Out of Date Version of the STHS! Please update your version!
Login

Monarchs
GP: 82 | W: 21 | L: 55 | OTL: 6 | P: 48
GF: 265 | GA: 362 | PP%: 11.87% | PK%: 70.18%
GM : Antoine Pelletier | Morale : 50 | Team Overall : 54
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Game Center
Comets
42-31-9, 93pts
4
FINAL
3 Monarchs
21-55-6, 48pts
Team Stats
W1StreakOTL1
22-15-4Home Record8-31-2
20-16-5Away Record13-24-4
6-2-2Last 10 Games2-7-1
3.62Goals Per Game3.23
3.45Goals Against Per Game4.41
18.46%Power Play Percentage11.87%
78.81%Penalty Kill Percentage70.18%
Monarchs
21-55-6, 48pts
4
FINAL
5 Admirals
31-44-7, 69pts
Team Stats
OTL1StreakW2
8-31-2Home Record17-21-3
13-24-4Away Record14-23-4
2-7-1Last 10 Games4-6-0
3.23Goals Per Game3.20
4.41Goals Against Per Game3.89
11.87%Power Play Percentage20.88%
70.18%Penalty Kill Percentage77.49%
Team Leaders
Goals
Graeme Clarke
45
Assists
Mitchell Stephens
45
Points
Graeme Clarke
75
Plus/Minus
Gage Quinney
11

Team Stats
Goals For
265
3.23 GFG
Shots For
3072
37.46 Avg
Power Play Percentage
11.9%
26 GF
Offensive Zone Start
37.6%
Goals Against
362
4.41 GAA
Shots Against
3863
47.11 Avg
Penalty Kill Percentage
70.2%%
82 GA
Defensive Zone Start
42.9%
Team Info

General ManagerAntoine Pelletier
DivisionAtlantique
ConferenceEst
Captain
Assistant #1
Assistant #2


Arena Info

Capacity3,000
Attendance1,896
Season Tickets300


Roster Info

Pro Team20
Farm Team19
Contract Limit39 / 50
Prospects13


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPAgeContractSalary Average
1Steven LorentzXXX100.00754495737858825845576267255758050610252728,333$
2Mitchell StephensX100.00714390726959515579675577255353050600241800,000$
3Gage QuinneyXX100.00787292627253526278566267595151050590262715,000$
4Liam O'BrienXX100.00999934678055605845535764255252050580271600,000$
5Stefan MatteauX100.00707657647653525950585464515555050570271600,000$
6Graeme Clarke (R)XX100.00706483646460615873545761544444050560202850,833$
7Owen Sillinger (R)X100.00736591676541376075585763544444050560244825,000$
8Connor Zary (R)X100.00706580586554545873516161584444050550202925,000$
9Nick Henry (R)X100.00746985666947474950474660444444050520222783,935$
10Giovanni FioreXX100.007174885371524850493551645450500505102521,300,000$
11Ben JohnsonXX100.00324343435929293243313143373230050360271660,000$
12Jordan Spence (R)X100.00784397805979627425594973254646050650204820,000$
13Derrick PouliotX100.00734387777167646325644771256363050640271975,000$
14Dennis CholowskiX100.00654293777367626325544769255757050620232850,000$
15Frederic AllardX100.00726687616656594925404161395050050550262600,000$
16Andreas EnglundX100.00657152707150524725384055384444050530252900,000$
17Brandon Scanlin (R)X100.00858095618037364425333965374444050530224925,000$
Scratches
TEAM AVERAGE100.0072627966705453554850506440494905056
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPAgeContractSalary Average
1Hugo Alnefelt (R)100.0045405080454450524748304444050500204850,833$
2Zachary Sawchenko (R)100.0044415169434350514647304444050480232560,000$
Scratches
1Eamon McAdam100.0035433969343233323232313228050380271700,000$
TEAM AVERAGE100.004141477341404445424230403905045
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Graeme ClarkeMonarchs (LA )C/RW76453075-305152502354871203899.24%73153120.15641097195000002053.76%9300020.9800010834
2Mitchell StephensMonarchs (LA )C762945741110064265320762319.06%43125716.54167461270000284056.92%179200011.1801000431
3Gage QuinneyMonarchs (LA )C/LW76353570113201091383359122810.45%33125216.48437511280001274162.00%10000001.1211000464
4Stefan MatteauMonarchs (LA )LW761432469559119210511516.67%2590411.90000141013292040.95%10500001.0200100121
5Liam O'BrienMonarchs (LA )C/LW762420446129152421442055617411.71%1388211.61112610000053242.97%118700001.0011111421
6Owen SillingerMonarchs (LA )C76132639-1533597120144601129.03%97105113.8300000000000152.92%29100000.7400010111
7Nick HenryMonarchs (LA )RW76626321034011471120351025.00%19122316.1023527128000001047.47%9900000.5200000100
8Giovanni FioreMonarchs (LA )LW/RW7613183170013713134859.92%1986811.4210122000000055.17%5800000.7100000011
9Frederic AllardMonarchs (LA )D7622224948082577221502.78%89124116.330001355011264000.00%000000.3900000003
10Brandon ScanlinMonarchs (LA )D768162477551814862184412.90%100122716.15000953000157010.00%000000.3900100021
11Connor ZaryMonarchs (LA )C7610515-495563578254912.82%82573.3921319390001151059.69%19600001.1600100012
12Steven LorentzMonarchs (LA )C/LW/RW166814-1210018436326569.52%636422.7912310320002351042.17%43400000.7700000001
13Dennis CholowskiMonarchs (LA )D2631013-1714043495918435.08%7162724.142133061000066000.00%000000.4100000011
14Andreas EnglundMonarchs (LA )D7611011-147810164203210303.13%5387311.49000413000027000.00%000000.2500200001
15Derrick PouliotMonarchs (LA )D162911-13602823284177.14%2038123.811341531000137000.00%000000.5800000000
16Joseph BlandisiLA KingsC/LW75611-10012113182516.13%214420.621125230002110171.43%1400001.5200000101
17Ben JohnsonMonarchs (LA )C/LW1000-200000000.00%066.130000000000000.00%000000.00%00000000
Team Total or Average978216318534-385345014701415237765317869.09%6711409314.412225473359101121340818651.00%436900030.7623631242223
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract Type Current Salary Salary Ave RemainingSalary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10Link
Andreas EnglundMonarchs (LA )D251996-01-21No189 Lbs6 ft3NoNoYes2Pro & Farm900,000$0$0$No900,000$Link
Ben Johnson (1 Way Contract)Monarchs (LA )C/LW271994-06-07No188 Lbs5 ft11NoNoYes1Pro & Farm660,000$0$0$NoLink
Brandon ScanlinMonarchs (LA )D221999-06-02Yes214 Lbs6 ft4NoNoNo4Pro & Farm925,000$0$0$No925,000$925,000$925,000$
Connor ZaryMonarchs (LA )C202001-09-25Yes179 Lbs6 ft0NoNoNo2Pro & Farm925,000$0$0$No925,000$Link
Dennis CholowskiMonarchs (LA )D231998-02-15No197 Lbs6 ft2NoNoNo2Pro & Farm850,000$0$0$No850,000$Link
Derrick Pouliot (1 Way Contract)Monarchs (LA )D271994-01-16No196 Lbs6 ft0NoNoYes1Pro & Farm975,000$75,000$0$NoLink
Eamon McAdam (1 Way Contract)Monarchs (LA )G271994-09-24No188 Lbs6 ft2NoNoYes1Pro & Farm700,000$0$0$NoLink
Frederic Allard (1 Way Contract)Monarchs (LA )D261994-12-27No179 Lbs6 ft1NoNoYes2Pro & Farm600,000$0$0$No600,000$Link
Gage Quinney (1 Way Contract)Monarchs (LA )C/LW261995-07-29No200 Lbs5 ft11NoNoYes2Pro & Farm715,000$0$0$No715,000$Link
Giovanni FioreMonarchs (LA )LW/RW251996-08-13No194 Lbs6 ft1NoNoYes2Pro & Farm1,200,000$0$0$No1,100,000$Link
Graeme ClarkeMonarchs (LA )C/RW202001-04-24Yes174 Lbs6 ft0NoNoNo2Pro & Farm850,833$0$0$No850,833$Link
Hugo AlnefeltMonarchs (LA )G202001-06-04Yes201 Lbs6 ft3NoNoNo4Pro & Farm850,833$0$0$No850,833$850,833$850,833$Link
Jordan SpenceMonarchs (LA )D202001-02-24Yes163 Lbs5 ft10NoNoNo4Pro & Farm820,000$0$0$No820,000$820,000$820,000$Link
Liam O'Brien (1 Way Contract)Monarchs (LA )C/LW271994-07-29No213 Lbs6 ft1NoNoYes1Pro & Farm600,000$0$0$NoLink
Mitchell StephensMonarchs (LA )C241997-02-05No190 Lbs5 ft11NoNoYes1Pro & Farm800,000$0$0$NoLink
Nick HenryMonarchs (LA )RW221999-07-04Yes190 Lbs5 ft11NoNoNo2Pro & Farm783,935$0$0$No783,935$Link
Owen SillingerMonarchs (LA )C241997-09-23Yes183 Lbs5 ft10NoNoYes4Pro & Farm825,000$0$0$No825,000$825,000$825,000$
Stefan Matteau (1 Way Contract)Monarchs (LA )LW271994-02-23No208 Lbs6 ft2NoNoYes1Pro & Farm600,000$0$0$NoLink
Steven LorentzMonarchs (LA )C/LW/RW251996-04-13No206 Lbs6 ft4NoNoYes2Pro & Farm728,333$0$0$No728,333$Link
Zachary SawchenkoMonarchs (LA )G231997-12-30Yes183 Lbs6 ft1NoNoNo2Pro & Farm560,000$0$0$No560,000$Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2024.00192 Lbs6 ft12.10793,447$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Graeme Clarke40122
2Gage QuinneyMitchell StephensNick Henry30122
3Stefan MatteauLiam O'BrienGiovanni Fiore20122
4Owen Sillinger10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
140122
2Frederic AllardBrandon Scanlin30122
3Andreas EnglundOwen Sillinger20122
410122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Graeme Clarke60122
2Gage QuinneyMitchell StephensNick Henry40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
160122
2Frederic AllardBrandon Scanlin40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
160122
2Mitchell StephensGage Quinney40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
160122
2Frederic AllardBrandon Scanlin40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
16012260122
240122Frederic AllardBrandon Scanlin40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
160122
2Mitchell StephensGage Quinney40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
160122
2Frederic AllardBrandon Scanlin40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Graeme Clarke
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Graeme Clarke
Extra Forwards
Normal PowerPlayPenalty Kill
Connor Zary, Liam O'Brien, Stefan MatteauConnor Zary, Liam O'BrienStefan Matteau
Extra Defensemen
Normal PowerPlayPenalty Kill
Andreas Englund, Frederic Allard, Brandon ScanlinAndreas EnglundFrederic Allard, Brandon Scanlin
Penalty Shots
, , Mitchell Stephens, Gage Quinney, Liam O'Brien
Goalie
#1 : , #2 :


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals311001001415-11010000056-12100010099030.50014253900110896431361000103610251514132227212216.67%14564.29%01250275245.42%1298313441.42%607142542.60%1708116021936081033485
2Baby Hawks31100100121201000010045-12110000087130.50012223400110896431051000103610251513441266514321.43%12466.67%11250275245.42%1298313441.42%607142542.60%1708116021936081033485
3Bears20100010511-6100000104311010000018-720.50057120011089643601000103610251592181046200.00%5260.00%01250275245.42%1298313441.42%607142542.60%1708116021936081033485
4Bruins2010010079-21000010045-11010000034-110.2507121900110896437910001036102515772714437114.29%7271.43%01250275245.42%1298313441.42%607142542.60%1708116021936081033485
5Cabaret Lady Mary Ann2110000010911010000024-21100000085320.5001016260011089643115100010361025159110843100.00%4250.00%01250275245.42%1298313441.42%607142542.60%1708116021936081033485
6Caroline2020000069-31010000035-21010000034-100.000681410110896437410001036102515822723471119.09%8275.00%01250275245.42%1298313441.42%607142542.60%1708116021936081033485
7Chiefs31200000131212020000059-41100000083520.3331323360011089643102100010361025151223520538225.00%9366.67%01250275245.42%1298313441.42%607142542.60%1708116021936081033485
8Chill312000001415-11010000056-12110000099020.3331424380011089643119100010361025152056018569111.11%9188.89%01250275245.42%1298313441.42%607142542.60%1708116021936081033485
9Comets413000001215-32020000069-32110000066020.250122234011108964315410001036102515193652910210330.00%11190.91%01250275245.42%1298313441.42%607142542.60%1708116021936081033485
10Cougars20200000517-121010000038-51010000029-700.000510150011089643531000103610251513437838200.00%4250.00%01250275245.42%1298313441.42%607142542.60%1708116021936081033485
11Crunch20200000913-41010000056-11010000047-300.0009162500110896438010001036102515853324417228.57%12466.67%01250275245.42%1298313441.42%607142542.60%1708116021936081033485
12Heat413000001318-521100000101002020000038-520.250132437001108964313110001036102515188573892500.00%19668.42%01250275245.42%1298313441.42%607142542.60%1708116021936081033485
13Jayhawks312000001112-120200000610-41100000052320.333111728001108964313710001036102515100283985900.00%11281.82%01250275245.42%1298313441.42%607142542.60%1708116021936081033485
14Las Vegas422000002020021100000111102110000099040.5002033531011089643242100010361025152146228961119.09%11463.64%01250275245.42%1298313441.42%607142542.60%1708116021936081033485
15Manchots20200000612-61010000034-11010000038-500.0006111700110896436710001036102515123301048100.00%5260.00%01250275245.42%1298313441.42%607142542.60%1708116021936081033485
16Marlies21100000660110000005231010000014-320.5006121800110896435710001036102515732310414125.00%5260.00%01250275245.42%1298313441.42%607142542.60%1708116021936081033485
17Minnesota30300000513-81010000002-220200000511-600.0005914001108964312010001036102515124372779800.00%10370.00%01250275245.42%1298313441.42%607142542.60%1708116021936081033485
18Monsters2010010079-21010000034-11000010045-110.250710170011089643691000103610251588261540600.00%5180.00%01250275245.42%1298313441.42%607142542.60%1708116021936081033485
19Monsters30200100713-61010000034-12010010049-510.1677132000110896437910001036102515155463758500.00%15753.33%01250275245.42%1298313441.42%607142542.60%1708116021936081033485
20Oceanics302001001114-320200000810-21000010034-110.167111829001108964389100010361025151464228731119.09%13653.85%01250275245.42%1298313441.42%607142542.60%1708116021936081033485
21Oil Kings42200000712-52110000038-52110000044040.500714210011089643149100010361025151704328861119.09%11190.91%01250275245.42%1298313441.42%607142542.60%1708116021936081033485
22Phantoms2020000047-31010000013-21010000034-100.000461000110896437510001036102515105251252800.00%5180.00%01250275245.42%1298313441.42%607142542.60%1708116021936081033485
23Rocket22000000844110000004221100000042241.000814220011089643751000103610251564248456116.67%3233.33%01250275245.42%1298313441.42%607142542.60%1708116021936081033485
24Seattle40400000717-1020200000310-72020000047-300.0007111800110896431301000103610251519660301007114.29%14378.57%01250275245.42%1298313441.42%607142542.60%1708116021936081033485
25Senators2110000034-11010000013-21100000021120.500347101108964385100010361025157328125710110.00%6183.33%01250275245.42%1298313441.42%607142542.60%1708116021936081033485
26Sharks30300000511-62020000037-41010000024-200.0005813001108964310210001036102515166602068600.00%10280.00%01250275245.42%1298313441.42%607142542.60%1708116021936081033485
27Sound Tigers22000000972110000005411100000043141.0009152400110896438510001036102515108292461400.00%8275.00%01250275245.42%1298313441.42%607142542.60%1708116021936081033485
28Spiders2020000049-51010000002-21010000047-300.000471100110896437810001036102515812716529111.11%8362.50%01250275245.42%1298313441.42%607142542.60%1708116021936081033485
29Stars30300000817-920200000613-71010000024-200.0008142200110896439910001036102515154452079500.00%10460.00%01250275245.42%1298313441.42%607142542.60%1708116021936081033485
30Thunder210010001073100010004311100000064241.00010172700110896437210001036102515762110437342.86%40100.00%01250275245.42%1298313441.42%607142542.60%1708116021936081033485
31Wolf Pack20200000713-61010000047-31010000036-300.0007132000110896435410001036102515103241640300.00%7271.43%01250275245.42%1298313441.42%607142542.60%1708116021936081033485
Total82195501610265362-974163101210129185-5641132400400136177-41480.29326545572031110896433072100010361025153863112263019012192611.87%2758270.18%11250275245.42%1298313441.42%607142542.60%1708116021936081033485
_Since Last GM Reset82195501610265362-974163101210129185-5641132400400136177-41480.29326545572031110896433072100010361025153863112263019012192611.87%2758270.18%11250275245.42%1298313441.42%607142542.60%1708116021936081033485
_Vs Conference3472101410112149-3717212011105569-141759003005780-23220.32411218930110110896431227100010361025151657472237792991111.11%1113271.17%01250275245.42%1298313441.42%607142542.60%1708116021936081033485
_Vs Division1629002005869-11815001002833-5814001003036-660.188581011591011089643616100010361025156732039435144920.45%451566.67%01250275245.42%1298313441.42%607142542.60%1708116021936081033485

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
8248OTL1265455720307238631122630190131
All Games
GPWLOTWOTL SOWSOLGFGA
8219551610265362
Home Games
GPWLOTWOTL SOWSOLGFGA
416311210129185
Visitor Games
GPWLOTWOTL SOWSOLGFGA
4113240400136177
Last 10 Games
WLOTWOTL SOWSOL
270100
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
2192611.87%2758270.18%1
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
1000103610251511089643
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
1250275245.42%1298313441.42%607142542.60%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
1708116021936081033485


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
5 - 2022-10-114Las Vegas4Monarchs7BWBoxScore
7 - 2022-10-1320Seattle6Monarchs1BLBoxScore
9 - 2022-10-1534Monarchs2Minnesota6ALBoxScore
11 - 2022-10-1744Monarchs2Cougars9ALBoxScore
12 - 2022-10-1852Monarchs4Chill5ALBoxScore
14 - 2022-10-2062Monarchs3Manchots8ALBoxScore
16 - 2022-10-2280Monarchs1Bears8ALBoxScore
19 - 2022-10-25106Thunder3Monarchs4BWXBoxScore
21 - 2022-10-27120Oceanics5Monarchs4BLBoxScore
23 - 2022-10-29130Marlies2Monarchs5BWBoxScore
25 - 2022-10-31146Monarchs8Chiefs3AWBoxScore
26 - 2022-11-01153Monarchs2Stars4ALBoxScore
28 - 2022-11-03168Monarchs6Baby Hawks4AWBoxScore
30 - 2022-11-05189Cabaret Lady Mary Ann4Monarchs2BLBoxScore
33 - 2022-11-08206Minnesota2Monarchs0BLBoxScore
35 - 2022-11-10220Baby Hawks5Monarchs4BLXBoxScore
37 - 2022-11-12237Cougars8Monarchs3BLBoxScore
39 - 2022-11-14245Monarchs2Heat4ALBoxScore
41 - 2022-11-16259Monarchs1Oil Kings3ALBoxScore
43 - 2022-11-18273Monarchs4Comets0AWBoxScore
44 - 2022-11-19286Monarchs2Seattle3ALBoxScore
47 - 2022-11-22302Wolf Pack7Monarchs4BLBoxScore
50 - 2022-11-25331Monarchs2Sharks4ALBoxScore
52 - 2022-11-27345Senators3Monarchs1BLBoxScore
54 - 2022-11-29360Seattle4Monarchs2BLBoxScore
56 - 2022-12-01375Jayhawks6Monarchs4BLBoxScore
58 - 2022-12-03391Caroline5Monarchs3BLBoxScore
61 - 2022-12-06406Monarchs2Senators1AWBoxScore
63 - 2022-12-08420Monarchs1Marlies4ALBoxScore
65 - 2022-12-10439Monarchs4Rocket2AWBoxScore
66 - 2022-12-11443Monarchs4Monsters5ALXBoxScore
68 - 2022-12-13457Monarchs4Crunch7ALBoxScore
70 - 2022-12-15472Monarchs3Bruins4ALBoxScore
72 - 2022-12-17496Sharks3Monarchs1BLBoxScore
75 - 2022-12-20516Admirals6Monarchs5BLBoxScore
77 - 2022-12-22531Heat4Monarchs3BLBoxScore
78 - 2022-12-23543Monarchs5Jayhawks2AWBoxScore
82 - 2022-12-27557Las Vegas7Monarchs4BLBoxScore
84 - 2022-12-29571Monarchs1Monsters5ALBoxScore
86 - 2022-12-31580Phantoms3Monarchs1BLBoxScore
89 - 2023-01-03608Stars5Monarchs2BLBoxScore
91 - 2023-01-05621Bruins5Monarchs4BLXBoxScore
93 - 2023-01-07634Monarchs5Las Vegas3AWBoxScore
95 - 2023-01-09647Oil Kings6Monarchs0BLBoxScore
97 - 2023-01-11661Sharks4Monarchs2BLBoxScore
100 - 2023-01-14690Spiders2Monarchs0BLBoxScore
105 - 2023-01-19729Stars8Monarchs4BLBoxScore
107 - 2023-01-21742Monarchs5Chill4AWBoxScore
108 - 2023-01-22747Monarchs2Baby Hawks3ALBoxScore
110 - 2023-01-24757Monarchs3Phantoms4ALBoxScore
113 - 2023-01-27781Monarchs8Cabaret Lady Mary Ann5AWBoxScore
114 - 2023-01-28791Monarchs6Thunder4AWBoxScore
117 - 2023-01-31802Monarchs3Caroline4ALBoxScore
128 - 2023-02-11845Manchots4Monarchs3BLBoxScore
130 - 2023-02-13854Crunch6Monarchs5BLBoxScore
134 - 2023-02-17882Monarchs5Admirals4AWBoxScore
135 - 2023-02-18892Jayhawks4Monarchs2BLBoxScore
138 - 2023-02-21913Monarchs3Minnesota5ALBoxScore
140 - 2023-02-23923Monarchs4Spiders7ALBoxScore
141 - 2023-02-24934Monarchs4Sound Tigers3AWBoxScore
143 - 2023-02-26950Monarchs3Wolf Pack6ALBoxScore
145 - 2023-02-28961Monarchs3Oceanics4ALXBoxScore
147 - 2023-03-02982Rocket2Monarchs4BWBoxScore
Trade Deadline --- Trades can’t be done after this day is simulated!
149 - 2023-03-041000Chiefs5Monarchs3BLBoxScore
151 - 2023-03-061011Bears3Monarchs4BWXXBoxScore
154 - 2023-03-091033Monarchs3Monsters4ALXBoxScore
156 - 2023-03-111052Chill6Monarchs5BLBoxScore
159 - 2023-03-141075Sound Tigers4Monarchs5BWBoxScore
161 - 2023-03-161089Monsters4Monarchs3BLBoxScore
163 - 2023-03-181104Comets5Monarchs3BLBoxScore
165 - 2023-03-201119Heat6Monarchs7BWBoxScore
170 - 2023-03-251153Oceanics5Monarchs4BLBoxScore
171 - 2023-03-261169Chiefs4Monarchs2BLBoxScore
173 - 2023-03-281183Monarchs1Heat4ALBoxScore
175 - 2023-03-301197Monarchs3Oil Kings1AWBoxScore
177 - 2023-04-011213Monarchs2Seattle4ALBoxScore
178 - 2023-04-021224Monarchs2Comets6ALBoxScore
180 - 2023-04-041237Oil Kings2Monarchs3BWBoxScore
182 - 2023-04-061255Monarchs4Las Vegas6ALBoxScore
184 - 2023-04-081272Monsters4Monarchs3BLBoxScore
186 - 2023-04-101284Comets4Monarchs3BLBoxScore
189 - 2023-04-131310Monarchs4Admirals5ALXBoxScore



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Capacity20001000
Ticket Price5020
Attendance50,31627,430
Attendance PCT61.36%66.90%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueCapacityTeam Popularity
0 1896 - 63.21% 74,741$3,064,400$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
1,058,190$ 1,101,893$ 1,111,893$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
5,852$ 1,068,228$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 0 5,799$ 0$




Monarchs Stat Leaders (Regular Season)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Monarchs Goalies Stat Leaders (Regular Season)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA

Monarchs Career Team Stats

OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT

Monarchs Stat Leaders (Play-Off)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Monarchs Goalies Stat Leaders (Play-Off)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA