280 | PP%: 20.15% | PK%: 78.35%
GM : Paul-André Desrochers | Morale : 50 | Team Overall : 57
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Game Center
Oil Kings
46-24-12, 104pts
4
FINAL
3 Monsters
45-31-6, 96pts
Team Stats
L1StreakL2
23-12-6Home Record22-16-3
23-12-6Away Record23-15-3
7-3-0Last 10 Games3-7-0
3.56Goals Per Game3.56
3.02Goals Against Per Game3.41
20.47%Power Play Percentage20.15%
87.25%Penalty Kill Percentage78.35%
Oceanics
47-26-9, 103pts
4
FINAL
2 Monsters
45-31-6, 96pts
Team Stats
W2StreakL2
26-13-2Home Record22-16-3
21-13-7Away Record23-15-3
6-3-1Last 10 Games3-7-0
3.68Goals Per Game3.56
3.49Goals Against Per Game3.41
24.05%Power Play Percentage20.15%
81.07%Penalty Kill Percentage78.35%
Team Leaders
Goals
Peyton Krebs
35
Assists
Peyton Krebs
52
Points
Peyton Krebs
87
Plus/Minus
Ben Jones
20
Wins
Jon Gillies
41
Save Percentage
Tyler Parsons
0.963

Team Stats
Goals For
292
3.56 GFG
Shots For
3051
37.21 Avg
Power Play Percentage
20.1%
54 GF
Offensive Zone Start
41.2%
Goals Against
280
3.41 GAA
Shots Against
2875
35.06 Avg
Penalty Kill Percentage
78.4%%
63 GA
Defensive Zone Start
38.9%
Team Info

General ManagerPaul-André Desrochers
DivisionNord
ConferenceOuest
Captain
Assistant #1
Assistant #2


Arena Info

Capacity3,000
Attendance2,875
Season Tickets300


Roster Info

Pro Team23
Farm Team22
Contract Limit45 / 50
Prospects18


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPAgeContractSalary Average
1Peyton Krebs (R)XX100.00634188806668697448716263255151050630202894,167$
2Vasily Podkolzin (R)X100.00764489787164656237627165255454050620204925,000$
3Brett SeneyXX100.00595665775671736780676259594949050610251782,500$
4Otto KoivulaXX100.00754599718458686267705563254545050610232700,000$
5Aliaksei Protas (R)X100.00674499728661646655645959254747050600203795,000$
6Oskar SteenXX100.00814490686559736031655970254646050600232809,168$
7Paul CotterXX100.00747571637574786176536463614444050600215900,000$
8Ben JonesX100.00686869666875796176526560624444050590223760,000$
9Marian StudenicX100.00714293726259666131565775254747050590222750,000$
10Ty RonningX100.00696187636161626150566261594444050570233750,833$
11Curtis Hall (R)X100.00868197708153554658424566434444050540213925,000$
12Grant MismashXX100.00746889656851524961454860464444050520222825,000$
13Vladislav Kolyachonok (R)X100.00774493777169646325454875254646050630203795,000$
14Steven KampferX100.00714392677065495725474669246364050600332750,000$
15Alexander AlexeyevX100.00808079718062664925433963374444050580213863,333$
16Jordan GrossX100.00716879666862626325615162484444050580261700,000$
17Brayden PachalX100.00707363667366714625374058384444050550221600,000$
18Matthew Robertson (R)X100.00797784637753554625373962374444050550204797,500$
Scratches
1Olle Lycksell (R)X100.00454089676361804753414444485454050500223837,000$
2Lucas CarlssonXHO7543917170606557255149642550500506002400$
3Danila Zhuravlyov (R)X100.00453983676055724325393646405050050500214600,000$
TEAM AVERAGE100.0070568570706266574453526238484805058
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPAgeContractSalary Average
1Tyler Parsons100.0043485870394149484243294441050470241650,000$
2Filip Larsson (R)100.0041495871444447464041274441050470231836,666$
Scratches
TEAM AVERAGE100.004249587142434847414228444105047
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Peyton KrebsMonsters (Col)C/LW793552875405921934010228110.29%22172121.799112055214000101254345.03%125700001.01260005141
2Brett SeneyMonsters (Col)C/LW8234518510260941253088020811.04%12143917.56622285522701151207462.42%33000021.1826000805
3Otto KoivulaMonsters (Col)C/LW822242641151574151237721779.28%14148818.164812422050001831457.85%56700010.8634010415
4Oskar SteenMonsters (Col)C/RW822833610460161164297711659.43%21143517.5058134013200021013038.66%35700000.8500000335
5Jordan GrossMonsters (Col)D82134255133209872116387711.21%125176621.548816602150003223210.00%000000.6200000112
6Aliaksei ProtasMonsters (Col)C8217375448045153202561338.42%7121014.763710201060000382251.36%135900000.8901000223
7Vladislav KolyachonokMonsters (Col)D77134154462013893174381007.47%138178723.215914671930110204210.00%000100.6000000450
8Ben JonesMonsters (Col)C82252752207351251471574312015.92%12124815.22000522000023057.85%136900000.8312010342
9Vasily PodkolzinMonsters (Col)RW62202949336012996230831728.70%20135221.8238114317710131274035.24%10500000.7215000131
10Paul CotterMonsters (Col)C/RW8216264215375139130176701419.09%12124215.154373213101131662057.11%90000000.6822001055
11Marian StudenicMonsters (Col)RW82182139910053100189431199.52%2687310.6601171500051431025.35%7100000.8900000151
12Alexander AlexeyevMonsters (Col)D8262531128220189457921497.59%117171920.97268302040112209200.00%000000.3600211302
13Grant MismashMonsters (Col)C/LW82111526-9180685611730729.40%10103412.6213414105000062150.75%6700000.5000000011
14Steven KampferMonsters (Col)D757182532201055410337726.80%103174723.30325371940002213100.00%000000.2900000111
15Brayden PachalMonsters (Col)D82220225620155264919384.08%79137816.81134768000051000.00%000000.3200000104
16Matthew RobertsonMonsters (Col)D824182286515140354911258.16%79132716.19000224000070100.00%000000.3300003002
17Ty RonningMonsters (Col)RW8211819-61002857129451268.53%36087.4200000101133046.67%3000000.6200000100
18Curtis HallMonsters (Col)C8241014-1439566719024614.44%105957.260003150001590050.00%65200000.4700100000
19Danila ZhuravlyovMonsters (Col)D13123-1003120050.00%917613.6000003000012010.00%000000.3400000001
20Olle LycksellMonsters (Col)RW22022000137460.00%01285.8200002000000018.18%1100000.3101000000
Team Total or Average1476287519806926835518701798305188721429.41%8192428216.4554991535192260246381964401751.92%707500130.661127335384541
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Jon GilliesColorado67412060.9063.1638564220321640010.67928670301
2Filip LarssonMonsters (Col)2141100.8904.11100720696270010.00%01567100
3Tyler ParsonsMonsters (Col)40000.9631.62111003820000.00%0015000
Team Total or Average92453160.9043.324975622752873002288282401


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract Type Current Salary Salary Ave RemainingSalary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10Link
Alexander AlexeyevMonsters (Col)D211999-11-15No210 Lbs6 ft4NoNoNo3Pro & Farm863,333$0$0$No863,333$863,333$Link
Aliaksei ProtasMonsters (Col)C202001-01-06Yes225 Lbs6 ft6NoNoNo3Pro & Farm795,000$0$0$No795,000$795,000$Link
Ben JonesMonsters (Col)C221999-02-25No187 Lbs6 ft0NoNoNo3Pro & Farm760,000$0$0$No760,000$760,000$Link
Brayden PachalMonsters (Col)D221999-08-23No201 Lbs6 ft0YesNoNo1Pro & Farm600,000$0$0$NoLink
Brett SeneyMonsters (Col)C/LW251996-02-27No156 Lbs5 ft9NoNoYes1Pro & Farm782,500$0$0$NoLink
Curtis HallMonsters (Col)C212000-04-26Yes216 Lbs6 ft4NoNoNo3Pro & Farm925,000$0$0$No925,000$925,000$Link
Danila ZhuravlyovMonsters (Col)D212000-04-08Yes163 Lbs6 ft0YesNoNo4Pro & Farm600,000$0$0$No600,000$600,000$600,000$Link
Filip LarssonMonsters (Col)G231998-08-17Yes181 Lbs6 ft2NoNoNo1Pro & Farm836,666$0$0$NoLink
Grant MismashMonsters (Col)C/LW221999-02-19No185 Lbs6 ft0NoNoNo2Pro & Farm825,000$0$0$No825,000$Link
Jordan Gross (1 Way Contract)Monsters (Col)D261995-05-09No190 Lbs5 ft10NoNoYes1Pro & Farm700,000$0$0$NoLink
Lucas CarlssonMonsters (Col)D241997-07-05No190 Lbs6 ft0NoNoYes0Pro & Farm0$0$NoLink
Marian StudenicMonsters (Col)RW221998-10-28No163 Lbs6 ft1NoNoNo2Pro & Farm750,000$0$0$No750,000$Link
Matthew RobertsonMonsters (Col)D202001-03-09Yes201 Lbs6 ft4NoNoNo4Pro & Farm797,500$0$0$No797,500$797,500$797,500$Link
Olle LycksellMonsters (Col)RW221999-08-24Yes176 Lbs5 ft11NoNoNo3Pro & Farm837,000$0$0$No837,000$837,000$Link
Oskar SteenMonsters (Col)C/RW231998-03-09No188 Lbs5 ft9NoNoNo2Pro & Farm809,168$0$0$No809,168$Link
Otto KoivulaMonsters (Col)C/LW231998-09-01No223 Lbs6 ft5NoNoNo2Pro & Farm700,000$0$0$No700,000$Link
Paul CotterMonsters (Col)C/RW211999-11-16No206 Lbs6 ft1YesNoNo5Pro & Farm900,000$0$0$No900,000$900,000$900,000$900,000$Link
Peyton KrebsMonsters (Col)C/LW202001-01-26Yes180 Lbs5 ft11NoNoNo2Pro & Farm894,167$0$0$No894,167$Link
Steven Kampfer (1 Way Contract)Monsters (Col)D331988-09-24No198 Lbs5 ft11NoNoYes2Pro & Farm750,000$0$0$No750,000$Link
Ty RonningMonsters (Col)RW231997-10-20No172 Lbs5 ft9NoNoNo3Pro & Farm750,833$0$0$No750,833$750,833$Link
Tyler ParsonsMonsters (Col)G241997-09-17No185 Lbs6 ft1NoNoYes1Pro & Farm650,000$0$0$NoLink
Vasily PodkolzinMonsters (Col)RW202001-06-24Yes190 Lbs6 ft1NoNoNo4Pro & Farm925,000$0$0$No925,000$925,000$925,000$Link
Vladislav KolyachonokMonsters (Col)D202001-05-26Yes194 Lbs6 ft1NoNoNo3Pro & Farm795,000$0$0$No795,000$795,000$Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2322.52190 Lbs6 ft12.39749,833$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Brett SeneyPeyton KrebsVasily Podkolzin40122
2Otto KoivulaBen JonesOskar Steen30122
3Grant MismashAliaksei ProtasPaul Cotter20122
4Grant MismashCurtis HallTy Ronning10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Vladislav KolyachonokSteven Kampfer40122
2Jordan GrossAlexander Alexeyev30122
3Brayden PachalMatthew Robertson20122
4Vladislav KolyachonokSteven Kampfer10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Brett SeneyPeyton KrebsVasily Podkolzin60122
2Grant MismashOtto KoivulaPaul Cotter40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Vladislav KolyachonokSteven Kampfer60122
2Jordan GrossAlexander Alexeyev40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Peyton KrebsVasily Podkolzin60122
2Brett SeneyOtto Koivula40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Vladislav KolyachonokSteven Kampfer60122
2Jordan GrossAlexander Alexeyev40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Peyton Krebs60122Vladislav KolyachonokSteven Kampfer60122
2Vasily Podkolzin40122Jordan GrossAlexander Alexeyev40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Peyton KrebsVasily Podkolzin60122
2Brett SeneyOtto Koivula40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Vladislav KolyachonokSteven Kampfer60122
2Jordan GrossAlexander Alexeyev40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Brett SeneyPeyton KrebsVasily PodkolzinVladislav KolyachonokSteven Kampfer
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Brett SeneyPeyton KrebsVasily PodkolzinVladislav KolyachonokSteven Kampfer
Extra Forwards
Normal PowerPlayPenalty Kill
Ben Jones, Curtis Hall, Oskar SteenBen Jones, Curtis HallOskar Steen
Extra Defensemen
Normal PowerPlayPenalty Kill
Brayden Pachal, Matthew Robertson, Jordan GrossBrayden PachalMatthew Robertson, Jordan Gross
Penalty Shots
Peyton Krebs, Vasily Podkolzin, Brett Seney, Otto Koivula, Paul Cotter
Goalie
#1 : Filip Larsson, #2 : Tyler Parsons


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals3200100015871000100043122000000115661.00015294400107839117859789681062709427166013323.08%8362.50%01518291552.08%1422275551.62%733140552.17%2028140418766011074541
2Baby Hawks30300000716-920200000510-51010000026-400.0007132000107839117759789681062701354126548112.50%12466.67%01518291552.08%1422275551.62%733140552.17%2028140418766011074541
3Bears21000010853100000103211100000053241.000812200010783911793978968106270751510517114.29%5180.00%01518291552.08%1422275551.62%733140552.17%2028140418766011074541
4Bruins21000100972110000004131000010056-130.750918270010783911756978968106270792029453266.67%12283.33%01518291552.08%1422275551.62%733140552.17%2028140418766011074541
5Cabaret Lady Mary Ann220000001239110000005141100000072541.00012213300107839117119978968106270691965511100.00%30100.00%01518291552.08%1422275551.62%733140552.17%2028140418766011074541
6Caroline22000000844110000005321100000031241.000816240010783911786978968106270532112468112.50%5180.00%01518291552.08%1422275551.62%733140552.17%2028140418766011074541
7Chiefs4110101015132210010009542010001068-260.7501526410010783911712697896810627013744317521419.05%100100.00%01518291552.08%1422275551.62%733140552.17%2028140418766011074541
8Chill4310000016115220000009542110000076160.75016294500107839117152978968106270139334410412216.67%17382.35%01518291552.08%1422275551.62%733140552.17%2028140418766011074541
9Comets30300000717-101010000023-120200000514-900.0007132000107839117999789681062701213131729333.33%12375.00%01518291552.08%1422275551.62%733140552.17%2028140418766011074541
10Cougars20200000411-71010000025-31010000026-400.00047110010783911771978968106270813412395120.00%6350.00%01518291552.08%1422275551.62%733140552.17%2028140418766011074541
11Crunch22000000963110000005321100000043141.0009152400107839117979789681062706217204710330.00%9277.78%01518291552.08%1422275551.62%733140552.17%2028140418766011074541
12Heat3300000016881100000065122000000103761.000162743001078391171479789681062701542920699444.44%9455.56%01518291552.08%1422275551.62%733140552.17%2028140418766011074541
13Jayhawks413000001215-320200000611-52110000064220.250122133111078391171819789681062701584040838112.50%17382.35%01518291552.08%1422275551.62%733140552.17%2028140418766011074541
14Las Vegas321000001284211000007701100000051440.667122234001078391171019789681062708731147210110.00%7357.14%01518291552.08%1422275551.62%733140552.17%2028140418766011074541
15Manchots22000000844110000004131100000043141.0008162400107839117779789681062705718184310110.00%80100.00%01518291552.08%1422275551.62%733140552.17%2028140418766011074541
16Marlies21100000752110000006241010000013-220.500710170010783911766978968106270691314478225.00%7185.71%01518291552.08%1422275551.62%733140552.17%2028140418766011074541
17Minnesota312000001112-11010000034-12110000088020.333111627001078391171059789681062701032826726116.67%13376.92%01518291552.08%1422275551.62%733140552.17%2028140418766011074541
18Monarchs320010001376210010009451100000043161.000132437001078391171559789681062707925178415746.67%50100.00%01518291552.08%1422275551.62%733140552.17%2028140418766011074541
19Monsters210000016511000000123-11100000042230.750612180010783911765978968106270662414616116.67%7271.43%01518291552.08%1422275551.62%733140552.17%2028140418766011074541
20Oceanics413000001317-420200000510-52110000087120.250132538101078391171489789681062701183832841915.26%15380.00%01518291552.08%1422275551.62%733140552.17%2028140418766011074541
21Oil Kings30201000810-22020000058-31000100032120.3338152300107839117112978968106270892133596116.67%13376.92%01518291552.08%1422275551.62%733140552.17%2028140418766011074541
22Phantoms220000001147110000006241100000052341.00011203100107839117829789681062705012143412325.00%6183.33%01518291552.08%1422275551.62%733140552.17%2028140418766011074541
23Rocket20001010972100010004311000001054141.00091524001078391177897896810627069171943800.00%6183.33%01518291552.08%1422275551.62%733140552.17%2028140418766011074541
24Seattle30100002813-52010000137-41000000156-120.3338152300107839117899789681062701043332608337.50%16381.25%01518291552.08%1422275551.62%733140552.17%2028140418766011074541
25Senators2010001089-1100000104311010000046-220.500813210010783911785978968106270721614438225.00%6183.33%01518291552.08%1422275551.62%733140552.17%2028140418766011074541
26Sharks30200010714-71000001043120200000311-820.333712190010783911795978968106270122414793800.00%18572.22%01518291552.08%1422275551.62%733140552.17%2028140418766011074541
27Sound Tigers2010010047-31000010034-11010000013-210.2504711001078391176997896810627091241648400.00%7185.71%01518291552.08%1422275551.62%733140552.17%2028140418766011074541
28Spiders21000100871110000005321000010034-130.750813210010783911784978968106270662423436233.33%9188.89%11518291552.08%1422275551.62%733140552.17%2028140418766011074541
29Stars41300000816-82020000028-62110000068-220.250814220010783911712297896810627014939241079111.11%11463.64%01518291552.08%1422275551.62%733140552.17%2028140418766011074541
30Thunder2110000078-11010000036-31100000042220.50071219001078391175797896810627070171436500.00%6266.67%01518291552.08%1422275551.62%733140552.17%2028140418766011074541
31Wolf Pack21001000633100010004311100000020241.000611170110783911774978968106270572721416116.67%60100.00%11518291552.08%1422275551.62%733140552.17%2028140418766011074541
Total8234310635329228012411416051321441386412015012211481426960.585292519811221078391173051978968106270287581968918702685420.15%2916378.35%21518291552.08%1422275551.62%733140552.17%2028140418766011074541
_Since Last GM Reset8234310635329228012411416051321441386412015012211481426960.585292519811221078391173051978968106270287581968918702685420.15%2916378.35%21518291552.08%1422275551.62%733140552.17%2028140418766011074541
_Vs Conference43152103022146159-1322613020016983-1421980102177761420.48814625640211107839117160897896810627015714453469531262620.63%1493775.17%01518291552.08%1422275551.62%733140552.17%2028140418766011074541
_Vs Division26360101082100-181313010003953-141323000104347-4100.1928214422621107839117909978968106270939263223579831113.25%952078.95%01518291552.08%1422275551.62%733140552.17%2028140418766011074541

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
8296L229251981130512875819689187022
All Games
GPWLOTWOTL SOWSOLGFGA
8234316353292280
Home Games
GPWLOTWOTL SOWSOLGFGA
4114165132144138
Visitor Games
GPWLOTWOTL SOWSOLGFGA
4120151221148142
Last 10 Games
WLOTWOTL SOWSOL
370000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
2685420.15%2916378.35%2
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
978968106270107839117
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
1518291552.08%1422275551.62%733140552.17%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
2028140418766011074541


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
6 - 2022-10-128Baby Hawks6Monsters2BLBoxScore
7 - 2022-10-1318Monsters7Heat2AWBoxScore
11 - 2022-10-1745Monsters5Minnesota4AWBoxScore
13 - 2022-10-1957Oceanics6Monsters3BLBoxScore
15 - 2022-10-2173Seattle3Monsters0BLBoxScore
16 - 2022-10-2285Monsters5Las Vegas1AWBoxScore
19 - 2022-10-2599Monsters2Wolf Pack0AWBoxScore
22 - 2022-10-28123Monsters3Spiders4ALXBoxScore
23 - 2022-10-29135Monsters1Sound Tigers3ALBoxScore
29 - 2022-11-04174Monsters3Monsters2BLXXBoxScore
30 - 2022-11-05176Monsters4Monsters2AWBoxScore
35 - 2022-11-10219Chill3Monsters4BWBoxScore
37 - 2022-11-12233Caroline3Monsters5BWBoxScore
39 - 2022-11-14247Chiefs2Monsters5BWBoxScore
42 - 2022-11-17261Monsters3Caroline1AWBoxScore
44 - 2022-11-19279Monsters5Bears3AWBoxScore
46 - 2022-11-21298Monsters1Stars4ALBoxScore
48 - 2022-11-23317Comets3Monsters2BLBoxScore
50 - 2022-11-25319Monsters4Chill2AWBoxScore
51 - 2022-11-26339Stars4Monsters2BLBoxScore
54 - 2022-11-29357Monsters5Oceanics3AWBoxScore
56 - 2022-12-01365Monsters4Crunch3AWBoxScore
58 - 2022-12-03381Monsters5Bruins6ALXBoxScore
60 - 2022-12-05397Monsters5Phantoms2AWBoxScore
62 - 2022-12-07415Bruins1Monsters4BWBoxScore
64 - 2022-12-09430Wolf Pack3Monsters4BWXBoxScore
66 - 2022-12-11442Monsters2Chiefs5ALBoxScore
68 - 2022-12-13464Phantoms2Monsters6BWBoxScore
70 - 2022-12-15479Crunch3Monsters5BWBoxScore
72 - 2022-12-17493Chill2Monsters5BWBoxScore
74 - 2022-12-19506Sound Tigers4Monsters3BLXBoxScore
76 - 2022-12-21520Rocket3Monsters4BWXBoxScore
78 - 2022-12-23539Monsters3Chill4ALBoxScore
82 - 2022-12-27554Monsters4Jayhawks0AWBoxScore
84 - 2022-12-29571Monarchs1Monsters5BWBoxScore
86 - 2022-12-31582Marlies2Monsters6BWBoxScore
88 - 2023-01-02596Las Vegas2Monsters5BWBoxScore
91 - 2023-01-05619Monsters2Comets8ALBoxScore
93 - 2023-01-07635Monsters3Oil Kings2AWXBoxScore
96 - 2023-01-10656Cabaret Lady Mary Ann1Monsters5BWBoxScore
98 - 2023-01-12671Monsters2Baby Hawks6ALBoxScore
100 - 2023-01-14678Senators3Monsters4BWXXBoxScore
102 - 2023-01-16696Cougars5Monsters2BLBoxScore
104 - 2023-01-18715Monsters3Heat1AWBoxScore
106 - 2023-01-20731Monsters3Comets6ALBoxScore
107 - 2023-01-21743Monsters5Seattle6ALXXBoxScore
110 - 2023-01-24764Bears2Monsters3BWXXBoxScore
112 - 2023-01-26776Admirals3Monsters4BWXBoxScore
114 - 2023-01-28788Chiefs3Monsters4BWXBoxScore
124 - 2023-02-07813Monsters4Manchots3AWBoxScore
126 - 2023-02-09821Monsters4Thunder2AWBoxScore
128 - 2023-02-11839Monsters7Cabaret Lady Mary Ann2AWBoxScore
131 - 2023-02-14862Thunder6Monsters3BLBoxScore
132 - 2023-02-15867Monsters3Minnesota4ALBoxScore
135 - 2023-02-18883Monsters4Chiefs3AWXXBoxScore
136 - 2023-02-19898Oil Kings4Monsters2BLBoxScore
141 - 2023-02-24935Monsters3Oceanics4ALBoxScore
142 - 2023-02-25945Heat5Monsters6BWBoxScore
144 - 2023-02-27956Las Vegas5Monsters2BLBoxScore
146 - 2023-03-01971Spiders3Monsters5BWBoxScore
Trade Deadline --- Trades can’t be done after this day is simulated!
149 - 2023-03-04997Monsters5Stars4AWBoxScore
150 - 2023-03-051005Seattle4Monsters3BLXXBoxScore
152 - 2023-03-071019Sharks3Monsters4BWXXBoxScore
154 - 2023-03-091033Monarchs3Monsters4BWXBoxScore
156 - 2023-03-111041Jayhawks5Monsters3BLBoxScore
158 - 2023-03-131062Monsters5Rocket4AWXXBoxScore
160 - 2023-03-151077Monsters1Marlies3ALBoxScore
161 - 2023-03-161080Monsters4Senators6ALBoxScore
163 - 2023-03-181095Monsters2Cougars6ALBoxScore
165 - 2023-03-201117Baby Hawks4Monsters3BLBoxScore
167 - 2023-03-221133Manchots1Monsters4BWBoxScore
169 - 2023-03-241149Jayhawks6Monsters3BLBoxScore
171 - 2023-03-261165Monsters2Jayhawks4ALBoxScore
172 - 2023-03-271174Monsters7Admirals2AWBoxScore
174 - 2023-03-291188Minnesota4Monsters3BLBoxScore
177 - 2023-04-011212Stars4Monsters0BLBoxScore
180 - 2023-04-041239Monsters1Sharks5ALBoxScore
182 - 2023-04-061256Monsters2Sharks6ALBoxScore
184 - 2023-04-081272Monsters4Monarchs3AWBoxScore
185 - 2023-04-091274Monsters4Admirals3AWBoxScore
187 - 2023-04-111292Oil Kings4Monsters3BLBoxScore
189 - 2023-04-131309Oceanics4Monsters2BLBoxScore



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Capacity20001000
Ticket Price3515
Attendance78,77139,113
Attendance PCT96.06%95.40%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueCapacityTeam Popularity
0 2875 - 95.84% 81,553$3,343,680$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
1,560,492$ 1,579,617$ 1,579,617$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
8,314$ 1,560,492$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 0 8,314$ 0$




Monsters Stat Leaders (Regular Season)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Monsters Goalies Stat Leaders (Regular Season)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA

Monsters Career Team Stats

OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT

Monsters Stat Leaders (Play-Off)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Monsters Goalies Stat Leaders (Play-Off)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA