Version obsolète du STHS! Veuillez mettre à jour votre version!
Connexion

Sharks
GP: 82 | W: 50 | L: 23 | OTL: 9 | P: 109
GF: 330 | GA: 292 | PP%: 19.78% | PK%: 75.69%
DG: Marc-Andre Bois | Morale : 50 | Moyenne d’équipe : 56
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Centre de jeu
Sharks
50-23-9, 109pts
4
FINAL
3 Heat
35-40-7, 77pts
Team Stats
W3StreakL1
28-9-4Home Record19-17-5
22-14-5Away Record16-23-2
8-2-0Last 10 Games5-4-1
4.02Buts par match 3.50
3.56Buts contre par match 3.76
19.78%Pourcentage en avantage numérique23.53%
75.69%Pourcentage en désavantage numérique78.33%
Sharks
50-23-9, 109pts
5
FINAL
2 Oil Kings
46-24-12, 104pts
Team Stats
W3StreakL1
28-9-4Home Record23-12-6
22-14-5Away Record23-12-6
8-2-0Last 10 Games7-3-0
4.02Buts par match 3.56
3.56Buts contre par match 3.02
19.78%Pourcentage en avantage numérique20.47%
75.69%Pourcentage en désavantage numérique87.25%
Meneurs d'équipe
Buts
Samuel Fagemo
60
Passes
Nolan Patrick
80
Points
Nolan Patrick
130
Plus/Moins
Nolan Patrick
30
Victoires
Pheonix Copley
47
Pourcentage d’arrêts
Malcolm Subban
0.936

Statistiques d’équipe
Buts pour
330
4.02 GFG
Tirs pour
3694
45.05 Avg
Pourcentage en avantage numérique
19.8%
54 GF
Début de zone offensive
42.4%
Buts contre
292
3.56 GAA
Tirs contre
3164
38.59 Avg
Pourcentage en désavantage numérique
75.7%%
44 GA
Début de la zone défensive
39.2%
Informations de l'équipe

Directeur généralMarc-Andre Bois
DivisionAtlantique
ConférenceEst
Capitaine
Assistant #1
Assistant #2


Informations de l’aréna

Capacité3,000
Assistance1,897
Billets de saison300


Informations de la formation

Équipe Pro22
Équipe Mineure21
Limite contact 43 / 50
Espoirs18


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPÂgeContratSalaire moyen
1Cooper MarodyXX100.00696772666771726880666663634444050620241750,000$
2Nolan PatrickXX100.00754491797359647272655864255454050620231750,000$
3Matthew PhillipsXX100.00645391635365656880646960664444050600231600,000$
4Samuel Fagemo (R)XX100.00736982706972756250546763644444050600212795,000$
5Tyler BensonX100.00814482677052676225535660254747050570231792,500$
6Michal Teply (R)XX100.00797196637159595950565865554444050570202825,833$
7Alex Turcotte (R)X100.00754391746759615652505563254444050560202925,000$
8Austin WagnerXX100.00636949626964675750476061575959050560241722,000$
9Otto SomppiX100.00777190677159605569594763454444050560231600,000$
10Josh WilkinsX100.00797398636662595268455167474444050550242925,002$
11Jordy BelleriveX100.00666958636965685468564858464444050550223733,333$
12Cam DineenX100.006742956666686461255547782547470506202311,060,000$
13Reilly WalshX100.00756892676873785625524663444444050600222700,000$
14Wyatt KalynukX100.00696871726866695525494660444646050580243925,000$
15Helge Grans (R)X100.00827795607752525325464665444444050570194847,500$
16Anttoni Honka (R)X100.00453999686570954925513846405858050550204700,000$
17Brennan MenellX100.00676475706446464925434057384444050530241825,000$
Rayé
1Demetrios Koumontzis (R)X100.00474480646445583649323342365050050440213650,000$
2Henry Thrun (R)X100.00494599657158754525483447365454050530204650,000$
3Marshall Warren (R)X100.00423499665956773825373241345454050490204560,000$
4John St-Ivany (R)X100.00464188636442543225312743295454050460223650,000$
MOYENNE D’ÉQUIPE100.0066578567676066544550495942484805056
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPÂgeContratSalaire moyen
1Pheonix Copley100.0058475982616061656363304646050600291777,777$
Rayé
MOYENNE D’ÉQUIPE100.005847598261606165636330464605060
Nom de l’entraîneur PH DF OF PD EX LD PO CNT Âge Contrat Salaire


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du joueur Nom de l’équipePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Nolan PatrickSharks (San)C/RW805080130303951433635431484009.21%50187323.41312157123001141409355.20%213600001.39280019136
2Samuel FagemoSharks (San)LW/RW80605911929511517120757217442410.49%52171721.46510159824801105511443.18%17600141.39170121452
3Cam DineenSharks (San)D802176973280177152240761858.75%188182722.84814221152571121143320.00%000001.0600000279
4Matthew PhillipsSharks (San)C/RW80276188-7120402533781272817.14%33153519.1971421622021123442257.84%211600001.1516000332
5Michal TeplySharks (San)LW/RW80393574-950201331273468327511.27%34146018.2510112161198000075342.11%11400021.0113004377
6Alex TurcotteSharks (San)C80284472-12220134163349842218.02%31155719.478111963198000004342.54%26800000.9200000344
7Otto SomppiSharks (San)C801545608221067233219621606.85%46125615.71022725000023356.88%151200000.9500020233
8Tyler BensonSharks (San)LW803029597380113161335852268.96%43131816.4823513420003336336.69%13900010.9000000431
9Reilly WalshSharks (San)D8011415256552148313143938.40%131147818.4851318631940000102100.00%100000.7000001207
10Jordy BelleriveSharks (San)C8015375213275104136212721497.08%31131316.42011040112721056.86%15300000.7901000232
11Anttoni HonkaSharks (San)D804172115120203538193510.53%57146818.36369241860000107100.00%000000.2900000000
12Noah CatesSan JoseLW11137201220242690114214.44%826123.771015232026310139.05%10500121.5302000220
13Riley StillmanSan JoseD5044-110016412570.00%1011422.810001018000013000.00%000000.7000000000
14Henry ThrunSharks (San)D1313412020441125.00%815511.941011100005000.00%000000.5200000000
15Marshall WarrenSharks (San)D13011-300731020.00%614711.3100001011014000.00%000000.1400000000
16John St-IvanySharks (San)D13000-220802030.00%10886.790000000002000.00%000000.00%00000000
17Helge GransSharks (San)D4000-52410826120.00%96917.4900038000012000.00%000000.00%00011000
Statistiques d’équipe totales ou en moyenne939314539853844067013991952347899125069.03%7471764218.7953971505961841461019789462454.76%672000290.97527049465043
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du gardien Nom de l’équipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Pheonix CopleySharks (San)74471850.9093.3543234124126500210.786287476332
2Malcolm SubbanSan Jose21100.9362.50120005780000.00%020001
Statistiques d’équipe totales ou en moyenne76481950.9103.324443412462728021287676333


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du joueur Nom de l’équipePOS Âge Date de naissance Nouveau joueur Poids Taille Non-échange Disponible pour échange Ballotage forcé Contrat Type Salaire actuel Salaire moyen restantPlafond salarial Plafond salarial restant Exclus du plafond salarial Salaire annuel 2Salaire annuel 3Salaire annuel 4Salaire annuel 5Salaire annuel 6Salaire annuel 7Salaire annuel 8Salaire annuel 9Salaire annuel 10Link
Alex TurcotteSharks (San)C202001-02-25Yes185 Lbs5 ft11NoNoNo2Pro & Farm925,000$0$0$No925,000$Lien
Anttoni HonkaSharks (San)D202000-10-05Yes189 Lbs5 ft10NoNoNo4Pro & Farm700,000$0$0$No700,000$700,000$700,000$Lien
Austin WagnerSharks (San)LW/RW241997-06-23No185 Lbs6 ft1NoNoYes1Pro & Farm722,000$0$0$NoLien
Brennan MenellSharks (San)D241997-05-24No177 Lbs5 ft11NoNoYes1Pro & Farm825,000$0$0$NoLien
Cam DineenSharks (San)D231998-06-18No183 Lbs5 ft11NoNoNo1Pro & Farm1,060,000$0$0$NoLien
Cooper MarodySharks (San)C/RW241996-12-20No184 Lbs6 ft0NoNoYes1Pro & Farm750,000$0$0$NoLien
Demetrios KoumontzisSharks (San)LW212000-03-24Yes183 Lbs5 ft10NoNoNo3Pro & Farm650,000$0$0$No650,000$650,000$Lien
Helge GransSharks (San)D192002-05-10Yes205 Lbs6 ft3NoNoNo4Pro & Farm847,500$0$0$No847,500$847,500$847,500$Lien
Henry ThrunSharks (San)D202001-03-12Yes190 Lbs6 ft2NoNoNo4Pro & Farm650,000$0$0$No650,000$650,000$650,000$Lien
John St-IvanySharks (San)D221999-07-22Yes170 Lbs6 ft1NoNoNo3Pro & Farm650,000$0$0$No650,000$650,000$Lien
Jordy BelleriveSharks (San)C221999-05-02No195 Lbs5 ft10NoNoNo3Pro & Farm733,333$0$0$No733,333$733,333$Lien
Josh WilkinsSharks (San)C241997-06-11No181 Lbs5 ft11NoNoYes2Pro & Farm925,002$0$0$No925,002$Lien
Marshall WarrenSharks (San)D202001-04-20Yes163 Lbs5 ft11NoNoNo4Pro & Farm560,000$0$0$No560,000$560,000$560,000$Lien
Matthew PhillipsSharks (San)C/RW231998-04-06No150 Lbs5 ft7NoNoNo1Pro & Farm600,000$0$0$NoLien
Michal TeplySharks (San)LW/RW202001-05-27Yes187 Lbs6 ft3NoNoNo2Pro & Farm825,833$0$0$No825,833$Lien
Nolan PatrickSharks (San)C/RW231998-09-19No198 Lbs6 ft2NoNoNo1Pro & Farm750,000$0$0$NoLien
Otto SomppiSharks (San)C231998-01-12No190 Lbs6 ft1NoNoNo1Pro & Farm600,000$0$0$NoLien
Pheonix Copley (contrat à 1 volet)Sharks (San)G291992-01-18No198 Lbs6 ft4NoNoYes1Pro & Farm777,777$0$0$NoLien
Reilly WalshSharks (San)D221999-04-21No185 Lbs6 ft0NoNoNo2Pro & Farm700,000$0$0$No700,000$Lien
Samuel FagemoSharks (San)LW/RW212000-03-14Yes190 Lbs5 ft11NoNoNo2Pro & Farm795,000$0$0$No795,000$Lien
Tyler BensonSharks (San)LW231998-03-15No192 Lbs6 ft0NoNoNo1Pro & Farm792,500$0$0$NoLien
Wyatt KalynukSharks (San)D241997-04-14No180 Lbs6 ft1NoNoYes3Pro & Farm925,000$0$0$No925,000$925,000$Lien
Nombre de joueursÂge moyenPoids moyenTaille moyenneContrat moyenSalaire moyen 1e année
2222.32185 Lbs6 ft02.14761,998$



Attaque à 5 contre 5
Ligne #Ailier gaucheCentreAilier droit% tempsPHYDFOF
1Nolan PatrickSamuel Fagemo40122
2Michal TeplyMatthew PhillipsAlex Turcotte30122
3Tyler BensonOtto SomppiJordy Bellerive20122
4Alex TurcotteNolan Patrick10122
Défense à 5 contre 5
Ligne #DéfenseDéfense% tempsPHYDFOF
1Cam Dineen40122
2Reilly WalshAnttoni Honka30122
320122
410122
Attaque en avantage numérique
Ligne #Ailier gaucheCentreAilier droit% tempsPHYDFOF
1Nolan PatrickSamuel Fagemo60122
2Michal TeplyMatthew PhillipsAlex Turcotte40122
Défense en avantage numérique
Ligne #DéfenseDéfense% tempsPHYDFOF
1Cam Dineen60122
2Reilly WalshAnttoni Honka40122
Attaque à 4 en désavantage numérique
Ligne #CentreAilier% tempsPHYDFOF
1Nolan Patrick60122
2Samuel FagemoMatthew Phillips40122
Défense à 4 en désavantage numérique
Ligne #DéfenseDéfense% tempsPHYDFOF
1Cam Dineen60122
2Reilly WalshAnttoni Honka40122
3 joueurs en désavantage numérique
Ligne #Ailier% tempsPHYDFOFDéfenseDéfense% tempsPHYDFOF
160122Cam Dineen60122
2Nolan Patrick40122Reilly WalshAnttoni Honka40122
Attaque à 4 contre 4
Ligne #CentreAilier% tempsPHYDFOF
1Nolan Patrick60122
2Samuel FagemoMatthew Phillips40122
Défense à 4 contre 4
Ligne #DéfenseDéfense% tempsPHYDFOF
1Cam Dineen60122
2Reilly WalshAnttoni Honka40122
Attaque dernière minute
Ailier gaucheCentreAilier droitDéfenseDéfense
Nolan PatrickSamuel FagemoCam Dineen
Défense dernière minute
Ailier gaucheCentreAilier droitDéfenseDéfense
Nolan PatrickSamuel FagemoCam Dineen
Attaquants supplémentaires
Normal Avantage numériqueDésavantage numérique
Tyler Benson, Otto Somppi, Jordy BelleriveTyler Benson, Otto SomppiJordy Bellerive
Défenseurs supplémentaires
Normal Avantage numériqueDésavantage numérique
, , ,
Tirs de pénalité
, Nolan Patrick, Samuel Fagemo, Matthew Phillips, Michal Teply
Gardien
#1 : , #2 : Pheonix Copley


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
TotalDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals43100000201642110000089-122000000127560.750203656001331048871511161126412297314638368312325.00%13192.31%11719318853.92%1492294750.63%732138552.85%2009142819245911038516
2Baby Hawks311001001112-1210001008711010000035-230.50011172800133104887117116112641229731083636531317.69%7271.43%01719318853.92%1492294750.63%732138552.85%2009142819245911038516
3Bears220000001147110000006331100000051441.0001118290013310488790116112641229736924123314321.43%50100.00%11719318853.92%1492294750.63%732138552.85%2009142819245911038516
4Bruins2110000078-1110000005321010000025-320.50071219001331048871091161126412297369168418225.00%3166.67%01719318853.92%1492294750.63%732138552.85%2009142819245911038516
5Cabaret Lady Mary Ann220000001468110000008351100000063341.00014223600133104887163116112641229737615663400.00%3166.67%21719318853.92%1492294750.63%732138552.85%2009142819245911038516
6Caroline210010001192100010007611100000043141.0001122330013310488712211611264122973802712522150.00%5180.00%01719318853.92%1492294750.63%732138552.85%2009142819245911038516
7Chiefs310000111293100000103212100000197250.83312193100133104887120116112641229731023016651417.14%8275.00%01719318853.92%1492294750.63%732138552.85%2009142819245911038516
8Chill301002001519-4201001001013-31000010056-120.33315264110133104887192116112641229731876110757228.57%5260.00%01719318853.92%1492294750.63%732138552.85%2009142819245911038516
9Comets4120000114140211000007522010000179-230.375142842001331048871881161126412297314653228817211.76%11190.91%01719318853.92%1492294750.63%732138552.85%2009142819245911038516
10Cougars211000006601010000023-11100000043120.50061016001331048879411611264122973852892910330.00%2150.00%01719318853.92%1492294750.63%732138552.85%2009142819245911038516
11Crunch22000000844110000005411100000030341.00081422011331048871071161126412297364268444125.00%40100.00%01719318853.92%1492294750.63%732138552.85%2009142819245911038516
12Heat4220000015150211000008802110000077040.500152742001331048872001161126412297313950159612216.67%5260.00%01719318853.92%1492294750.63%732138552.85%2009142819245911038516
13Jayhawks32000010171341000001065122000000118361.000172744001331048871451161126412297312418184510220.00%8275.00%01719318853.92%1492294750.63%732138552.85%2009142819245911038516
14Las Vegas42100010191632100001011832110000088060.750193352001331048871741161126412297316947176215426.67%6183.33%01719318853.92%1492294750.63%732138552.85%2009142819245911038516
15Manchots21000001770110000004311000000134-130.750712190013310488780116112641229736413239700.00%10100.00%01719318853.92%1492294750.63%732138552.85%2009142819245911038516
16Marlies210000019811000000145-11100000053230.7509182700133104887741161126412297391284535120.00%2150.00%01719318853.92%1492294750.63%732138552.85%2009142819245911038516
17Minnesota32000100862210001005411100000032150.83381321001331048871371161126412297399238686233.33%30100.00%01719318853.92%1492294750.63%732138552.85%2009142819245911038516
18Monarchs330000001156110000004222200000073461.000112132001331048871661161126412297310237126510220.00%60100.00%01719318853.92%1492294750.63%732138552.85%2009142819245911038516
19Monsters21100000810-2110000006421010000026-420.50081624001331048877211611264122973681814438225.00%6266.67%01719318853.92%1492294750.63%732138552.85%2009142819245911038516
20Monsters3200000114772200000011381000000134-150.83314264000133104887122116112641229739537275018527.78%80100.00%01719318853.92%1492294750.63%732138552.85%2009142819245911038516
21Oceanics33000000171071100000043122000000137661.00017284500133104887124116112641229731123916739333.33%8275.00%01719318853.92%1492294750.63%732138552.85%2009142819245911038516
22Oil Kings431000001385211000005502200000083560.750132437101331048871991161126412297313236126814214.29%5180.00%01719318853.92%1492294750.63%732138552.85%2009142819245911038516
23Phantoms211000001082110000008531010000023-120.50010172700133104887771161126412297375171233400.00%6350.00%01719318853.92%1492294750.63%732138552.85%2009142819245911038516
24Rocket211000007611010000023-11100000053220.50071219001331048878011611264122973952120474250.00%5260.00%01719318853.92%1492294750.63%732138552.85%2009142819245911038516
25Seattle30201000615-92010100049-51010000026-420.333611170013310488710611611264122973136251668900.00%8450.00%01719318853.92%1492294750.63%732138552.85%2009142819245911038516
26Senators20200000410-61010000014-31010000036-300.000471100133104887701161126412297377214504125.00%20100.00%01719318853.92%1492294750.63%732138552.85%2009142819245911038516
27Sound Tigers21100000910-1110000004311010000057-220.500916250013310488787116112641229738831225010330.00%10460.00%01719318853.92%1492294750.63%732138552.85%2009142819245911038516
28Spiders22000000835110000004131100000042241.00081321001331048878511611264122973822215479222.22%5180.00%01719318853.92%1492294750.63%732138552.85%2009142819245911038516
29Stars31200000511-6110000003212020000029-720.3335914001331048879411611264122973121281860500.00%8275.00%01719318853.92%1492294750.63%732138552.85%2009142819245911038516
30Thunder2110000067-1110000003211010000035-220.500611170013310488774116112641229738729143911100.00%7357.14%01719318853.92%1492294750.63%732138552.85%2009142819245911038516
31Wolf Pack21100000810-2110000007341010000017-620.50081523001331048877511611264122973763227378112.50%6266.67%01719318853.92%1492294750.63%732138552.85%2009142819245911038516
Total82452302435330292384123902331173140334122140010415715251090.66533058091021133104887369411611264122973316492646817192735419.78%1814475.69%41719318853.92%1492294750.63%732138552.85%2009142819245911038516
_Since Last GM Reset82452302435330292384123902331173140334122140010415715251090.66533058091021133104887369411611264122973316492646817192735419.78%1814475.69%41719318853.92%1492294750.63%732138552.85%2009142819245911038516
_Vs Conference3521100020215013515171230010178631518970010172720460.6571502664161013310488715261161126412297313934262087611162622.41%852274.12%21719318853.92%1492294750.63%732138552.85%2009142819245911038516
_Vs Division1682002016155683100101302738510010031283190.59461106167011331048877711161126412297364418473366401127.50%28967.86%21719318853.92%1492294750.63%732138552.85%2009142819245911038516

Total pour les joueurs
Matchs jouésPointsSéquenceButsPassesPointsTirs pourTirs contreTirs bloquésMinutes de pénalitésMises en échecButs en filet désertBlanchissages
82109W333058091036943164926468171921
Tous les matchs
GPWLOTWOTL SOWSOLGFGA
8245232435330292
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
412392331173140
Matchs extérieurs
GPWLOTWOTL SOWSOLGFGA
4122140104157152
Derniers 10 matchs
WLOTWOTL SOWSOL
820000
Tentatives en avantage numériqueButs en avantage numérique% en avantage numériqueTentatives en désavantage numériqueButs contre en désavantage numérique% en désavantage numériqueButs pour en désavantage numérique
2735419.78%1814475.69%4
Tirs en 1e périodeTirs en 2e périodeTirs en 3e périodeTirs en 4e périodeButs en 1e périodeButs en 2e périodeButs en 3e périodeButs en 4e période
11611264122973133104887
Mises en jeu
Gagnées en zone offensiveTotal en zone offensive% gagnées en zone offensive Gagnées en zone défensiveTotal en zone défensive% gagnées en zone défensiveGagnées en zone neutreTotal en zone neutre% gagnées en zone neutre
1719318853.92%1492294750.63%732138552.85%
Temps avec la rondelle
En zone offensiveContrôle en zone offensiveEn zone défensiveContrôle en zone défensiveEn zone neutreContrôle en zone neutre
2009142819245911038516


Derniers matchs joués
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe visiteuse Score Équipe locale Score ST OT SO RI Lien
4 - 2022-10-101Sharks5Chill6ALXSommaire du match
5 - 2022-10-112Chill5Sharks4BLXSommaire du match
8 - 2022-10-1424Caroline6Sharks7BWXSommaire du match
9 - 2022-10-1538Baby Hawks3Sharks2BLXSommaire du match
12 - 2022-10-1851Sharks5Sound Tigers7ALSommaire du match
14 - 2022-10-2064Sharks1Wolf Pack7ALSommaire du match
16 - 2022-10-2275Sharks4Spiders2AWSommaire du match
17 - 2022-10-2391Sharks2Phantoms3ALSommaire du match
19 - 2022-10-25107Las Vegas4Sharks5BWXXSommaire du match
21 - 2022-10-27119Marlies5Sharks4BLXXSommaire du match
23 - 2022-10-29128Thunder2Sharks3BWSommaire du match
26 - 2022-11-01158Admirals5Sharks3BLSommaire du match
28 - 2022-11-03173Cabaret Lady Mary Ann3Sharks8BWSommaire du match
30 - 2022-11-05188Admirals4Sharks5BWSommaire du match
35 - 2022-11-10218Sharks5Chiefs2AWSommaire du match
36 - 2022-11-11223Sharks1Stars4ALSommaire du match
38 - 2022-11-13239Sharks3Minnesota2AWSommaire du match
40 - 2022-11-15256Sharks4Las Vegas2AWSommaire du match
42 - 2022-11-17272Cougars3Sharks2BLSommaire du match
44 - 2022-11-19288Wolf Pack3Sharks7BWSommaire du match
46 - 2022-11-21299Senators4Sharks1BLSommaire du match
48 - 2022-11-23316Sharks2Seattle6ALSommaire du match
50 - 2022-11-25331Monarchs2Sharks4BWSommaire du match
52 - 2022-11-27344Comets4Sharks3BLSommaire du match
54 - 2022-11-29354Sharks5Rocket3AWSommaire du match
55 - 2022-11-30363Sharks5Marlies3AWSommaire du match
58 - 2022-12-03383Sharks3Senators6ALSommaire du match
59 - 2022-12-04395Sharks3Crunch0AWSommaire du match
62 - 2022-12-07418Comets1Sharks4BWSommaire du match
64 - 2022-12-09433Sharks5Admirals2AWSommaire du match
68 - 2022-12-13465Jayhawks5Sharks6BWXXSommaire du match
72 - 2022-12-17496Sharks3Monarchs1AWSommaire du match
73 - 2022-12-18501Heat3Sharks4BWSommaire du match
75 - 2022-12-20517Heat5Sharks4BLSommaire du match
77 - 2022-12-22532Minnesota2Sharks4BWSommaire du match
82 - 2022-12-27556Sharks3Comets4ALXXSommaire du match
84 - 2022-12-29573Phantoms5Sharks8BWSommaire du match
86 - 2022-12-31586Sharks1Stars5ALSommaire du match
87 - 2023-01-01592Sharks3Baby Hawks5ALSommaire du match
92 - 2023-01-06627Sharks7Admirals5AWSommaire du match
93 - 2023-01-07636Bruins3Sharks5BWSommaire du match
96 - 2023-01-10657Sharks6Jayhawks4AWSommaire du match
97 - 2023-01-11661Sharks4Monarchs2AWSommaire du match
99 - 2023-01-13676Oil Kings2Sharks4BWSommaire du match
102 - 2023-01-16697Spiders1Sharks4BWSommaire du match
104 - 2023-01-18716Stars2Sharks3BWSommaire du match
107 - 2023-01-21736Sharks2Monsters6ALSommaire du match
108 - 2023-01-22748Sharks2Bruins5ALSommaire du match
110 - 2023-01-24760Sharks4Cougars3AWSommaire du match
113 - 2023-01-27783Sharks4Caroline3AWSommaire du match
114 - 2023-01-28793Sharks3Manchots4ALXXSommaire du match
124 - 2023-02-07814Sharks3Thunder5ALSommaire du match
126 - 2023-02-09823Sharks6Cabaret Lady Mary Ann3AWSommaire du match
129 - 2023-02-12847Sharks5Bears1AWSommaire du match
131 - 2023-02-14863Manchots3Sharks4BWSommaire du match
133 - 2023-02-16877Sharks4Las Vegas6ALSommaire du match
135 - 2023-02-18893Crunch4Sharks5BWSommaire du match
137 - 2023-02-20904Seattle3Sharks4BWXSommaire du match
140 - 2023-02-23929Chill8Sharks6BLSommaire du match
142 - 2023-02-25946Baby Hawks4Sharks6BWSommaire du match
145 - 2023-02-28967Rocket3Sharks2BLSommaire du match
147 - 2023-03-02983Chiefs2Sharks3BWXXSommaire du match
Date limite d’échanges --- Les échanges ne peuvent plus se faire après la simulation de cette journée!
149 - 2023-03-04992Bears3Sharks6BWSommaire du match
151 - 2023-03-061006Sharks7Oceanics3AWSommaire du match
152 - 2023-03-071019Sharks3Monsters4ALXXSommaire du match
154 - 2023-03-091032Sharks4Chiefs5ALXXSommaire du match
156 - 2023-03-111051Minnesota2Sharks1BLXSommaire du match
159 - 2023-03-141074Monsters4Sharks6BWSommaire du match
161 - 2023-03-161090Seattle6Sharks0BLSommaire du match
163 - 2023-03-181107Sound Tigers3Sharks4BWSommaire du match
165 - 2023-03-201118Sharks3Oil Kings1AWSommaire du match
168 - 2023-03-231145Sharks4Comets5ALSommaire du match
170 - 2023-03-251154Sharks3Heat4ALSommaire du match
173 - 2023-03-281185Oceanics3Sharks4BWSommaire du match
175 - 2023-03-301199Las Vegas4Sharks6BWSommaire du match
177 - 2023-04-011215Sharks5Jayhawks4AWSommaire du match
180 - 2023-04-041239Monsters1Sharks5BWSommaire du match
182 - 2023-04-061256Monsters2Sharks6BWSommaire du match
184 - 2023-04-081259Oil Kings3Sharks1BLSommaire du match
186 - 2023-04-101275Sharks6Oceanics4AWSommaire du match
188 - 2023-04-121297Sharks4Heat3AWSommaire du match
189 - 2023-04-131308Sharks5Oil Kings2AWSommaire du match



Capacité de l’aréna - Tendance du prix des billets - %
Niveau 1Niveau 2
Capacité17501250
Prix des billets5020
Assistance43,68434,092
Assistance PCT60.88%66.52%

Revenu
Matchs à domicile restantsAssistance moyenne - %Revenu moyen par matchRevenu annuel à ce jourCapacitéPopularité de l’équipe
0 1897 - 63.23% 69,903$2,866,040$3000100

Dépenses
Dépenses annuelles à ce jourSalaire total des joueursSalaire total moyen des joueursSalaire des entraineurs
1,637,986$ 1,598,616$ 1,598,616$ 0$
Plafond salarial par jourPlafond salarial à ce jourJoueurs Inclus dans le plafond salarialJoueurs exclut du plafond Salarial
8,414$ 1,637,986$ 0 0

Estimation
Revenus de la saison estimésJours restants de la saisonDépenses par jourDépenses de la saison estimées
0$ 0 8,414$ 0$




Sharks Leaders statistiques (saison régulière)

# Nom du joueur GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Sharks Leaders des statistiques des gardiens (saison régulière)

# Nom du gardien GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA

Sharks Statistiques de l'Équipe de Carrière

TotalDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT

Sharks Leaders statistiques (séries éliminatoires)

# Nom du joueur GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Sharks Leaders des statistiques des gardiens (séries éliminatoires)

# Nom du gardien GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA