Version obsolète du STHS! Veuillez mettre à jour votre version!
Connexion

Oceanics
GP: 82 | W: 47 | L: 26 | OTL: 9 | P: 103
GF: 302 | GA: 286 | PP%: 24.05% | PK%: 81.07%
DG: Stéphane Gagné | Morale : 50 | Moyenne d’équipe : 58
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Centre de jeu
Oceanics
47-26-9, 103pts
2
FINAL
1 Minnesota
34-41-7, 75pts
Team Stats
W2StreakL4
26-13-2Home Record22-17-2
21-13-7Away Record12-24-5
6-3-1Last 10 Games3-6-1
3.68Buts par match 3.01
3.49Buts contre par match 3.38
24.05%Pourcentage en avantage numérique20.23%
81.07%Pourcentage en désavantage numérique79.69%
Oceanics
47-26-9, 103pts
4
FINAL
2 Monsters
45-31-6, 96pts
Team Stats
W2StreakL2
26-13-2Home Record22-16-3
21-13-7Away Record23-15-3
6-3-1Last 10 Games3-7-0
3.68Buts par match 3.56
3.49Buts contre par match 3.41
24.05%Pourcentage en avantage numérique20.15%
81.07%Pourcentage en désavantage numérique78.35%
Meneurs d'équipe
Buts
Maxim Mamin
29
Passes
Karson Kuhlman
47
Points
Maxim Mamin
72
Plus/Moins
Curtis Douglas
26
Victoires
Collin Delia
47
Pourcentage d’arrêts
Alexei Melnichuk
0.921

Statistiques d’équipe
Buts pour
302
3.68 GFG
Tirs pour
3206
39.10 Avg
Pourcentage en avantage numérique
24.1%
57 GF
Début de zone offensive
41.4%
Buts contre
286
3.49 GAA
Tirs contre
2889
35.23 Avg
Pourcentage en désavantage numérique
81.1%%
64 GA
Début de la zone défensive
39.0%
Informations de l'équipe

Directeur généralStéphane Gagné
DivisionAtlantique
ConférenceEst
Capitaine
Assistant #1
Assistant #2


Informations de l’aréna

Capacité3,000
Assistance2,190
Billets de saison300


Informations de la formation

Équipe Pro22
Équipe Mineure18
Limite contact 40 / 50
Espoirs9


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPÂgeContratSalaire moyen
1Alexis LafreniereXX100.00794486847267936735627567535959050670192925,000$
2Karson KuhlmanX100.00814495716762615925635873255657050610261775,000$
3Maxim MaminXXX100.00805889787762545825647161254747050610261900,000$
4Dmitrij JaskinXX100.00994889707968427147585566254545050600281600,000$
5Mathieu OlivierX100.00889962648056696025605578254849050600241600,000$
6Nic PetanXX100.00614092796256646844605565256060050600261693,000$
7Glenn GawdinX100.00707167647170726480646062574444050600241700,000$
8Curtis Douglas (R)X100.00849265639259595974565768544444050590211900,000$
9Felix Robert (R)X100.00665885645862636176566159584444050570221600,000$
10Alexander TrueX100.00934791677851775553505557255757050570241900,000$
11William LockwoodX100.00999380676559685725505565254545050570232750,000$
12Jamieson Rees (R)X100.00696383646361635468554859464444050540203853,333$
13Dylan CoghlanX100.00764490737265706725524872255555050630234600,000$
14Philip Broberg (R)X100.00634289837462576325484872254646050620204863,333$
15Max LajoieX100.00797294657268725425524164394445050590232750,000$
16Brett LernoutX100.00788084638047484725403666365555050560261750,000$
17Parker WotherspoonX100.00606841636858605225494154394444050530241600,000$
18Gianni Fairbrother (R)X100.00647051617043424925424055384444050510214848,333$
Rayé
1Jeffrey VielX100.00909925677552585435565963254848050570221600,000$
MOYENNE D’ÉQUIPE100.0078657769725963594055546535494905059
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPÂgeContratSalaire moyen
1Collin Delia100.00524658805555505655543046460505502721,000,000$
2Alexei Melnichuk (R)100.0045496175424450524546304444050500231925,000$
Rayé
1Colten Ellis (R)100.0044405071454445494545454444050470204850,833$
MOYENNE D’ÉQUIPE100.004745567547484852484835454505051
Nom de l’entraîneur PH DF OF PD EX LD PO CNT Âge Contrat Salaire


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du joueur Nom de l’équipePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Maxim MaminOceanics (Win)C/LW/RW772943721018069105316782599.18%12134417.4741418471730001490335.25%13900001.0700000523
2Curtis DouglasOceanics (Win)C822843712642101051722256317012.44%21141417.25713202716611261904259.13%181800001.0035110276
3Mathieu OlivierOceanics (Win)RW82274471219525167135321912268.41%38154218.8238114316500072785433.83%13300010.9203212543
4Karson KuhlmanOceanics (Win)RW6524477122140541222286320310.53%12119718.4331013331490001174024.21%9500001.19310000262
5Glenn GawdinOceanics (Win)C822645712422096278261661979.96%24181122.101110214319201162945258.59%262500010.78313000327
6Dmitrij JaskinOceanics (Win)LW/RW8226366221520153117278721909.35%18121814.86549351230000501346.15%9100111.0211000623
7Philip BrobergOceanics (Win)D82173653743578110171491269.94%154191423.348715661860113257110.00%000000.5500000222
8Dylan CoghlanOceanics (Win)D6653843138551706012839783.91%109156723.7621214511480110184110.00%000000.5500000023
9Max LajoieOceanics (Win)D821328411057514560100264513.00%129176021.47358331690006257100.00%000000.4712100230
10Nic PetanOceanics (Win)LW/RW82162238-28014133241731926.64%18113213.811011217112111732337.11%9700100.67310000301
11Felix RobertOceanics (Win)C82131730-7802113015049958.67%1494811.570114110003301157.25%111100000.6333000131
12Jeffrey VielOceanics (Win)LW74111930-3641016670147461017.48%1074610.0914513430001103136.59%4100000.8024110023
13Brett LernoutOceanics (Win)D81721281110610168317127409.86%121163420.183710271570002216000.00%000000.3402010100
14William LockwoodOceanics (Win)RW82121628-1677515476132491329.09%1288810.842351132000032032.26%6200000.6303010122
15Alexis LafreniereOceanics (Win)LW/RW19151227141003137100246415.00%338320.2012315431012284154.55%3300101.4103000350
16Parker WotherspoonOceanics (Win)D82418220655190324320229.30%92140017.080114360000115210.00%000000.3122001101
17Alexander TrueOceanics (Win)C7611617-1760326711927809.24%76358.3700000000021045.23%74500000.5300000001
18Gianni FairbrotherOceanics (Win)D82016164762019719199160.00%76134816.45000155000386000.00%000000.2412301100
19Jamieson ReesOceanics (Win)C656814-247528409419536.38%55969.1800001000132247.73%4400000.4702001000
Statistiques d’équipe totales ou en moyenne142529051580511485510520381794314489022899.22%8752348816.48541011554651874358532252392554.81%703400330.692265855384238
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du gardien Nom de l’équipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Collin DeliaOceanics (Win)82472590.9033.35474012226527360120.66766820537
2Alexei MelnichukOceanics (Win)80100.9212.8625220121510000.00%0082000
Statistiques d’équipe totales ou en moyenne90472690.9043.3349921422772887012668282537


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du joueur Nom de l’équipePOS Âge Date de naissance Nouveau joueur Poids Taille Non-échange Disponible pour échange Ballotage forcé Contrat Type Salaire actuel Salaire moyen restantPlafond salarial Plafond salarial restant Exclus du plafond salarial Salaire annuel 2Salaire annuel 3Salaire annuel 4Salaire annuel 5Salaire annuel 6Salaire annuel 7Salaire annuel 8Salaire annuel 9Salaire annuel 10Link
Alexander TrueOceanics (Win)C241997-07-16No200 Lbs6 ft5YesNoYes1Pro & Farm900,000$0$0$NoLien
Alexei MelnichukOceanics (Win)G231998-06-28Yes190 Lbs6 ft2NoNoNo1Pro & Farm925,000$0$0$NoLien
Alexis LafreniereOceanics (Win)LW/RW192001-10-10No193 Lbs6 ft2NoNoNo2Pro & Farm925,000$0$0$No925,000$Lien
Brett Lernout (contrat à 1 volet)Oceanics (Win)D261995-09-23No214 Lbs6 ft4NoNoYes1Pro & Farm750,000$0$0$NoLien
Collin Delia (contrat à 1 volet)Oceanics (Win)G271994-06-19No208 Lbs6 ft2NoNoYes2Pro & Farm1,000,000$100,000$0$No1,000,000$Lien
Colten EllisOceanics (Win)G202000-10-05Yes187 Lbs6 ft1NoNoNo4Pro & Farm850,833$0$0$No850,833$850,833$850,833$Lien
Curtis DouglasOceanics (Win)C212000-03-06Yes238 Lbs6 ft9YesNoNo1Pro & Farm900,000$0$0$NoLien
Dmitrij Jaskin (contrat à 1 volet)Oceanics (Win)LW/RW281993-03-23No216 Lbs6 ft2NoNoYes1Pro & Farm600,000$0$0$NoLien
Dylan CoghlanOceanics (Win)D231998-02-19No190 Lbs6 ft2NoNoNo4Pro & Farm600,000$0$0$No600,000$600,000$600,000$Lien
Felix RobertOceanics (Win)C221999-07-24Yes165 Lbs5 ft8YesNoNo1Pro & Farm600,000$0$0$NoLien
Gianni FairbrotherOceanics (Win)D212000-09-30Yes190 Lbs6 ft0NoNoNo4Pro & Farm848,333$0$0$No848,333$848,333$848,333$Lien
Glenn GawdinOceanics (Win)C241997-03-25No191 Lbs6 ft1NoNoYes1Pro & Farm700,000$0$0$NoLien
Jamieson ReesOceanics (Win)C202001-02-26Yes172 Lbs5 ft11NoNoNo3Pro & Farm853,333$0$0$No853,333$853,333$Lien
Jeffrey VielOceanics (Win)LW221999-01-28No197 Lbs6 ft0NoNoNo1Pro & Farm600,000$0$0$NoLien
Karson Kuhlman (contrat à 1 volet)Oceanics (Win)RW261995-09-26No185 Lbs5 ft11NoNoYes1Pro & Farm775,000$0$0$NoLien
Mathieu OlivierOceanics (Win)RW241997-02-11No209 Lbs6 ft2YesNoYes1Pro & Farm600,000$0$0$NoLien
Max LajoieOceanics (Win)D231997-11-05No196 Lbs6 ft1NoNoNo2Pro & Farm750,000$0$0$No750,000$Lien
Maxim Mamin (contrat à 1 volet)Oceanics (Win)C/LW/RW261995-01-13No206 Lbs6 ft2NoNoYes1Pro & Farm900,000$0$0$NoLien
Nic Petan (contrat à 1 volet)Oceanics (Win)LW/RW261995-03-22No175 Lbs5 ft9NoNoYes1Pro & Farm693,000$0$0$NoLien
Parker WotherspoonOceanics (Win)D241997-08-24No181 Lbs6 ft1YesNoYes1Pro & Farm600,000$0$0$NoLien
Philip BrobergOceanics (Win)D202001-06-25Yes199 Lbs6 ft3NoNoNo4Pro & Farm863,333$0$0$No863,333$863,333$863,333$Lien
William LockwoodOceanics (Win)RW231998-06-20No172 Lbs5 ft11NoNoNo2Pro & Farm750,000$0$0$No750,000$Lien
Nombre de joueursÂge moyenPoids moyenTaille moyenneContrat moyenSalaire moyen 1e année
2223.27194 Lbs6 ft11.82771,992$



Attaque à 5 contre 5
Ligne #Ailier gaucheCentreAilier droit% tempsPHYDFOF
1Alexis LafreniereGlenn GawdinKarson Kuhlman40014
2Maxim MaminCurtis DouglasMathieu Olivier30014
3Nic PetanFelix RobertDmitrij Jaskin20023
4Jamieson ReesAlexander TrueWilliam Lockwood10023
Défense à 5 contre 5
Ligne #DéfenseDéfense% tempsPHYDFOF
1Dylan CoghlanPhilip Broberg40032
2Max LajoieBrett Lernout30032
3Parker WotherspoonGianni Fairbrother20041
4Dylan CoghlanPhilip Broberg10032
Attaque en avantage numérique
Ligne #Ailier gaucheCentreAilier droit% tempsPHYDFOF
1Alexis LafreniereGlenn GawdinKarson Kuhlman60005
2Maxim MaminCurtis DouglasMathieu Olivier40005
Défense en avantage numérique
Ligne #DéfenseDéfense% tempsPHYDFOF
1Dylan CoghlanPhilip Broberg60014
2Max LajoieBrett Lernout40014
Attaque à 4 en désavantage numérique
Ligne #CentreAilier% tempsPHYDFOF
1Glenn GawdinMathieu Olivier60050
2Curtis DouglasNic Petan40050
Défense à 4 en désavantage numérique
Ligne #DéfenseDéfense% tempsPHYDFOF
1Dylan CoghlanPhilip Broberg60050
2Max LajoieBrett Lernout40050
3 joueurs en désavantage numérique
Ligne #Ailier% tempsPHYDFOFDéfenseDéfense% tempsPHYDFOF
1Mathieu Olivier60050Dylan CoghlanPhilip Broberg60050
2Nic Petan40050Brett LernoutMax Lajoie40050
Attaque à 4 contre 4
Ligne #CentreAilier% tempsPHYDFOF
1Glenn GawdinAlexis Lafreniere60023
2Curtis DouglasMathieu Olivier40023
Défense à 4 contre 4
Ligne #DéfenseDéfense% tempsPHYDFOF
1Dylan CoghlanPhilip Broberg60023
2Max LajoieBrett Lernout40023
Attaque dernière minute
Ailier gaucheCentreAilier droitDéfenseDéfense
Alexis LafreniereGlenn GawdinKarson KuhlmanDylan CoghlanPhilip Broberg
Défense dernière minute
Ailier gaucheCentreAilier droitDéfenseDéfense
Nic PetanCurtis DouglasMathieu OlivierDylan CoghlanPhilip Broberg
Attaquants supplémentaires
Normal Avantage numériqueDésavantage numérique
Alexis Lafreniere, Mathieu Olivier, Karson KuhlmanAlexis Lafreniere, Karson KuhlmanMathieu Olivier
Défenseurs supplémentaires
Normal Avantage numériqueDésavantage numérique
Dylan Coghlan, Philip Broberg, Max LajoiePhilip BrobergDylan Coghlan, Philip Broberg
Tirs de pénalité
Alexis Lafreniere, Karson Kuhlman, Glenn Gawdin, Nic Petan, Mathieu Olivier
Gardien
#1 : Collin Delia, #2 : Alexei Melnichuk


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
TotalDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals32000001141222200000011831000000134-150.83314264000113100802412310631064103710710041407011327.27%10370.00%01656300355.14%1556282655.06%764142353.69%2048141718776011071540
2Baby Hawks43000001171072200000010552100000175270.875172946001131008024154106310641037107140422810719210.53%13192.31%01656300355.14%1556282655.06%764142353.69%2048141718776011071540
3Bears2010010057-21000010034-11010000023-110.250510150011310080245510631064103710777242043500.00%10190.00%01656300355.14%1556282655.06%764142353.69%2048141718776011071540
4Bruins21100000431110000003121010000012-120.500481200113100802483106310641037107621018544125.00%80100.00%01656300355.14%1556282655.06%764142353.69%2048141718776011071540
5Cabaret Lady Mary Ann220000001248110000008261100000042241.000122234001131008024131106310641037107682010574125.00%4250.00%01656300355.14%1556282655.06%764142353.69%2048141718776011071540
6Caroline2010000127-51010000004-41000000123-110.2502460011310080244410631064103710781172056500.00%10370.00%01656300355.14%1556282655.06%764142353.69%2048141718776011071540
7Chiefs430000102215722000000116521000010119281.00022355700113100802417210631064103710713649598114642.86%20480.00%01656300355.14%1556282655.06%764142353.69%2048141718776011071540
8Chill422000001213-1220000008532020000048-440.5001220320011310080241551063106410371071345655112900.00%18383.33%01656300355.14%1556282655.06%764142353.69%2048141718776011071540
9Comets302010001214-220101000101001010000024-220.3331222341011310080241221063106410371071323232667342.86%15473.33%01656300355.14%1556282655.06%764142353.69%2048141718776011071540
10Cougars2110000057-21010000003-31100000054120.500591400113100802467106310641037107712516506116.67%80100.00%01656300355.14%1556282655.06%764142353.69%2048141718776011071540
11Crunch21100000871110000005231010000035-220.5008132100113100802495106310641037107721831465360.00%6266.67%01656300355.14%1556282655.06%764142353.69%2048141718776011071540
12Heat330000001055220000007341100000032161.000101727011131008024112106310641037107902616719444.44%7185.71%01656300355.14%1556282655.06%764142353.69%2048141718776011071540
13Jayhawks302000101115-420100010710-31010000045-120.3331117280011310080241091063106410371071023028719333.33%13653.85%01656300355.14%1556282655.06%764142353.69%2048141718776011071540
14Las Vegas31100001121111010000045-12100000186230.5001221330011310080241421063106410371071213624645240.00%12375.00%01656300355.14%1556282655.06%764142353.69%2048141718776011071540
15Manchots20100001510-51010000048-41000000112-110.2505101500113100802463106310641037107721632533133.33%9366.67%01656300355.14%1556282655.06%764142353.69%2048141718776011071540
16Marlies2010001056-11010000024-21000001032120.500561100113100802472106310641037107571421507114.29%8187.50%01656300355.14%1556282655.06%764142353.69%2048141718776011071540
17Minnesota4400000015105220000008532200000075281.0001525400011310080241841063106410371071063366111600.00%15660.00%01656300355.14%1556282655.06%764142353.69%2048141718776011071540
18Monarchs32001000141131000100043122000000108261.0001425390011310080241461063106410371078939247613646.15%11190.91%01656300355.14%1556282655.06%764142353.69%2048141718776011071540
19Monsters22000000725110000005231100000020241.0007142101113100802473106310641037107781924462150.00%120100.00%01656300355.14%1556282655.06%764142353.69%2048141718776011071540
20Monsters43100000171342110000078-122000000105560.750172946001131008024118106310641037107148504011215320.00%19194.74%11656300355.14%1556282655.06%764142353.69%2048141718776011071540
21Oil Kings320000101596110000006422100001095461.00015254000113100802410110631064103710710526327513215.38%15286.67%01656300355.14%1556282655.06%764142353.69%2048141718776011071540
22Phantoms2020000048-41010000024-21010000024-200.000481200113100802476106310641037107721512511417.14%60100.00%01656300355.14%1556282655.06%764142353.69%2048141718776011071540
23Rocket21000010862100000105411100000032141.0008142200113100802466106310641037107621630515240.00%8187.50%01656300355.14%1556282655.06%764142353.69%2048141718776011071540
24Seattle30200001713-61010000013-220100001610-410.167713200011310080241211063106410371071322738794125.00%19478.95%01656300355.14%1556282655.06%764142353.69%2048141718776011071540
25Senators20100100614-81000010056-11010000018-710.2506101600113100802475106310641037107832526505120.00%11372.73%11656300355.14%1556282655.06%764142353.69%2048141718776011071540
26Sharks303000001017-720200000713-61010000034-100.0001018280011310080241121063106410371071244518738225.00%9366.67%01656300355.14%1556282655.06%764142353.69%2048141718776011071540
27Sound Tigers21000010954110000005231000001043141.0009152400113100802472106310641037107762936475120.00%12283.33%11656300355.14%1556282655.06%764142353.69%2048141718776011071540
28Spiders210000101055100000105411100000051441.00010162600113100802474106310641037107482520696350.00%10280.00%01656300355.14%1556282655.06%764142353.69%2048141718776011071540
29Stars3210000089-1110000003122110000058-340.66781321001131008024114106310641037107104422965700.00%7185.71%01656300355.14%1556282655.06%764142353.69%2048141718776011071540
30Thunder21100000880110000005321010000035-220.500813211011310080249010631064103710766148545120.00%40100.00%01656300355.14%1556282655.06%764142353.69%2048141718776011071540
31Wolf Pack20100001810-21010000034-11000000156-110.2508152300113100802485106310641037107812420517228.57%9188.89%01656300355.14%1556282655.06%764142353.69%2048141718776011071540
Total8238260227730228616412113022301641461841171300047138140-21030.6283025228242211310080243206106310641037107288988587320612375724.05%3386481.07%31656300355.14%1556282655.06%764142353.69%2048141718776011071540
_Since Last GM Reset8238260227730228616412113022301641461841171300047138140-21030.6283025228242211310080243206106310641037107288988587320612375724.05%3386481.07%31656300355.14%1556282655.06%764142353.69%2048141718776011071540
_Vs Conference35121401233121131-10188601210727111748000234960-11370.529121214335111131008024135410631064103710712193963748991042423.08%1472384.35%21656300355.14%1556282655.06%764142353.69%2048141718776011071540
_Vs Division165701010565518330100033258824000102330-7140.4385695151101131008024679106310641037107541142160412411126.83%57984.21%11656300355.14%1556282655.06%764142353.69%2048141718776011071540

Total pour les joueurs
Matchs jouésPointsSéquenceButsPassesPointsTirs pourTirs contreTirs bloquésMinutes de pénalitésMises en échecButs en filet désertBlanchissages
82103W230252282432062889885873206122
Tous les matchs
GPWLOTWOTL SOWSOLGFGA
8238262277302286
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
4121132230164146
Matchs extérieurs
GPWLOTWOTL SOWSOLGFGA
4117130047138140
Derniers 10 matchs
WLOTWOTL SOWSOL
630001
Tentatives en avantage numériqueButs en avantage numérique% en avantage numériqueTentatives en désavantage numériqueButs contre en désavantage numérique% en désavantage numériqueButs pour en désavantage numérique
2375724.05%3386481.07%3
Tirs en 1e périodeTirs en 2e périodeTirs en 3e périodeTirs en 4e périodeButs en 1e périodeButs en 2e périodeButs en 3e périodeButs en 4e période
1063106410371071131008024
Mises en jeu
Gagnées en zone offensiveTotal en zone offensive% gagnées en zone offensive Gagnées en zone défensiveTotal en zone défensive% gagnées en zone défensiveGagnées en zone neutreTotal en zone neutre% gagnées en zone neutre
1656300355.14%1556282655.06%764142353.69%
Temps avec la rondelle
En zone offensiveContrôle en zone offensiveEn zone défensiveContrôle en zone défensiveEn zone neutreContrôle en zone neutre
2048141718776011071540


Derniers matchs joués
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe visiteuse Score Équipe locale Score ST OT SO RI Lien
8 - 2022-10-1423Wolf Pack4Oceanics3BLSommaire du match
11 - 2022-10-1746Oceanics1Stars5ALSommaire du match
13 - 2022-10-1957Oceanics6Monsters3AWSommaire du match
14 - 2022-10-2070Oceanics6Las Vegas3AWSommaire du match
16 - 2022-10-2278Marlies4Oceanics2BLSommaire du match
18 - 2022-10-2495Chiefs2Oceanics6BWSommaire du match
21 - 2022-10-27120Oceanics5Monarchs4AWSommaire du match
22 - 2022-10-28126Oceanics4Jayhawks5ALSommaire du match
24 - 2022-10-30143Oceanics2Las Vegas3ALXXSommaire du match
28 - 2022-11-03165Rocket4Oceanics5BWXXSommaire du match
30 - 2022-11-05177Baby Hawks2Oceanics6BWSommaire du match
33 - 2022-11-08204Stars1Oceanics3BWSommaire du match
37 - 2022-11-12236Oceanics3Heat2AWSommaire du match
38 - 2022-11-13243Oceanics4Seattle5ALXXSommaire du match
42 - 2022-11-17266Admirals4Oceanics6BWSommaire du match
44 - 2022-11-19276Manchots8Oceanics4BLSommaire du match
46 - 2022-11-21294Caroline4Oceanics0BLSommaire du match
48 - 2022-11-23303Oceanics5Minnesota4AWSommaire du match
50 - 2022-11-25330Oceanics4Stars3AWSommaire du match
52 - 2022-11-27342Oceanics6Baby Hawks3AWSommaire du match
54 - 2022-11-29357Monsters5Oceanics3BLSommaire du match
57 - 2022-12-02378Monsters2Oceanics5BWSommaire du match
59 - 2022-12-04392Admirals4Oceanics5BWSommaire du match
61 - 2022-12-06408Cabaret Lady Mary Ann2Oceanics8BWSommaire du match
63 - 2022-12-08422Oceanics5Chiefs4AWXXSommaire du match
64 - 2022-12-09428Oceanics1Baby Hawks2ALXXSommaire du match
66 - 2022-12-11446Bears4Oceanics3BLXSommaire du match
68 - 2022-12-13462Las Vegas5Oceanics4BLSommaire du match
70 - 2022-12-15477Chill3Oceanics4BWSommaire du match
72 - 2022-12-17495Oceanics2Comets4ALSommaire du match
73 - 2022-12-18500Oceanics2Seattle5ALSommaire du match
75 - 2022-12-20514Senators6Oceanics5BLXSommaire du match
77 - 2022-12-22529Oceanics1Bruins2ALSommaire du match
78 - 2022-12-23537Oceanics2Bears3ALSommaire du match
82 - 2022-12-27552Minnesota3Oceanics4BWSommaire du match
84 - 2022-12-29570Comets6Oceanics5BLSommaire du match
86 - 2022-12-31588Oceanics5Oil Kings4AWXXSommaire du match
89 - 2023-01-03603Heat0Oceanics3BWSommaire du match
92 - 2023-01-06624Thunder3Oceanics5BWSommaire du match
94 - 2023-01-08638Comets4Oceanics5BWXSommaire du match
96 - 2023-01-10654Oceanics5Cougars4AWSommaire du match
98 - 2023-01-12668Oceanics3Crunch5ALSommaire du match
99 - 2023-01-13674Oceanics1Manchots2ALXXSommaire du match
101 - 2023-01-15693Jayhawks6Oceanics2BLSommaire du match
103 - 2023-01-17708Oceanics3Rocket2AWSommaire du match
105 - 2023-01-19723Oceanics3Marlies2AWXXSommaire du match
107 - 2023-01-21738Oceanics1Senators8ALSommaire du match
108 - 2023-01-22749Oceanics2Phantoms4ALSommaire du match
110 - 2023-01-24762Oceanics2Chill3ALSommaire du match
112 - 2023-01-26774Crunch2Oceanics5BWSommaire du match
114 - 2023-01-28790Phantoms4Oceanics2BLSommaire du match
116 - 2023-01-30801Chiefs4Oceanics5BWSommaire du match
128 - 2023-02-11844Baby Hawks3Oceanics4BWSommaire du match
131 - 2023-02-14860Seattle3Oceanics1BLSommaire du match
133 - 2023-02-16872Oceanics2Monsters0AWSommaire du match
136 - 2023-02-19900Oceanics5Spiders1AWSommaire du match
137 - 2023-02-20907Oceanics5Wolf Pack6ALXXSommaire du match
139 - 2023-02-22917Oceanics4Sound Tigers3AWXXSommaire du match
141 - 2023-02-24935Monsters3Oceanics4BWSommaire du match
143 - 2023-02-26949Sound Tigers2Oceanics5BWSommaire du match
145 - 2023-02-28961Monarchs3Oceanics4BWXSommaire du match
148 - 2023-03-03985Oceanics4Oil Kings1AWSommaire du match
Date limite d’échanges --- Les échanges ne peuvent plus se faire après la simulation de cette journée!
149 - 2023-03-04995Oil Kings4Oceanics6BWSommaire du match
151 - 2023-03-061006Sharks7Oceanics3BLSommaire du match
153 - 2023-03-081022Minnesota2Oceanics4BWSommaire du match
156 - 2023-03-111047Oceanics4Cabaret Lady Mary Ann2AWSommaire du match
157 - 2023-03-121057Oceanics3Thunder5ALSommaire du match
159 - 2023-03-141068Oceanics2Caroline3ALXXSommaire du match
161 - 2023-03-161084Bruins1Oceanics3BWSommaire du match
163 - 2023-03-181097Oceanics2Chill5ALSommaire du match
164 - 2023-03-191111Oceanics6Chiefs5AWSommaire du match
166 - 2023-03-211128Jayhawks4Oceanics5BWXXSommaire du match
168 - 2023-03-231146Oceanics3Admirals4ALXXSommaire du match
170 - 2023-03-251153Oceanics5Monarchs4AWSommaire du match
173 - 2023-03-281185Oceanics3Sharks4ALSommaire du match
176 - 2023-03-311201Cougars3Oceanics0BLSommaire du match
178 - 2023-04-021222Spiders4Oceanics5BWXXSommaire du match
181 - 2023-04-051240Heat3Oceanics4BWSommaire du match
184 - 2023-04-081261Chill2Oceanics4BWSommaire du match
186 - 2023-04-101275Sharks6Oceanics4BLSommaire du match
187 - 2023-04-111291Oceanics2Minnesota1AWSommaire du match
189 - 2023-04-131309Oceanics4Monsters2AWSommaire du match



Capacité de l’aréna - Tendance du prix des billets - %
Niveau 1Niveau 2
Capacité20001000
Prix des billets4020
Assistance62,42127,351
Assistance PCT76.12%66.71%

Revenu
Matchs à domicile restantsAssistance moyenne - %Revenu moyen par matchRevenu annuel à ce jourCapacitéPopularité de l’équipe
0 2190 - 72.99% 74,240$3,043,860$3000100

Dépenses
Dépenses annuelles à ce jourSalaire total des joueursSalaire total moyen des joueursSalaire des entraineurs
1,368,524$ 2,059,082$ 2,059,082$ 0$
Plafond salarial par jourPlafond salarial à ce jourJoueurs Inclus dans le plafond salarialJoueurs exclut du plafond Salarial
10,837$ 1,368,524$ 0 0

Estimation
Revenus de la saison estimésJours restants de la saisonDépenses par jourDépenses de la saison estimées
0$ 0 10,837$ 0$




Oceanics Leaders statistiques (saison régulière)

# Nom du joueur GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Oceanics Leaders des statistiques des gardiens (saison régulière)

# Nom du gardien GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA

Oceanics Statistiques de l'Équipe de Carrière

TotalDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT

Oceanics Leaders statistiques (séries éliminatoires)

# Nom du joueur GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Oceanics Leaders des statistiques des gardiens (séries éliminatoires)

# Nom du gardien GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA