Monarchs

GP: 82 | W: 36 | L: 37 | OTL: 9 | P: 81
GF: 329 | GA: 381 | PP%: 21.45% | PK%: 77.62%
GM : Benoit Plouffe | Morale : 50 | Team Overall : 48
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Lauri KorpikoskiXX100.00553589716660765436515770446151050600
2Curtis LazarXXX100.00754387697256555237554867484537050570
3Brendan Leipsic (R)XX100.00493588725455465663595263483734050560
4Joseph BlandisiXX100.00553575675658365247515256484136050530
5Warren Foegele (R)X100.00513595756453354035384270483532050510
6Kenny AgostinoX100.00493580666961354235414251453936050490
7Daniel Ciampini (R)X100.00434545455742424345434345443230050440
8Mitchell Stephens (R)X100.00434545456142424345434345443230050440
9Evgeny GrachevXXX100.00308733428029373135313144453734050390
10Viktor SvedbergX100.00523588588546334035354568463532050530
11Andreas Englund (R)X100.00563588636252353135303268483734050510
12Philip LarsenX100.00473589665850354335454156474742050510
13Dennis Cholowski (R)X100.00505050506550505050505050503230050490
14Ryan Lindgren (R)X100.00454545456445454545454545453230050460
15Frederic Allard (R)X100.00434343435843434343434343433230050440
16Jesper Lindgren (R)X100.00384040404637373840383840393230050400
Scratches
1Liam O'Brien (R)X100.00564362627450353535353557483936050470
2Matthew Mistele (R)X100.00353737376435353537353537363230050380
TEAM AVERAGE100.0048426656644842434143435445383405048
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Evan Fitzpatrick (R)100.0045454576454545454545453230050470
Scratches
1Carter Hart (R)100.0045454566454545454545453230050460
2Wouter Peeters (R)100.0043434378434343434343433230050460
3Jack Lafontaine (R)100.0043434374434343434343433230050450
4Thomas Heemskerk100.0043454374424141414141403230050440
5Eamon McAdam (R)100.0041434169403939393939383230050420
TEAM AVERAGE100.004344437343434343434342323005045
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Sheldon Keefe47888045657366CAN373500,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Joseph BlandisiMonarchs (LA )C/LW824955104192209525941011930911.95%64162719.849122175177033103013446.72%242700041.28190001347
2Curtis LazarMonarchs (LA )C/LW/RW82455810320862020816639211927711.48%47139717.05813217117720241095242.74%12400001.47020129176
3Philip LarsenMonarchs (LA )D82112536-19715797386304112.79%58114914.022241220000024100.00%000000.6300000114
4Andreas EnglundMonarchs (LA )D82102535-56801018284295211.90%817288.880000000000100.00%000000.9611000153
5Viktor SvedbergMonarchs (LA )D82152035-1960011690117428112.82%79115014.034261220000024010.00%000000.6100000014
6Mitchell StephensMonarchs (LA )C8214213534156354107316813.08%94195.11000000000111050.00%49800001.6700001211
7Brendan LeipsicMonarchs (LA )LW/RW216282202142992420.69%71055.0400000000000050.00%400001.5100000111
8Evgeny GrachevMonarchs (LA )C/LW/RW820111407103010.00%81631.990000001131630042.13%17800000.1200000000
9Daniel CiampiniMonarchs (LA )LW82101-200441011210.00%0340.4200000000030055.10%4900000.5800000010
10Warren FoegeleMonarchs (LA )LW82000000010000.00%160.0800000000000033.33%900000.0011000000
Team Total or Average759151207358035430675753123838086512.20%35467828.942329521703962461763811746.91%328900041.06313013273126
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
Team Total or Average0.0000.0000.000


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract StatusType Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Link
Andreas EnglundMonarchs (LA )D211996-01-21Yes189 Lbs6 ft3NoNoNo2ELCPro & Farm825,000$82,500$0$NoLink
Brendan LeipsicMonarchs (LA )LW/RW231994-05-19Yes180 Lbs5 ft10NoNoNo2RFAPro & Farm693,000$69,300$0$NoLink
Carter HartMonarchs (LA )G191998-08-13Yes180 Lbs6 ft2NoNoNo4ELCPro & Farm792,500$79,250$0$NoLink
Curtis LazarMonarchs (LA )C/LW/RW221995-02-02No209 Lbs6 ft0NoNoNo1RFAPro & Farm925,000$92,500$0$NoLink
Daniel CiampiniMonarchs (LA )LW261990-11-25Yes185 Lbs5 ft11NoNoNo3RFAPro & Farm825,000$82,500$0$NoLink
Dennis CholowskiMonarchs (LA )D191998-02-15Yes200 Lbs6 ft1NoNoNo4ELCPro & Farm925,000$92,500$0$NoLink
Eamon McAdamMonarchs (LA )G231994-09-24Yes188 Lbs6 ft2NoNoNo2RFAPro & Farm700,000$70,000$0$NoLink
Evan FitzpatrickMonarchs (LA )G191998-01-28Yes202 Lbs6 ft3NoNoNo4ELCPro & Farm742,500$74,250$0$NoLink
Evgeny GrachevMonarchs (LA )C/LW/RW271990-02-21No225 Lbs6 ft4NoNoNo1RFAPro & Farm800,000$80,000$0$NoLink
Frederic AllardMonarchs (LA )D191997-12-27Yes184 Lbs6 ft1NoNoNo4ELCPro & Farm742,500$74,250$0$NoLink
Jack LafontaineMonarchs (LA )G191998-01-06Yes197 Lbs6 ft3NoNoNo4ELCPro & Farm700,000$70,000$0$NoLink
Jesper LindgrenMonarchs (LA )D201997-05-19Yes161 Lbs6 ft0NoNoNo3ELCPro & Farm650,000$65,000$0$NoLink
Joseph BlandisiMonarchs (LA )C/LW231994-07-18No182 Lbs6 ft0NoNoNo2RFAPro & Farm665,000$66,500$0$NoLink
Kenny AgostinoMonarchs (LA )LW251992-04-30No202 Lbs6 ft0NoNoNo3RFAPro & Farm800,000$80,000$0$NoLink
Lauri KorpikoskiMonarchs (LA )LW/RW311986-07-28No193 Lbs6 ft1YesNoNo4UFAPro & Farm1,500,000$150,000$0$NoLink
Liam O'BrienMonarchs (LA )C231994-07-29Yes215 Lbs6 ft1NoNoNo1RFAPro & Farm1,000,002$100,000$0$NoLink
Matthew MisteleMonarchs (LA )LW211995-10-17Yes190 Lbs6 ft2NoNoNo3ELCPro & Farm525,000$52,500$0$NoLink
Mitchell StephensMonarchs (LA )C201997-02-05Yes190 Lbs5 ft11NoNoNo3ELCPro & Farm825,000$82,500$0$NoLink
Philip LarsenMonarchs (LA )D271989-12-07No185 Lbs6 ft1NoNoNo1RFAPro & Farm1,600,000$160,000$0$NoLink
Ryan LindgrenMonarchs (LA )D191998-02-11Yes198 Lbs6 ft0NoNoNo4ELCPro & Farm825,000$82,500$0$NoLink
Thomas HeemskerkMonarchs (LA )G271990-04-11No200 Lbs6 ft0NoNoNo2RFAPro & Farm825,000$82,500$0$NoLink
Viktor SvedbergMonarchs (LA )D261991-05-24No238 Lbs6 ft8NoNoNo2RFAPro & Farm575,000$57,500$0$NoLink
Warren FoegeleMonarchs (LA )LW211996-04-01Yes190 Lbs6 ft2NoNoNo2ELCPro & Farm700,000$70,000$0$NoLink
Wouter PeetersMonarchs (LA )G191998-07-31Yes205 Lbs6 ft4NoNoNo4ELCPro & Farm700,000$70,000$0$NoLink
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2422.46195 Lbs6 ft12.71827,521$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Joseph BlandisiCurtis Lazar40122
230122
320122
4Mitchell Stephens10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
140122
2Viktor SvedbergPhilip Larsen30122
3Andreas Englund20122
410122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Joseph BlandisiCurtis Lazar60122
240122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
160122
2Viktor SvedbergPhilip Larsen40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Joseph Blandisi60122
2Curtis Lazar40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
160122
2Viktor SvedbergPhilip Larsen40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Joseph Blandisi6012260122
240122Viktor SvedbergPhilip Larsen40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Joseph Blandisi60122
2Curtis Lazar40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
160122
2Viktor SvedbergPhilip Larsen40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Joseph BlandisiCurtis Lazar
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Joseph BlandisiCurtis Lazar
Extra Forwards
Normal PowerPlayPenalty Kill
Daniel Ciampini, Warren Foegele, Evgeny GrachevDaniel Ciampini, Warren FoegeleEvgeny Grachev
Extra Defensemen
Normal PowerPlayPenalty Kill
Andreas Englund, , Andreas Englund,
Penalty Shots
Joseph Blandisi, , , Curtis Lazar,
Goalie
#1 : , #2 :


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals40400000821-1320200000410-620200000411-700.000815230013310586101089918959699318459498211218.18%23386.96%11078253642.51%1102270340.77%631151041.79%1779121221486341046482
2Baby Hawks311010001315-220101000811-31100000054140.6671319320013310586101119918959699311813296410220.00%12283.33%01078253642.51%1102270340.77%631151041.79%1779121221486341046482
3Bears20101000101001010000056-11000100054120.5001018280013310586106999189596993631712459111.11%6266.67%11078253642.51%1102270340.77%631151041.79%1779121221486341046482
4Bruins2010010058-31000010034-11010000024-210.2505914101331058610549918959699362251450500.00%60100.00%01078253642.51%1102270340.77%631151041.79%1779121221486341046482
5Cabaret Lady Mary Ann21100000131121010000057-21100000084420.5001321340013310586101059918959699398221246600.00%6350.00%01078253642.51%1102270340.77%631151041.79%1779121221486341046482
6Caroline210000101174110000005231000001065141.00011182900133105861089991895969936513255315533.33%11372.73%01078253642.51%1102270340.77%631151041.79%1779121221486341046482
7Chiefs311000011012-22110000067-11000000145-130.50010203000133105861099991895969939430326510330.00%16381.25%01078253642.51%1102270340.77%631151041.79%1779121221486341046482
8Chill3120000079-21010000034-12110000045-120.33371320001331058610789918959699379182256900.00%11463.64%11078253642.51%1102270340.77%631151041.79%1779121221486341046482
9Comets431000001920-122000000106421100000914-560.7501934530013310586101709918959699316046327818633.33%16287.50%01078253642.51%1102270340.77%631151041.79%1779121221486341046482
10Cougars20100001614-81010000029-71000000145-110.250610160013310586106299189596993952521337342.86%9277.78%01078253642.51%1102270340.77%631151041.79%1779121221486341046482
11Crunch2020000047-31010000023-11010000024-200.000471100133105861075991895969935820304413323.08%8275.00%01078253642.51%1102270340.77%631151041.79%1779121221486341046482
12Heat422000001114-32200000064220200000510-540.50011193000133105861013799189596993135403010314214.29%14378.57%01078253642.51%1102270340.77%631151041.79%1779121221486341046482
13Jayhawks403000101425-1120200000614-820100010811-320.2501422360013310586101279918959699317746651029222.22%20670.00%01078253642.51%1102270340.77%631151041.79%1779121221486341046482
14Las Vegas5410000025232321000001515022000000108280.8002544690013310586101879918959699315943519621419.05%23578.26%01078253642.51%1102270340.77%631151041.79%1779121221486341046482
15Manchots210000011082110000005231000000156-130.7501020300013310586107299189596993689294110220.00%11463.64%11078253642.51%1102270340.77%631151041.79%1779121221486341046482
16Marlies20200000513-81010000037-41010000026-400.00058130013310586104799189596993823520347114.29%10460.00%01078253642.51%1102270340.77%631151041.79%1779121221486341046482
17Minnesota311001001415-11000010045-1211000001010030.50014243800133105861097991895969931033034609222.22%17476.47%01078253642.51%1102270340.77%631151041.79%1779121221486341046482
18Monsters20100001710-31000000145-11010000035-210.2507121900133105861081991895969937028204810330.00%10280.00%01078253642.51%1102270340.77%631151041.79%1779121221486341046482
19Monsters312000001517-211000000514202000001016-620.333152540001331058610112991895969939931146715426.67%7185.71%01078253642.51%1102270340.77%631151041.79%1779121221486341046482
20Oceanics303000001020-1020200000713-61010000037-400.00010172700133105861086991895969931484235541200.00%17852.94%01078253642.51%1102270340.77%631151041.79%1779121221486341046482
21Oil Kings4310000018126220000009362110000099060.7501831490113310586101359918959699310920338617423.53%14285.71%01078253642.51%1102270340.77%631151041.79%1779121221486341046482
22Phantoms220000001073110000006421100000043141.0001017270013310586107799189596993532119355120.00%7357.14%01078253642.51%1102270340.77%631151041.79%1779121221486341046482
23Rocket220000001156110000005321100000062441.0001120310013310586109499189596993662012277228.57%60100.00%21078253642.51%1102270340.77%631151041.79%1779121221486341046482
24Senators2110000069-3110000004311010000026-420.500610160013310586104299189596993683023189222.22%9366.67%01078253642.51%1102270340.77%631151041.79%1779121221486341046482
25Sharks422000001819-122000000129320200000610-440.50018325000133105861018999189596993191382810718527.78%14192.86%11078253642.51%1102270340.77%631151041.79%1779121221486341046482
26Sound Tigers220000001046110000004131100000063341.00010172700133105861085991895969935726263311218.18%13192.31%01078253642.51%1102270340.77%631151041.79%1779121221486341046482
27Spiders20100100714-71000010056-11010000028-610.2507111800133105861060991895969939720264712216.67%13284.62%01078253642.51%1102270340.77%631151041.79%1779121221486341046482
28Stars30100002913-41010000046-22000000257-220.33391524001331058610101991895969938629266110330.00%13376.92%01078253642.51%1102270340.77%631151041.79%1779121221486341046482
29Thunder2100001013103100000106511100000075241.00013233600133105861061991895969935915204713430.77%10370.00%01078253642.51%1102270340.77%631151041.79%1779121221486341046482
Total82313702336329381-5241191601311169178-941122101025160203-43810.494329569898111331058610291699189596993299184183017263317121.45%3628177.62%71078253642.51%1102270340.77%631151041.79%1779121221486341046482
31Wolf Pack211000001091110000006331010000046-220.50010182800133105861010699189596993883041449111.11%100100.00%01078253642.51%1102270340.77%631151041.79%1779121221486341046482
_Since Last GM Reset82313702336329381-5241191601311169178-941122101025160203-43810.494329569898111331058610291699189596993299184183017263317121.45%3628177.62%71078253642.51%1102270340.77%631151041.79%1779121221486341046482
_Vs Conference36111901212136171-351877002117782-518412010015989-30300.41713624037610133105861012159918959699313694133847411502617.33%1704076.47%51078253642.51%1102270340.77%631151041.79%1779121221486341046482
_Vs Division16310001006377-14824001003041-11816000003336-370.2196310817110133105861054099189596993588192152299671522.39%641773.44%21078253642.51%1102270340.77%631151041.79%1779121221486341046482

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
8281W132956989829162991841830172611
All Games
GPWLOTWOTL SOWSOLGFGA
8231372336329381
Home Games
GPWLOTWOTL SOWSOLGFGA
4119161311169178
Visitor Games
GPWLOTWOTL SOWSOLGFGA
4112211025160203
Last 10 Games
WLOTWOTL SOWSOL
550000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
3317121.45%3628177.62%7
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
991895969931331058610
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
1078253642.51%1102270340.77%631151041.79%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
1779121221486341046482


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
3 - 2018-10-0516Sharks4Monarchs5WBoxScore
5 - 2018-10-0731Cougars9Monarchs2LBoxScore
7 - 2018-10-0940Monarchs3Oceanics7LBoxScore
9 - 2018-10-1151Monarchs6Rocket2WBoxScore
11 - 2018-10-1359Monarchs2Senators6LBoxScore
13 - 2018-10-1574Monarchs2Marlies6LBoxScore
16 - 2018-10-1897Sound Tigers1Monarchs4WBoxScore
18 - 2018-10-20105Crunch3Monarchs2LBoxScore
21 - 2018-10-23128Monarchs2Stars3LXXBoxScore
23 - 2018-10-25138Monarchs4Minnesota6LBoxScore
26 - 2018-10-28159Wolf Pack3Monarchs6WBoxScore
30 - 2018-11-01190Phantoms4Monarchs6WBoxScore
32 - 2018-11-03205Monsters5Monarchs4LXXBoxScore
35 - 2018-11-06222Admirals5Monarchs4LBoxScore
37 - 2018-11-08235Minnesota5Monarchs4LXBoxScore
39 - 2018-11-10252Heat3Monarchs4WBoxScore
42 - 2018-11-13271Marlies7Monarchs3LBoxScore
45 - 2018-11-16288Monarchs5Baby Hawks4WBoxScore
46 - 2018-11-17300Monarchs1Chill4LBoxScore
48 - 2018-11-19313Monarchs4Chiefs5LXXBoxScore
50 - 2018-11-21331Monsters1Monarchs5WBoxScore
53 - 2018-11-24357Comets4Monarchs6WBoxScore
54 - 2018-11-25361Oil Kings3Monarchs6WBoxScore
56 - 2018-11-27376Monarchs7Comets5WBoxScore
58 - 2018-11-29388Monarchs6Oil Kings3WBoxScore
59 - 2018-11-30394Monarchs3Heat6LBoxScore
61 - 2018-12-02412Caroline2Monarchs5WBoxScore
63 - 2018-12-04425Jayhawks6Monarchs3LBoxScore
65 - 2018-12-06439Spiders6Monarchs5LXBoxScore
67 - 2018-12-08445Las Vegas7Monarchs5LBoxScore
69 - 2018-12-10462Monarchs4Cougars5LXXBoxScore
70 - 2018-12-11466Monarchs2Crunch4LBoxScore
72 - 2018-12-13480Monarchs3Monsters5LBoxScore
74 - 2018-12-15499Monarchs5Manchots6LXXBoxScore
77 - 2018-12-18527Oceanics8Monarchs3LBoxScore
81 - 2018-12-22549Monarchs4Sharks6LBoxScore
82 - 2018-12-23564Monarchs5Las Vegas4WBoxScore
86 - 2018-12-27578Jayhawks8Monarchs3LBoxScore
88 - 2018-12-29585Las Vegas6Monarchs7WBoxScore
90 - 2018-12-31607Monarchs5Monsters9LBoxScore
91 - 2019-01-01614Monarchs5Las Vegas4WBoxScore
93 - 2019-01-03628Thunder5Monarchs6WXXBoxScore
95 - 2019-01-05643Oil Kings0Monarchs3WBoxScore
97 - 2019-01-07656Monarchs2Sharks4LBoxScore
100 - 2019-01-10682Senators3Monarchs4WBoxScore
102 - 2019-01-12698Manchots2Monarchs5WBoxScore
105 - 2019-01-15717Monarchs6Minnesota4WBoxScore
107 - 2019-01-17732Monarchs3Stars4LXXBoxScore
109 - 2019-01-19741Monarchs5Monsters7LBoxScore
111 - 2019-01-21757Chiefs2Monarchs4WBoxScore
123 - 2019-02-02795Monarchs6Sound Tigers3WBoxScore
125 - 2019-02-04806Monarchs4Wolf Pack6LBoxScore
126 - 2019-02-05812Monarchs2Spiders8LBoxScore
128 - 2019-02-07826Monarchs4Phantoms3WBoxScore
130 - 2019-02-09838Monarchs2Bruins4LBoxScore
132 - 2019-02-11861Monarchs5Bears4WXBoxScore
135 - 2019-02-14886Comets2Monarchs4WBoxScore
137 - 2019-02-16903Bruins4Monarchs3LXBoxScore
139 - 2019-02-18914Bears6Monarchs5LBoxScore
142 - 2019-02-21936Monarchs3Chill1WBoxScore
144 - 2019-02-23949Monarchs8Cabaret Lady Mary Ann4WBoxScore
146 - 2019-02-25964Monarchs7Thunder5WBoxScore
147 - 2019-02-26972Monarchs6Caroline5WXXBoxScore
Trade Deadline --- Trades can’t be done after this day is simulated!
149 - 2019-02-28990Stars6Monarchs4LBoxScore
151 - 2019-03-021000Baby Hawks7Monarchs3LBoxScore
154 - 2019-03-051028Rocket3Monarchs5WBoxScore
156 - 2019-03-071042Chiefs5Monarchs2LBoxScore
158 - 2019-03-091056Monarchs2Jayhawks6LBoxScore
159 - 2019-03-101064Monarchs1Admirals5LBoxScore
163 - 2019-03-141091Chill4Monarchs3LBoxScore
165 - 2019-03-161101Cabaret Lady Mary Ann7Monarchs5LBoxScore
167 - 2019-03-181120Oceanics5Monarchs4LBoxScore
170 - 2019-03-211147Sharks5Monarchs7WBoxScore
172 - 2019-03-231163Admirals5Monarchs0LBoxScore
174 - 2019-03-251176Monarchs2Heat4LBoxScore
175 - 2019-03-261182Monarchs3Oil Kings6LBoxScore
177 - 2019-03-281195Monarchs2Comets9LBoxScore
179 - 2019-03-301214Baby Hawks4Monarchs5WXBoxScore
181 - 2019-04-011228Heat1Monarchs2WBoxScore
182 - 2019-04-021238Monarchs6Jayhawks5WXXBoxScore
185 - 2019-04-051256Monarchs3Admirals6LBoxScore
186 - 2019-04-061270Las Vegas2Monarchs3WBoxScore



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price5020
Attendance60,54130,929
Attendance PCT73.83%75.44%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
0 2231 - 74.37% 88,918$3,645,630$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
2,060,665$ 1,986,050$ 1,986,050$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
10,621$ 2,060,665$ 24 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 0 10,621$ 0$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
201882313702336329381-5241191601311169178-941122101025160203-4381329569898111331058610291699189596993299184183017263317121.45%3628177.62%71078253642.51%1102270340.77%631151041.79%1779121221486341046482
Total Regular Season82313702336329381-5241191601311169178-941122101025160203-4381329569898111331058610291699189596993299184183017263317121.45%3628177.62%71078253642.51%1102270340.77%631151041.79%1779121221486341046482