Version obsolète du STHS! Veuillez mettre à jour votre version!
Connexion

Monarchs
GP: 82 | W: 21 | L: 55 | OTL: 6 | P: 48
GF: 265 | GA: 362 | PP%: 11.87% | PK%: 70.18%
DG: Antoine Pelletier | Morale : 50 | Moyenne d’équipe : 54
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Centre de jeu
Comets
42-31-9, 93pts
4
FINAL
3 Monarchs
21-55-6, 48pts
Team Stats
W1StreakOTL1
22-15-4Home Record8-31-2
20-16-5Away Record13-24-4
6-2-2Last 10 Games2-7-1
3.62Buts par match 3.23
3.45Buts contre par match 4.41
18.46%Pourcentage en avantage numérique11.87%
78.81%Pourcentage en désavantage numérique70.18%
Monarchs
21-55-6, 48pts
4
FINAL
5 Admirals
31-44-7, 69pts
Team Stats
OTL1StreakW2
8-31-2Home Record17-21-3
13-24-4Away Record14-23-4
2-7-1Last 10 Games4-6-0
3.23Buts par match 3.20
4.41Buts contre par match 3.89
11.87%Pourcentage en avantage numérique20.88%
70.18%Pourcentage en désavantage numérique77.49%
Meneurs d'équipe
Buts
Graeme Clarke
45
Passes
Mitchell Stephens
45
Points
Graeme Clarke
75
Plus/Moins
Gage Quinney
11

Statistiques d’équipe
Buts pour
265
3.23 GFG
Tirs pour
3072
37.46 Avg
Pourcentage en avantage numérique
11.9%
26 GF
Début de zone offensive
37.6%
Buts contre
362
4.41 GAA
Tirs contre
3863
47.11 Avg
Pourcentage en désavantage numérique
70.2%%
82 GA
Début de la zone défensive
42.9%
Informations de l'équipe

Directeur généralAntoine Pelletier
DivisionAtlantique
ConférenceEst
Capitaine
Assistant #1
Assistant #2


Informations de l’aréna

Capacité3,000
Assistance1,896
Billets de saison300


Informations de la formation

Équipe Pro20
Équipe Mineure19
Limite contact 39 / 50
Espoirs13


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPÂgeContratSalaire moyen
1Steven LorentzXXX100.00754495737858825845576267255758050610252728,333$
2Mitchell StephensX100.00714390726959515579675577255353050600241800,000$
3Gage QuinneyXX100.00787292627253526278566267595151050590262715,000$
4Liam O'BrienXX100.00999934678055605845535764255252050580271600,000$
5Stefan MatteauX100.00707657647653525950585464515555050570271600,000$
6Graeme Clarke (R)XX100.00706483646460615873545761544444050560202850,833$
7Owen Sillinger (R)X100.00736591676541376075585763544444050560244825,000$
8Connor Zary (R)X100.00706580586554545873516161584444050550202925,000$
9Nick Henry (R)X100.00746985666947474950474660444444050520222783,935$
10Giovanni FioreXX100.007174885371524850493551645450500505102521,300,000$
11Ben JohnsonXX100.00324343435929293243313143373230050360271660,000$
12Jordan Spence (R)X100.00784397805979627425594973254646050650204820,000$
13Derrick PouliotX100.00734387777167646325644771256363050640271975,000$
14Dennis CholowskiX100.00654293777367626325544769255757050620232850,000$
15Frederic AllardX100.00726687616656594925404161395050050550262600,000$
16Andreas EnglundX100.00657152707150524725384055384444050530252900,000$
17Brandon Scanlin (R)X100.00858095618037364425333965374444050530224925,000$
Rayé
MOYENNE D’ÉQUIPE100.0072627966705453554850506440494905056
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPÂgeContratSalaire moyen
1Hugo Alnefelt (R)100.0045405080454450524748304444050500204850,833$
2Zachary Sawchenko (R)100.0044415169434350514647304444050480232560,000$
Rayé
1Eamon McAdam100.0035433969343233323232313228050380271700,000$
MOYENNE D’ÉQUIPE100.004141477341404445424230403905045
Nom de l’entraîneur PH DF OF PD EX LD PO CNT Âge Contrat Salaire


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du joueur Nom de l’équipePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Graeme ClarkeMonarchs (LA )C/RW76453075-305152502354871203899.24%73153120.15641097195000002053.76%9300020.9800010834
2Mitchell StephensMonarchs (LA )C762945741110064265320762319.06%43125716.54167461270000284056.92%179200011.1801000431
3Gage QuinneyMonarchs (LA )C/LW76353570113201091383359122810.45%33125216.48437511280001274162.00%10000001.1211000464
4Stefan MatteauMonarchs (LA )LW761432469559119210511516.67%2590411.90000141013292040.95%10500001.0200100121
5Liam O'BrienMonarchs (LA )C/LW762420446129152421442055617411.71%1388211.61112610000053242.97%118700001.0011111421
6Owen SillingerMonarchs (LA )C76132639-1533597120144601129.03%97105113.8300000000000152.92%29100000.7400010111
7Nick HenryMonarchs (LA )RW76626321034011471120351025.00%19122316.1023527128000001047.47%9900000.5200000100
8Giovanni FioreMonarchs (LA )LW/RW7613183170013713134859.92%1986811.4210122000000055.17%5800000.7100000011
9Frederic AllardMonarchs (LA )D7622224948082577221502.78%89124116.330001355011264000.00%000000.3900000003
10Brandon ScanlinMonarchs (LA )D768162477551814862184412.90%100122716.15000953000157010.00%000000.3900100021
11Connor ZaryMonarchs (LA )C7610515-495563578254912.82%82573.3921319390001151059.69%19600001.1600100012
12Steven LorentzMonarchs (LA )C/LW/RW166814-1210018436326569.52%636422.7912310320002351042.17%43400000.7700000001
13Dennis CholowskiMonarchs (LA )D2631013-1714043495918435.08%7162724.142133061000066000.00%000000.4100000011
14Andreas EnglundMonarchs (LA )D7611011-147810164203210303.13%5387311.49000413000027000.00%000000.2500200001
15Derrick PouliotMonarchs (LA )D162911-13602823284177.14%2038123.811341531000137000.00%000000.5800000000
16Joseph BlandisiLA KingsC/LW75611-10012113182516.13%214420.621125230002110171.43%1400001.5200000101
17Ben JohnsonMonarchs (LA )C/LW1000-200000000.00%066.130000000000000.00%000000.00%00000000
Statistiques d’équipe totales ou en moyenne978216318534-385345014701415237765317869.09%6711409314.412225473359101121340818651.00%436900030.7623631242223
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du gardien Nom de l’équipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du joueur Nom de l’équipePOS Âge Date de naissance Nouveau joueur Poids Taille Non-échange Disponible pour échange Ballotage forcé Contrat Type Salaire actuel Salaire moyen restantPlafond salarial Plafond salarial restant Exclus du plafond salarial Salaire annuel 2Salaire annuel 3Salaire annuel 4Salaire annuel 5Salaire annuel 6Salaire annuel 7Salaire annuel 8Salaire annuel 9Salaire annuel 10Link
Andreas EnglundMonarchs (LA )D251996-01-21No189 Lbs6 ft3NoNoYes2Pro & Farm900,000$0$0$No900,000$Lien
Ben Johnson (contrat à 1 volet)Monarchs (LA )C/LW271994-06-07No188 Lbs5 ft11NoNoYes1Pro & Farm660,000$0$0$NoLien
Brandon ScanlinMonarchs (LA )D221999-06-02Yes214 Lbs6 ft4NoNoNo4Pro & Farm925,000$0$0$No925,000$925,000$925,000$
Connor ZaryMonarchs (LA )C202001-09-25Yes179 Lbs6 ft0NoNoNo2Pro & Farm925,000$0$0$No925,000$Lien
Dennis CholowskiMonarchs (LA )D231998-02-15No197 Lbs6 ft2NoNoNo2Pro & Farm850,000$0$0$No850,000$Lien
Derrick Pouliot (contrat à 1 volet)Monarchs (LA )D271994-01-16No196 Lbs6 ft0NoNoYes1Pro & Farm975,000$75,000$0$NoLien
Eamon McAdam (contrat à 1 volet)Monarchs (LA )G271994-09-24No188 Lbs6 ft2NoNoYes1Pro & Farm700,000$0$0$NoLien
Frederic Allard (contrat à 1 volet)Monarchs (LA )D261994-12-27No179 Lbs6 ft1NoNoYes2Pro & Farm600,000$0$0$No600,000$Lien
Gage Quinney (contrat à 1 volet)Monarchs (LA )C/LW261995-07-29No200 Lbs5 ft11NoNoYes2Pro & Farm715,000$0$0$No715,000$Lien
Giovanni FioreMonarchs (LA )LW/RW251996-08-13No194 Lbs6 ft1NoNoYes2Pro & Farm1,200,000$0$0$No1,100,000$Lien
Graeme ClarkeMonarchs (LA )C/RW202001-04-24Yes174 Lbs6 ft0NoNoNo2Pro & Farm850,833$0$0$No850,833$Lien
Hugo AlnefeltMonarchs (LA )G202001-06-04Yes201 Lbs6 ft3NoNoNo4Pro & Farm850,833$0$0$No850,833$850,833$850,833$Lien
Jordan SpenceMonarchs (LA )D202001-02-24Yes163 Lbs5 ft10NoNoNo4Pro & Farm820,000$0$0$No820,000$820,000$820,000$Lien
Liam O'Brien (contrat à 1 volet)Monarchs (LA )C/LW271994-07-29No213 Lbs6 ft1NoNoYes1Pro & Farm600,000$0$0$NoLien
Mitchell StephensMonarchs (LA )C241997-02-05No190 Lbs5 ft11NoNoYes1Pro & Farm800,000$0$0$NoLien
Nick HenryMonarchs (LA )RW221999-07-04Yes190 Lbs5 ft11NoNoNo2Pro & Farm783,935$0$0$No783,935$Lien
Owen SillingerMonarchs (LA )C241997-09-23Yes183 Lbs5 ft10NoNoYes4Pro & Farm825,000$0$0$No825,000$825,000$825,000$
Stefan Matteau (contrat à 1 volet)Monarchs (LA )LW271994-02-23No208 Lbs6 ft2NoNoYes1Pro & Farm600,000$0$0$NoLien
Steven LorentzMonarchs (LA )C/LW/RW251996-04-13No206 Lbs6 ft4NoNoYes2Pro & Farm728,333$0$0$No728,333$Lien
Zachary SawchenkoMonarchs (LA )G231997-12-30Yes183 Lbs6 ft1NoNoNo2Pro & Farm560,000$0$0$No560,000$Lien
Nombre de joueursÂge moyenPoids moyenTaille moyenneContrat moyenSalaire moyen 1e année
2024.00192 Lbs6 ft12.10793,447$



Attaque à 5 contre 5
Ligne #Ailier gaucheCentreAilier droit% tempsPHYDFOF
1Graeme Clarke40122
2Gage QuinneyMitchell StephensNick Henry30122
3Stefan MatteauLiam O'BrienGiovanni Fiore20122
4Owen Sillinger10122
Défense à 5 contre 5
Ligne #DéfenseDéfense% tempsPHYDFOF
140122
2Frederic AllardBrandon Scanlin30122
3Andreas EnglundOwen Sillinger20122
410122
Attaque en avantage numérique
Ligne #Ailier gaucheCentreAilier droit% tempsPHYDFOF
1Graeme Clarke60122
2Gage QuinneyMitchell StephensNick Henry40122
Défense en avantage numérique
Ligne #DéfenseDéfense% tempsPHYDFOF
160122
2Frederic AllardBrandon Scanlin40122
Attaque à 4 en désavantage numérique
Ligne #CentreAilier% tempsPHYDFOF
160122
2Mitchell StephensGage Quinney40122
Défense à 4 en désavantage numérique
Ligne #DéfenseDéfense% tempsPHYDFOF
160122
2Frederic AllardBrandon Scanlin40122
3 joueurs en désavantage numérique
Ligne #Ailier% tempsPHYDFOFDéfenseDéfense% tempsPHYDFOF
16012260122
240122Frederic AllardBrandon Scanlin40122
Attaque à 4 contre 4
Ligne #CentreAilier% tempsPHYDFOF
160122
2Mitchell StephensGage Quinney40122
Défense à 4 contre 4
Ligne #DéfenseDéfense% tempsPHYDFOF
160122
2Frederic AllardBrandon Scanlin40122
Attaque dernière minute
Ailier gaucheCentreAilier droitDéfenseDéfense
Graeme Clarke
Défense dernière minute
Ailier gaucheCentreAilier droitDéfenseDéfense
Graeme Clarke
Attaquants supplémentaires
Normal Avantage numériqueDésavantage numérique
Connor Zary, Liam O'Brien, Stefan MatteauConnor Zary, Liam O'BrienStefan Matteau
Défenseurs supplémentaires
Normal Avantage numériqueDésavantage numérique
Andreas Englund, Frederic Allard, Brandon ScanlinAndreas EnglundFrederic Allard, Brandon Scanlin
Tirs de pénalité
, , Mitchell Stephens, Gage Quinney, Liam O'Brien
Gardien
#1 : , #2 :


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
TotalDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals311001001415-11010000056-12100010099030.50014253900110896431361000103610251514132227212216.67%14564.29%01250275245.42%1298313441.42%607142542.60%1708116021936081033485
2Baby Hawks31100100121201000010045-12110000087130.50012223400110896431051000103610251513441266514321.43%12466.67%11250275245.42%1298313441.42%607142542.60%1708116021936081033485
3Bears20100010511-6100000104311010000018-720.50057120011089643601000103610251592181046200.00%5260.00%01250275245.42%1298313441.42%607142542.60%1708116021936081033485
4Bruins2010010079-21000010045-11010000034-110.2507121900110896437910001036102515772714437114.29%7271.43%01250275245.42%1298313441.42%607142542.60%1708116021936081033485
5Cabaret Lady Mary Ann2110000010911010000024-21100000085320.5001016260011089643115100010361025159110843100.00%4250.00%01250275245.42%1298313441.42%607142542.60%1708116021936081033485
6Caroline2020000069-31010000035-21010000034-100.000681410110896437410001036102515822723471119.09%8275.00%01250275245.42%1298313441.42%607142542.60%1708116021936081033485
7Chiefs31200000131212020000059-41100000083520.3331323360011089643102100010361025151223520538225.00%9366.67%01250275245.42%1298313441.42%607142542.60%1708116021936081033485
8Chill312000001415-11010000056-12110000099020.3331424380011089643119100010361025152056018569111.11%9188.89%01250275245.42%1298313441.42%607142542.60%1708116021936081033485
9Comets413000001215-32020000069-32110000066020.250122234011108964315410001036102515193652910210330.00%11190.91%01250275245.42%1298313441.42%607142542.60%1708116021936081033485
10Cougars20200000517-121010000038-51010000029-700.000510150011089643531000103610251513437838200.00%4250.00%01250275245.42%1298313441.42%607142542.60%1708116021936081033485
11Crunch20200000913-41010000056-11010000047-300.0009162500110896438010001036102515853324417228.57%12466.67%01250275245.42%1298313441.42%607142542.60%1708116021936081033485
12Heat413000001318-521100000101002020000038-520.250132437001108964313110001036102515188573892500.00%19668.42%01250275245.42%1298313441.42%607142542.60%1708116021936081033485
13Jayhawks312000001112-120200000610-41100000052320.333111728001108964313710001036102515100283985900.00%11281.82%01250275245.42%1298313441.42%607142542.60%1708116021936081033485
14Las Vegas422000002020021100000111102110000099040.5002033531011089643242100010361025152146228961119.09%11463.64%01250275245.42%1298313441.42%607142542.60%1708116021936081033485
15Manchots20200000612-61010000034-11010000038-500.0006111700110896436710001036102515123301048100.00%5260.00%01250275245.42%1298313441.42%607142542.60%1708116021936081033485
16Marlies21100000660110000005231010000014-320.5006121800110896435710001036102515732310414125.00%5260.00%01250275245.42%1298313441.42%607142542.60%1708116021936081033485
17Minnesota30300000513-81010000002-220200000511-600.0005914001108964312010001036102515124372779800.00%10370.00%01250275245.42%1298313441.42%607142542.60%1708116021936081033485
18Monsters2010010079-21010000034-11000010045-110.250710170011089643691000103610251588261540600.00%5180.00%01250275245.42%1298313441.42%607142542.60%1708116021936081033485
19Monsters30200100713-61010000034-12010010049-510.1677132000110896437910001036102515155463758500.00%15753.33%01250275245.42%1298313441.42%607142542.60%1708116021936081033485
20Oceanics302001001114-320200000810-21000010034-110.167111829001108964389100010361025151464228731119.09%13653.85%01250275245.42%1298313441.42%607142542.60%1708116021936081033485
21Oil Kings42200000712-52110000038-52110000044040.500714210011089643149100010361025151704328861119.09%11190.91%01250275245.42%1298313441.42%607142542.60%1708116021936081033485
22Phantoms2020000047-31010000013-21010000034-100.000461000110896437510001036102515105251252800.00%5180.00%01250275245.42%1298313441.42%607142542.60%1708116021936081033485
23Rocket22000000844110000004221100000042241.000814220011089643751000103610251564248456116.67%3233.33%01250275245.42%1298313441.42%607142542.60%1708116021936081033485
24Seattle40400000717-1020200000310-72020000047-300.0007111800110896431301000103610251519660301007114.29%14378.57%01250275245.42%1298313441.42%607142542.60%1708116021936081033485
25Senators2110000034-11010000013-21100000021120.500347101108964385100010361025157328125710110.00%6183.33%01250275245.42%1298313441.42%607142542.60%1708116021936081033485
26Sharks30300000511-62020000037-41010000024-200.0005813001108964310210001036102515166602068600.00%10280.00%01250275245.42%1298313441.42%607142542.60%1708116021936081033485
27Sound Tigers22000000972110000005411100000043141.0009152400110896438510001036102515108292461400.00%8275.00%01250275245.42%1298313441.42%607142542.60%1708116021936081033485
28Spiders2020000049-51010000002-21010000047-300.000471100110896437810001036102515812716529111.11%8362.50%01250275245.42%1298313441.42%607142542.60%1708116021936081033485
29Stars30300000817-920200000613-71010000024-200.0008142200110896439910001036102515154452079500.00%10460.00%01250275245.42%1298313441.42%607142542.60%1708116021936081033485
30Thunder210010001073100010004311100000064241.00010172700110896437210001036102515762110437342.86%40100.00%01250275245.42%1298313441.42%607142542.60%1708116021936081033485
31Wolf Pack20200000713-61010000047-31010000036-300.0007132000110896435410001036102515103241640300.00%7271.43%01250275245.42%1298313441.42%607142542.60%1708116021936081033485
Total82195501610265362-974163101210129185-5641132400400136177-41480.29326545572031110896433072100010361025153863112263019012192611.87%2758270.18%11250275245.42%1298313441.42%607142542.60%1708116021936081033485
_Since Last GM Reset82195501610265362-974163101210129185-5641132400400136177-41480.29326545572031110896433072100010361025153863112263019012192611.87%2758270.18%11250275245.42%1298313441.42%607142542.60%1708116021936081033485
_Vs Conference3472101410112149-3717212011105569-141759003005780-23220.32411218930110110896431227100010361025151657472237792991111.11%1113271.17%01250275245.42%1298313441.42%607142542.60%1708116021936081033485
_Vs Division1629002005869-11815001002833-5814001003036-660.188581011591011089643616100010361025156732039435144920.45%451566.67%01250275245.42%1298313441.42%607142542.60%1708116021936081033485

Total pour les joueurs
Matchs jouésPointsSéquenceButsPassesPointsTirs pourTirs contreTirs bloquésMinutes de pénalitésMises en échecButs en filet désertBlanchissages
8248OTL1265455720307238631122630190131
Tous les matchs
GPWLOTWOTL SOWSOLGFGA
8219551610265362
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
416311210129185
Matchs extérieurs
GPWLOTWOTL SOWSOLGFGA
4113240400136177
Derniers 10 matchs
WLOTWOTL SOWSOL
270100
Tentatives en avantage numériqueButs en avantage numérique% en avantage numériqueTentatives en désavantage numériqueButs contre en désavantage numérique% en désavantage numériqueButs pour en désavantage numérique
2192611.87%2758270.18%1
Tirs en 1e périodeTirs en 2e périodeTirs en 3e périodeTirs en 4e périodeButs en 1e périodeButs en 2e périodeButs en 3e périodeButs en 4e période
1000103610251511089643
Mises en jeu
Gagnées en zone offensiveTotal en zone offensive% gagnées en zone offensive Gagnées en zone défensiveTotal en zone défensive% gagnées en zone défensiveGagnées en zone neutreTotal en zone neutre% gagnées en zone neutre
1250275245.42%1298313441.42%607142542.60%
Temps avec la rondelle
En zone offensiveContrôle en zone offensiveEn zone défensiveContrôle en zone défensiveEn zone neutreContrôle en zone neutre
1708116021936081033485


Derniers matchs joués
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe visiteuse Score Équipe locale Score ST OT SO RI Lien
5 - 2022-10-114Las Vegas4Monarchs7BWSommaire du match
7 - 2022-10-1320Seattle6Monarchs1BLSommaire du match
9 - 2022-10-1534Monarchs2Minnesota6ALSommaire du match
11 - 2022-10-1744Monarchs2Cougars9ALSommaire du match
12 - 2022-10-1852Monarchs4Chill5ALSommaire du match
14 - 2022-10-2062Monarchs3Manchots8ALSommaire du match
16 - 2022-10-2280Monarchs1Bears8ALSommaire du match
19 - 2022-10-25106Thunder3Monarchs4BWXSommaire du match
21 - 2022-10-27120Oceanics5Monarchs4BLSommaire du match
23 - 2022-10-29130Marlies2Monarchs5BWSommaire du match
25 - 2022-10-31146Monarchs8Chiefs3AWSommaire du match
26 - 2022-11-01153Monarchs2Stars4ALSommaire du match
28 - 2022-11-03168Monarchs6Baby Hawks4AWSommaire du match
30 - 2022-11-05189Cabaret Lady Mary Ann4Monarchs2BLSommaire du match
33 - 2022-11-08206Minnesota2Monarchs0BLSommaire du match
35 - 2022-11-10220Baby Hawks5Monarchs4BLXSommaire du match
37 - 2022-11-12237Cougars8Monarchs3BLSommaire du match
39 - 2022-11-14245Monarchs2Heat4ALSommaire du match
41 - 2022-11-16259Monarchs1Oil Kings3ALSommaire du match
43 - 2022-11-18273Monarchs4Comets0AWSommaire du match
44 - 2022-11-19286Monarchs2Seattle3ALSommaire du match
47 - 2022-11-22302Wolf Pack7Monarchs4BLSommaire du match
50 - 2022-11-25331Monarchs2Sharks4ALSommaire du match
52 - 2022-11-27345Senators3Monarchs1BLSommaire du match
54 - 2022-11-29360Seattle4Monarchs2BLSommaire du match
56 - 2022-12-01375Jayhawks6Monarchs4BLSommaire du match
58 - 2022-12-03391Caroline5Monarchs3BLSommaire du match
61 - 2022-12-06406Monarchs2Senators1AWSommaire du match
63 - 2022-12-08420Monarchs1Marlies4ALSommaire du match
65 - 2022-12-10439Monarchs4Rocket2AWSommaire du match
66 - 2022-12-11443Monarchs4Monsters5ALXSommaire du match
68 - 2022-12-13457Monarchs4Crunch7ALSommaire du match
70 - 2022-12-15472Monarchs3Bruins4ALSommaire du match
72 - 2022-12-17496Sharks3Monarchs1BLSommaire du match
75 - 2022-12-20516Admirals6Monarchs5BLSommaire du match
77 - 2022-12-22531Heat4Monarchs3BLSommaire du match
78 - 2022-12-23543Monarchs5Jayhawks2AWSommaire du match
82 - 2022-12-27557Las Vegas7Monarchs4BLSommaire du match
84 - 2022-12-29571Monarchs1Monsters5ALSommaire du match
86 - 2022-12-31580Phantoms3Monarchs1BLSommaire du match
89 - 2023-01-03608Stars5Monarchs2BLSommaire du match
91 - 2023-01-05621Bruins5Monarchs4BLXSommaire du match
93 - 2023-01-07634Monarchs5Las Vegas3AWSommaire du match
95 - 2023-01-09647Oil Kings6Monarchs0BLSommaire du match
97 - 2023-01-11661Sharks4Monarchs2BLSommaire du match
100 - 2023-01-14690Spiders2Monarchs0BLSommaire du match
105 - 2023-01-19729Stars8Monarchs4BLSommaire du match
107 - 2023-01-21742Monarchs5Chill4AWSommaire du match
108 - 2023-01-22747Monarchs2Baby Hawks3ALSommaire du match
110 - 2023-01-24757Monarchs3Phantoms4ALSommaire du match
113 - 2023-01-27781Monarchs8Cabaret Lady Mary Ann5AWSommaire du match
114 - 2023-01-28791Monarchs6Thunder4AWSommaire du match
117 - 2023-01-31802Monarchs3Caroline4ALSommaire du match
128 - 2023-02-11845Manchots4Monarchs3BLSommaire du match
130 - 2023-02-13854Crunch6Monarchs5BLSommaire du match
134 - 2023-02-17882Monarchs5Admirals4AWSommaire du match
135 - 2023-02-18892Jayhawks4Monarchs2BLSommaire du match
138 - 2023-02-21913Monarchs3Minnesota5ALSommaire du match
140 - 2023-02-23923Monarchs4Spiders7ALSommaire du match
141 - 2023-02-24934Monarchs4Sound Tigers3AWSommaire du match
143 - 2023-02-26950Monarchs3Wolf Pack6ALSommaire du match
145 - 2023-02-28961Monarchs3Oceanics4ALXSommaire du match
147 - 2023-03-02982Rocket2Monarchs4BWSommaire du match
Date limite d’échanges --- Les échanges ne peuvent plus se faire après la simulation de cette journée!
149 - 2023-03-041000Chiefs5Monarchs3BLSommaire du match
151 - 2023-03-061011Bears3Monarchs4BWXXSommaire du match
154 - 2023-03-091033Monarchs3Monsters4ALXSommaire du match
156 - 2023-03-111052Chill6Monarchs5BLSommaire du match
159 - 2023-03-141075Sound Tigers4Monarchs5BWSommaire du match
161 - 2023-03-161089Monsters4Monarchs3BLSommaire du match
163 - 2023-03-181104Comets5Monarchs3BLSommaire du match
165 - 2023-03-201119Heat6Monarchs7BWSommaire du match
170 - 2023-03-251153Oceanics5Monarchs4BLSommaire du match
171 - 2023-03-261169Chiefs4Monarchs2BLSommaire du match
173 - 2023-03-281183Monarchs1Heat4ALSommaire du match
175 - 2023-03-301197Monarchs3Oil Kings1AWSommaire du match
177 - 2023-04-011213Monarchs2Seattle4ALSommaire du match
178 - 2023-04-021224Monarchs2Comets6ALSommaire du match
180 - 2023-04-041237Oil Kings2Monarchs3BWSommaire du match
182 - 2023-04-061255Monarchs4Las Vegas6ALSommaire du match
184 - 2023-04-081272Monsters4Monarchs3BLSommaire du match
186 - 2023-04-101284Comets4Monarchs3BLSommaire du match
189 - 2023-04-131310Monarchs4Admirals5ALXSommaire du match



Capacité de l’aréna - Tendance du prix des billets - %
Niveau 1Niveau 2
Capacité20001000
Prix des billets5020
Assistance50,31627,430
Assistance PCT61.36%66.90%

Revenu
Matchs à domicile restantsAssistance moyenne - %Revenu moyen par matchRevenu annuel à ce jourCapacitéPopularité de l’équipe
0 1896 - 63.21% 74,741$3,064,400$3000100

Dépenses
Dépenses annuelles à ce jourSalaire total des joueursSalaire total moyen des joueursSalaire des entraineurs
1,058,190$ 1,101,893$ 1,111,893$ 0$
Plafond salarial par jourPlafond salarial à ce jourJoueurs Inclus dans le plafond salarialJoueurs exclut du plafond Salarial
5,852$ 1,068,228$ 0 0

Estimation
Revenus de la saison estimésJours restants de la saisonDépenses par jourDépenses de la saison estimées
0$ 0 5,799$ 0$




Monarchs Leaders statistiques (saison régulière)

# Nom du joueur GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Monarchs Leaders des statistiques des gardiens (saison régulière)

# Nom du gardien GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA

Monarchs Statistiques de l'Équipe de Carrière

TotalDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT

Monarchs Leaders statistiques (séries éliminatoires)

# Nom du joueur GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Monarchs Leaders des statistiques des gardiens (séries éliminatoires)

# Nom du gardien GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA