Crunch

GP: 82 | W: 33 | L: 42 | OTL: 7 | P: 73
GF: 265 | GA: 339 | PP%: 21.79% | PK%: 75.00%
DG: Joel Pelletier | Morale : 50 | Moyenne d'Équipe : 45
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Michael Dal Colle (R)X100.00493595637156354138354660483532050490
2Joey HishonX100.00423592724941304245384557453532050480
3William Bitten (R)XX100.00434343434943434343434343433230050430
4Mikhail Maltsev (R)X100.00404040406940404040404040403230050420
5Anatoli Golyshev (R)XX100.00404040405040404040404040403230050410
6Eric WellwoodX100.00308634495529423135313155454138050410
7Mackenzie MacEachern (R)X100.00394343435637373943393943413230050410
8Austin Wuthrich (R)X100.00364040406335353640363640383230050400
9Eetu Tuulola (R)X100.00373737377937373737373737373230050400
10Patrick Harper (R)X100.00373737374437373737373737373230050380
11Jamie DevaneX100.00308535357629363135313135453532050370
12Chris ButlerX100.00483587666460353335333267486051050540
13Seth HelgesonX100.00605064597057344035354573473734050540
14Anthony DeAngelo (R)X100.00483582655567545156544753563734050530
15Jarred TinordiX100.00585658588053333135323065464239050520
16Jesse BlackerX100.00433592636133293135313165453532050480
17Arvid Henrikson (R)X100.00373737375537373737373737373230050390
Rayé
1Jori LehteraXXX97.04583587707466755885575860454940050600
2Ryan GarbuttXX100.00574378686655454739435164444843050540
3Eric GrybaX100.00656162607566484335434373485044050580
4Ryan JohnstonX100.00483582735448333035293163473734050500
5Patrick McNally (R)X100.00364040405635353640363640383230050400
6Matthew KonanX100.00308733336129413135313133453532050370
MOYENNE D'ÉQUIPE99.8744475852624540384138395144383405046
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Adam Morrison (R)100.0041434172403939393939383230050430
2Callum Booth (R)100.0039403969393838383838373230050410
Rayé
1Connor Knapp100.0040454479403838393737363532050430
2Mike Lee100.0038403869373636363636353230050400
MOYENNE D'ÉQUIPE100.004042417239383838383837333105042
Nom du Coach PH DF OF PD EX LD PO CNT Âge Contrat Salaire


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur Nom de l'ÉquipePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Ryan GarbuttCrunch (Buf)C/LW7434417574801331662647020212.88%29136018.391112235119930382003445.97%143800001.1014000691
2Chris ButlerCrunch (Buf)D82155065-724086123195621097.69%160188723.02614201152401015296220.00%100100.6911000229
3Michael Dal ColleCrunch (Buf)LW79293362-78043902175514813.36%27132116.7378155720802201362255.38%18600010.9423000444
4Joey HishonCrunch (Buf)C822435599140241581805911813.33%14120914.76110112014401121154145.42%122400000.9822000252
5Jarred TinordiCrunch (Buf)D8294049-12151352438684308210.71%105145917.80369281341011146410.00%000000.6700214103
6Seth HelgesonCrunch (Buf)D51202444-1584015360112407617.86%104106020.79101121641391012156210.00%000010.8300000321
7Ryan JohnstonCrunch (Buf)D79123244-7320558887305013.79%105140217.75314311060330188200.00%000000.6300000013
8Eric GrybaCrunch (Buf)D38122739-4107151606793385812.90%6985122.4071017531110004125000.00%000000.9211021231
9Anthony DeAngeloCrunch (Buf)D35102737-7180234665225015.38%3973521.0181220511010000134000.00%000001.0111000242
10William BittenCrunch (Buf)C/RW82112031-9831516589133251008.27%6127515.551910242380111210043.63%53400000.4901011201
11Michal KempnyBuffaloD579202914180324781224711.11%4291416.055813341300000114200.00%000000.6300000113
12Jesse BlackerCrunch (Buf)D8272027-24140281137829488.97%82100612.2804416481012741040.93%25900000.5400000001
13Tyson JostBuffaloC/LW10781538082441202517.07%321421.411237320112491062.20%20900011.4012000110
14Mikhail MaltsevCrunch (Buf)LW826814176951071537142416.22%7105912.920001300110322037.50%6400000.2600001101
15Anatoli GolyshevCrunch (Buf)LW/RW825813-15501016083592114.29%4121714.84246112120000120146.99%8300000.2100011111
16Austin WuthrichCrunch (Buf)RW828412-1338067163872021.05%488210.76000012000000052.38%4200000.2700000010
17Eric WellwoodCrunch (Buf)LW821910-27492542545223341.92%2487210.640001100000910040.22%9200000.2300302000
18Eetu TuulolaCrunch (Buf)RW47358-2839568183212319.38%751610.9900002000010046.60%10300000.3100001000
19Patrick McNallyCrunch (Buf)D79437-26835157142010620.00%3592911.771013150000740154.55%1100000.1500001100
20Jamie DevaneCrunch (Buf)LW30112-1423518662816.67%032710.930001200000290030.56%3600000.1200001000
21Matthew KonanCrunch (Buf)D6011000800100.00%1579.560000000000000.00%000000.3500000000
22Arvid HenriksonCrunch (Buf)D6000040231020.00%26711.280001100006000.00%000000.0000000000
Stats d'équipe Total ou en Moyenne1329227416643-165964120178212911851580125912.26%8692063015.526611117756921417916272009251346.15%428200130.629155513293433
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien Nom de l'ÉquipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Adam MorrisonCrunch (Buf)65253060.8844.1036872025221710500.61118650043
2Connor KnappCrunch (Buf)80400.9193.0825300131610000.0000045000
Stats d'équipe Total ou en Moyenne73253460.8864.0439412026523320500.611186545043


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du Joueur Nom de l'ÉquipePOS Âge Date de Naissance Nouveau Joueur Poids Taille Non-Échange Disponible pour Échange Ballotage Forcé Contrat StatusType Salaire Actuel Cap Salariale Cap Salariale Restant Exclus du Cap Salarial Link
Adam MorrisonCrunch (Buf)G261991-02-09Yes194 Lbs6 ft3NoNoNo2Avec RestrictionPro & Farm700,000$70,000$0$NoLien
Anatoli GolyshevCrunch (Buf)LW/RW221995-02-14Yes172 Lbs5 ft9NoNoNo4Avec RestrictionPro & Farm650,000$65,000$0$NoLien
Anthony DeAngeloCrunch (Buf)D211995-10-24Yes181 Lbs5 ft11NoNoNo2Contrat d'EntréePro & Farm925,000$92,500$0$NoLien
Arvid HenriksonCrunch (Buf)D191998-02-23Yes176 Lbs6 ft3NoNoNo4Contrat d'EntréePro & Farm525,000$52,500$0$NoLien
Austin WuthrichCrunch (Buf)RW241993-08-11Yes190 Lbs6 ft1NoNoNo2Avec RestrictionPro & Farm650,000$65,000$0$NoLien
Callum BoothCrunch (Buf)G201997-05-21Yes187 Lbs6 ft3NoNoNo3Contrat d'EntréePro & Farm650,000$65,000$0$NoLien
Chris ButlerCrunch (Buf)D301986-10-27No196 Lbs6 ft1NoNoNo2Sans RestrictionPro & Farm600,000$60,000$0$NoLien
Connor KnappCrunch (Buf)G271990-05-01No206 Lbs6 ft6NoNoNo3Avec RestrictionPro & Farm650,000$65,000$0$NoLien
Eetu TuulolaCrunch (Buf)RW191998-03-17Yes225 Lbs6 ft3NoNoNo4Contrat d'EntréePro & Farm525,000$52,500$0$NoLien
Eric GrybaCrunch (Buf)D291988-04-14No222 Lbs6 ft4NoNoNo6Sans RestrictionPro & Farm2,300,000$230,000$0$NoLien
Eric WellwoodCrunch (Buf)LW271990-03-06No180 Lbs5 ft11NoNoNo3Avec RestrictionPro & Farm1,000,000$100,000$0$NoLien
Jamie DevaneCrunch (Buf)LW261991-02-20No217 Lbs6 ft5NoNoNo4Avec RestrictionPro & Farm650,000$65,000$0$NoLien
Jarred TinordiCrunch (Buf)D251992-02-20No230 Lbs6 ft6NoNoNo2Avec RestrictionPro & Farm500,000$50,000$0$NoLien
Jesse BlackerCrunch (Buf)D261991-04-19No190 Lbs6 ft1NoNoNo1Avec RestrictionPro & Farm550,000$55,000$0$NoLien
Joey HishonCrunch (Buf)C251991-10-20No170 Lbs5 ft10NoNoNo1Avec RestrictionPro & Farm851,000$85,100$0$NoLien
Jori LehteraCrunch (Buf)C/LW/RW291987-12-23No212 Lbs6 ft2YesNoNo6Sans RestrictionPro & Farm2,050,000$2,050,000$0$NoLien
Mackenzie MacEachernCrunch (Buf)LW231994-03-09Yes180 Lbs6 ft2NoNoNo2Avec RestrictionPro & Farm700,000$70,000$0$NoLien
Matthew KonanCrunch (Buf)D261991-09-03No186 Lbs6 ft4NoNoNo3Avec RestrictionPro & Farm500,000$50,000$0$NoLien
Michael Dal ColleCrunch (Buf)LW211996-06-20Yes204 Lbs6 ft3NoNoNo2Contrat d'EntréePro & Farm925,000$92,500$0$NoLien
Mike LeeCrunch (Buf)G271990-10-05No190 Lbs6 ft1NoNoNo2Avec RestrictionPro & Farm650,000$65,000$0$NoLien
Mikhail MaltsevCrunch (Buf)LW191998-03-12Yes198 Lbs6 ft3NoNoNo4Contrat d'EntréePro & Farm650,000$65,000$0$NoLien
Patrick HarperCrunch (Buf)C191998-07-29Yes160 Lbs5 ft9NoNoNo4Contrat d'EntréePro & Farm525,000$52,500$0$NoLien
Patrick McNallyCrunch (Buf)D251991-12-04Yes180 Lbs6 ft2NoNoNo2Avec RestrictionPro & Farm700,000$70,000$0$NoLien
Ryan GarbuttCrunch (Buf)C/LW321985-08-12No195 Lbs6 ft0NoNoNo4Sans RestrictionPro & Farm1,750,000$175,000$0$NoLien
Ryan JohnstonCrunch (Buf)D251992-02-14No180 Lbs5 ft10NoNoNo2Avec RestrictionPro & Farm1,667,000$166,700$0$NoLien
Seth HelgesonCrunch (Buf)D261990-10-08No210 Lbs6 ft4NoNoNo1Avec RestrictionPro & Farm595,000$59,500$0$NoLien
William BittenCrunch (Buf)C/RW191998-07-10Yes170 Lbs5 ft10NoNoNo4Contrat d'EntréePro & Farm700,000$70,000$0$NoLien
Joueurs TotalÂge MoyenPoids MoyenTaille MoyenneContrat MoyenSalaire Moyen 1e Année
2724.33193 Lbs6 ft22.93856,963$



Attaque à 5 contre 5
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1William Bitten40122
2Michael Dal ColleAnatoli Golyshev30122
3Mikhail MaltsevJoey HishonAustin Wuthrich20122
4Eric WellwoodJesse Blacker10122
Défense à 5 contre 5
Ligne #DéfenseDéfense% TempsPHYDFOF
1Chris Butler40122
2Seth HelgesonAnthony DeAngelo30122
3Jarred Tinordi20122
4Chris Butler10122
Attaque en Avantage Numérique
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1William Bitten60122
2Michael Dal ColleAnatoli Golyshev40122
Défense en Avantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Chris Butler60122
2Seth HelgesonAnthony DeAngelo40122
Attaque à 4 en Désavantage Numérique
Ligne #CentreAilier% TempsPHYDFOF
160122
2Michael Dal Colle40122
Défense à 4 en Désavantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Chris Butler60122
2Seth HelgesonAnthony DeAngelo40122
3 joueurs en Désavantage Numérique
Ligne #Ailier% TempsPHYDFOFDéfenseDéfense% TempsPHYDFOF
160122Chris Butler60122
240122Seth HelgesonAnthony DeAngelo40122
Attaque à 4 contre 4
Ligne #CentreAilier% TempsPHYDFOF
160122
2Michael Dal Colle40122
Défense à 4 contre 4
Ligne #DéfenseDéfense% TempsPHYDFOF
1Chris Butler60122
2Seth HelgesonAnthony DeAngelo40122
Attaque Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
William BittenChris Butler
Défense Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
William BittenChris Butler
Attaquants Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Joey Hishon, Mikhail Maltsev, Eric WellwoodJoey Hishon, Mikhail MaltsevEric Wellwood
Défenseurs Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Jarred Tinordi, , Jesse BlackerJarred Tinordi, Jesse Blacker
Tirs de Pénalité
, , , Michael Dal Colle, Joey Hishon
Gardien
#1 : , #2 :


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
LigueDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals20000020862100000104311000001043141.00081018001107969145771661870150581610429111.11%5180.00%1958221443.27%1168267243.71%598141842.17%1763113020976551114541
2Baby Hawks2020000049-51010000034-11010000015-400.0004711001107969143071661870150722424485120.00%12375.00%0958221443.27%1168267243.71%598141842.17%1763113020976551114541
3Bears303000001018-81010000024-220200000814-600.0001018280011079691460716618701501315032847228.57%16381.25%0958221443.27%1168267243.71%598141842.17%1763113020976551114541
4Bruins422000001112-1220000008532020000037-440.500112031001107969141247166187015010428479219315.79%20290.00%0958221443.27%1168267243.71%598141842.17%1763113020976551114541
5Cabaret Lady Mary Ann413000001621-52110000069-3202000001012-220.2501629450011079691411071661870150165504012413215.38%20670.00%0958221443.27%1168267243.71%598141842.17%1763113020976551114541
6Caroline321000001293110000003122110000098140.6671221330011079691478716618701508720407318422.22%18288.89%1958221443.27%1168267243.71%598141842.17%1763113020976551114541
7Chiefs21100000770110000005321010000024-220.500712190011079691439716618701508424282711327.27%14471.43%0958221443.27%1168267243.71%598141842.17%1763113020976551114541
8Chill2010010059-41000010045-11010000014-310.2505712001107969144771661870150621125436233.33%11281.82%1958221443.27%1168267243.71%598141842.17%1763113020976551114541
9Comets211000009901010000035-21100000064220.5009162500110796914607166187015046221643800.00%8275.00%1958221443.27%1168267243.71%598141842.17%1763113020976551114541
10Cougars421001001517-22110000057-2210001001010050.62515284300110796914997166187015018858779113323.08%25676.00%1958221443.27%1168267243.71%598141842.17%1763113020976551114541
11Heat2020000026-41010000013-21010000013-200.00024600110796914327166187015075272438400.00%12283.33%0958221443.27%1168267243.71%598141842.17%1763113020976551114541
12Jayhawks20200000010-101010000005-51010000005-500.00000000110796914357166187015093233256300.00%10460.00%0958221443.27%1168267243.71%598141842.17%1763113020976551114541
13Las Vegas22000000523110000002111100000031241.0005813001107969143371661870150501314336116.67%7271.43%0958221443.27%1168267243.71%598141842.17%1763113020976551114541
14Manchots311001001415-120100100611-51100000084430.500142236001107969147371661870150823341695120.00%17758.82%0958221443.27%1168267243.71%598141842.17%1763113020976551114541
15Marlies403010001219-720200000612-62010100067-120.250122133001107969141037166187015015350628226830.77%19668.42%0958221443.27%1168267243.71%598141842.17%1763113020976551114541
16Minnesota2010001089-1100000105411010000035-220.50081119001107969144271661870150721520475240.00%10190.00%0958221443.27%1168267243.71%598141842.17%1763113020976551114541
17Monarchs22000000743110000004221100000032141.00071320001107969145871661870150752640488225.00%13376.92%1958221443.27%1168267243.71%598141842.17%1763113020976551114541
18Monsters31100100812-4110000004312010010049-530.50081018001107969148171661870150932824811715.88%12466.67%0958221443.27%1168267243.71%598141842.17%1763113020976551114541
19Monsters2110000046-2110000003211010000014-320.5004711001107969143371661870150632345411000.00%15473.33%0958221443.27%1168267243.71%598141842.17%1763113020976551114541
20Oceanics20200000513-81010000016-51010000047-300.000591400110796914417166187015087231440300.00%6350.00%0958221443.27%1168267243.71%598141842.17%1763113020976551114541
21Oil Kings21000010853100000104311100000042241.00081422001107969143971661870150571819572150.00%7271.43%0958221443.27%1168267243.71%598141842.17%1763113020976551114541
22Phantoms31200000711-4211000005501010000026-420.33371320001107969146871661870150942924755360.00%12650.00%0958221443.27%1168267243.71%598141842.17%1763113020976551114541
23Rocket412010001317-421100000910-12010100047-340.50013223500110796914817166187015012938609513323.08%23482.61%0958221443.27%1168267243.71%598141842.17%1763113020976551114541
24Senators41200100913-4210001007612020000027-530.37591524001107969141077166187015010332398518422.22%17288.24%0958221443.27%1168267243.71%598141842.17%1763113020976551114541
25Sharks20200000814-61010000058-31010000036-300.000813210011079691454716618701501143233636116.67%14657.14%0958221443.27%1168267243.71%598141842.17%1763113020976551114541
26Sound Tigers311000011112-1210000017701010000045-130.50011182900110796914101716618701506130306417317.65%14471.43%0958221443.27%1168267243.71%598141842.17%1763113020976551114541
27Spiders311001001214-21010000035-22100010099030.50012213300110796914847166187015011322477113538.46%21576.19%1958221443.27%1168267243.71%598141842.17%1763113020976551114541
28Stars22000000835110000003211100000051441.000815230011079691472716618701506613123716318.75%60100.00%0958221443.27%1168267243.71%598141842.17%1763113020976551114541
29Thunder403000101322-920100010711-420200000611-520.25013203300110796914927166187015018547479913430.77%21576.19%0958221443.27%1168267243.71%598141842.17%1763113020976551114541
Total82264202651265339-7441161700341134163-2941102502310131176-45730.445265450715001107969142063716618701502914863100619343126821.79%42410675.00%7958221443.27%1168267243.71%598141842.17%1763113020976551114541
31Wolf Pack321000001415-121100000911-21100000054140.667142640001107969141307166187015015238408613538.46%19573.68%0958221443.27%1168267243.71%598141842.17%1763113020976551114541
_Since Last GM Reset256130231081113-321144002103645-91429021004568-23210.4208113721800110796914652716618701508912653175781103330.00%1334069.92%1958221443.27%1168267243.71%598141842.17%1763113020976551114541
_Vs Conference35141701120111130-191787000205259-718610011005971-12350.500111194305001107969147837166187015012473684518101272318.11%1874277.54%3958221443.27%1168267243.71%598141842.17%1763113020976551114541
_Vs Division1454010004156-15732000002426-2722010001730-13120.42941681090011079691430471661870150506133168283561119.64%741777.03%1958221443.27%1168267243.71%598141842.17%1763113020976551114541

Total Pour les Joueurs
Matchs JouésPointsSéquenceButsPassesPointsTirs PourTirs ContreTirs BloquésMinutes de PénalitéMises en ÉchecButs en Filet DésertBlanchissage
8273W2265450715206329148631006193400
Tous les Matchs
GPWLOTWOTL SOWSOLGFGA
8226422651265339
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
4116170341134163
Matchs Éxtérieurs
GPWLOTWOTL SOWSOLGFGA
4110252310131176
Derniers 10 Matchs
WLOTWOTL SOWSOL
540100
Tentatives en Avantage NumériqueButs en Avantage Numérique% en Avantage NumériqueTentatives en Désavantage NumériqueButs Contre en Désavantage Numérique% en Désavantage NumériqueButs Pour en Désavantage Numérique
3126821.79%42410675.00%7
Tirs en 1e PériodeTirs en 2e PériodeTirs en 3e PériodeTirs en 4e PériodeButs en 1e PériodeButs en 2e PériodeButs en 3e PériodeButs en 4e Période
71661870150110796914
Mises en Jeu
Gagnées en Zone OffensiveTotal en Zone Offensive% Gagnées en Zone Offensive Gagnées en Zone DéfensiveTotal en Zone Défensive% Gagnées en Zone DéfensiveGagnées en Zone NeutreTotal en Zone Neutre% Gagnées en Zone Neutre
958221443.27%1168267243.71%598141842.17%
Temps Avec la Rondelle
En Zone OffensiveContrôle en Zone OffensiveEn Zone DéfensiveContrôle en Zone DéfensiveEn Zone NeutreContrôle en Zone Neutre
1763113020976551114541


Derniers Match Joués
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe Visiteuse Score Équipe Locale Score ST OT SO RI Lien
2 - 2018-10-045Bruins4Crunch6WSommaire du Match
4 - 2018-10-0619Wolf Pack6Crunch7WSommaire du Match
6 - 2018-10-0834Las Vegas1Crunch2WSommaire du Match
9 - 2018-10-1146Monsters2Crunch3WSommaire du Match
11 - 2018-10-1369Crunch0Jayhawks5LSommaire du Match
14 - 2018-10-1685Crunch3Las Vegas1WSommaire du Match
16 - 2018-10-1898Crunch3Sharks6LSommaire du Match
18 - 2018-10-20105Crunch3Monarchs2WSommaire du Match
19 - 2018-10-21117Crunch4Admirals3WXXSommaire du Match
23 - 2018-10-25135Rocket7Crunch5LSommaire du Match
25 - 2018-10-27154Crunch3Monsters4LXSommaire du Match
28 - 2018-10-30167Heat3Crunch1LSommaire du Match
30 - 2018-11-01183Crunch2Senators3LSommaire du Match
32 - 2018-11-03195Senators4Crunch3LXSommaire du Match
33 - 2018-11-04208Crunch5Wolf Pack4WSommaire du Match
37 - 2018-11-08230Crunch0Rocket4LSommaire du Match
39 - 2018-11-10242Comets5Crunch3LSommaire du Match
42 - 2018-11-13264Thunder8Crunch3LSommaire du Match
45 - 2018-11-16287Crunch4Oceanics7LSommaire du Match
46 - 2018-11-17294Crunch3Minnesota5LSommaire du Match
48 - 2018-11-19310Crunch8Manchots4WSommaire du Match
50 - 2018-11-21318Phantoms3Crunch2LSommaire du Match
52 - 2018-11-23335Rocket3Crunch4WSommaire du Match
53 - 2018-11-24351Crunch4Cougars5LXSommaire du Match
56 - 2018-11-27367Sharks8Crunch5LSommaire du Match
58 - 2018-11-29385Crunch3Thunder5LSommaire du Match
59 - 2018-11-30390Crunch4Cabaret Lady Mary Ann5LSommaire du Match
62 - 2018-12-03414Crunch1Chill4LSommaire du Match
63 - 2018-12-04416Marlies5Crunch2LSommaire du Match
67 - 2018-12-08444Phantoms2Crunch3WSommaire du Match
70 - 2018-12-11466Monarchs2Crunch4WSommaire du Match
72 - 2018-12-13479Jayhawks5Crunch0LSommaire du Match
74 - 2018-12-15500Crunch4Bears7LSommaire du Match
75 - 2018-12-16508Crunch2Bruins5LSommaire du Match
77 - 2018-12-18517Cabaret Lady Mary Ann6Crunch2LSommaire du Match
80 - 2018-12-21543Crunch4Bears7LSommaire du Match
81 - 2018-12-22552Admirals3Crunch4WXXSommaire du Match
86 - 2018-12-27572Crunch2Chiefs4LSommaire du Match
88 - 2018-12-29587Bruins1Crunch2WSommaire du Match
90 - 2018-12-31602Sound Tigers2Crunch3WSommaire du Match
93 - 2019-01-03623Cabaret Lady Mary Ann3Crunch4WSommaire du Match
95 - 2019-01-05638Crunch1Bruins2LSommaire du Match
98 - 2019-01-08658Spiders5Crunch3LSommaire du Match
101 - 2019-01-11683Crunch6Caroline1WSommaire du Match
102 - 2019-01-12689Thunder3Crunch4WXXSommaire du Match
104 - 2019-01-14710Crunch4Oil Kings2WSommaire du Match
106 - 2019-01-16723Crunch1Heat3LSommaire du Match
108 - 2019-01-18739Crunch6Comets4WSommaire du Match
119 - 2019-01-29775Crunch1Monsters5LSommaire du Match
120 - 2019-01-30777Crunch5Stars1WSommaire du Match
122 - 2019-02-01781Baby Hawks4Crunch3LSommaire du Match
126 - 2019-02-05810Minnesota4Crunch5WXXSommaire du Match
128 - 2019-02-07823Caroline1Crunch3WSommaire du Match
130 - 2019-02-09839Cougars2Crunch5WSommaire du Match
131 - 2019-02-10855Oceanics6Crunch1LSommaire du Match
133 - 2019-02-12864Sound Tigers5Crunch4LXXSommaire du Match
136 - 2019-02-15888Wolf Pack5Crunch2LSommaire du Match
138 - 2019-02-17906Crunch5Spiders6LXSommaire du Match
140 - 2019-02-19916Crunch6Cabaret Lady Mary Ann7LSommaire du Match
142 - 2019-02-21935Crunch3Thunder6LSommaire du Match
144 - 2019-02-23945Bears4Crunch2LSommaire du Match
146 - 2019-02-25962Crunch2Marlies4LSommaire du Match
147 - 2019-02-26970Crunch2Phantoms6LSommaire du Match
Date Limite d'Échange --- Les échange ne peuvent plus se faire après la simulation de cette journée!
150 - 2019-03-01991Manchots4Crunch3LXSommaire du Match
151 - 2019-03-021002Crunch4Marlies3WXSommaire du Match
153 - 2019-03-041017Oil Kings3Crunch4WXXSommaire du Match
156 - 2019-03-071038Crunch1Baby Hawks5LSommaire du Match
158 - 2019-03-091048Crunch1Monsters4LSommaire du Match
161 - 2019-03-121072Stars2Crunch3WSommaire du Match
163 - 2019-03-141083Manchots7Crunch3LSommaire du Match
165 - 2019-03-161107Crunch3Caroline7LSommaire du Match
166 - 2019-03-171112Chiefs3Crunch5WSommaire du Match
169 - 2019-03-201132Marlies7Crunch4LSommaire du Match
172 - 2019-03-231156Crunch4Rocket3WXSommaire du Match
174 - 2019-03-251170Crunch4Spiders3WSommaire du Match
175 - 2019-03-261181Crunch0Senators4LSommaire du Match
177 - 2019-03-281189Cougars5Crunch0LSommaire du Match
179 - 2019-03-301209Crunch4Sound Tigers5LSommaire du Match
180 - 2019-03-311218Monsters3Crunch4WSommaire du Match
182 - 2019-04-021229Chill5Crunch4LXSommaire du Match
184 - 2019-04-041242Senators2Crunch4WSommaire du Match
186 - 2019-04-061261Crunch6Cougars5WSommaire du Match



Capacité de l'Aréna - Tendance du Prix des Billets - %
Niveau 1Niveau 2
Capacité de l'Aréna20001000
Prix des Billets5020
Assistance61,77230,422
Assistance PCT75.33%74.20%

Revenus
Matchs à domicile RestantsAssistance Moyenne - %Revenus Moyen par MatchRevenus Annuels à ce JourCapacité de l'ArénaPopularité de l'Équipe
0 2249 - 74.95% 90,172$3,697,040$3000100

Dépenses
Dépenses Annuelles à Ce JourSalaire Total des JoueursSalaire Total Moyen des JoueursSalaire des Coachs
2,450,661$ 4,158,800$ 4,158,800$ 0$
Cap Salarial Par JourCap salarial à ce jourJoueurs Inclut dans la Cap SalarialeJoueurs Exclut dans la Cap Salariale
22,240$ 2,450,661$ 27 0

Éstimation
Revenus de la Saison ÉstimésJours Restants de la SaisonDépenses Par JourDépenses de la Saison Éstimées
0$ 0 22,240$ 0$




LigueDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
201882264202651265339-7441161700341134163-2941102502310131176-4573265450715001107969142063716618701502914863100619343126821.79%42410675.00%7958221443.27%1168267243.71%598141842.17%1763113020976551114541
Total Saison Régulière82264202651265339-7441161700341134163-2941102502310131176-4573265450715001107969142063716618701502914863100619343126821.79%42410675.00%7958221443.27%1168267243.71%598141842.17%1763113020976551114541