Bears

GP: 82 | W: 53 | L: 24 | OTL: 5 | P: 111
GF: 357 | GA: 287 | PP%: 25.21% | PK%: 83.10%
DG: David Arseneault | Morale : 50 | Moyenne d'Équipe : 48
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Ryan CarpenterXX100.00634388756958465483466266484136050580
2Peter HollandX100.00545085737163485282525265644844050570
3Gemel Smith (R)XXX100.00514383696058555546486168483734050560
4Phillip Di GiuseppeXX100.00694386676961545335515463564336050560
5Drew MillerXX100.00583586675858514635414974476558050550
6Andreas MartinsenXX100.00644374648162394760435063484337050540
7Matthew Peca (R)X100.00453594795260364455424662483734050520
8Michael McCarronXX100.00666560608357404361444261484137050520
9Kevin PorterXXX100.00533594716254343735413364475145050500
10Filip Chytil (R)X100.00473584657055354137404258483532050490
11Emile PoirierXX100.00513581685856314136414054463532050480
12Tyler Biggs (R)X100.00455049497143434549454550473230050470
13Shea TheodoreX100.00513586786473595635605170564438050610
14Mikhail Sergachev (R)X100.00633583767157565635595365453734050600
15Joe MorrowX100.00623583716366484935494965484237050580
16Madison Bowey (R)X100.00603583656550454135503263483532050530
17Jakub Zboril (R)X100.00475049495946464749474750483230050470
Rayé
1Boris Katchouk (R)X100.00454545457345454545454545453230050460
2Nathan Bastian (R)X100.00454545457745454545454545453230050460
3Ryan Gropp (R)X100.00434545457242424345434345443230050450
4Steven Shipley (R)X100.00364040407135353640363640383230050400
5Kelsey TessierX100.00364040404835353640363640383230050390
6Jeremy Gregoire (R)X100.00333737376133333337333337353230050370
7Greg NemiszXX100.00308931356929353135313133453734050360
8Phillipe Myers (R)X100.00454545456845454545454545453230050460
9Sean Day (R)X100.00434343437543434343434343433230050450
10Mathieu Brisebois (R)X100.00414545455539394145414145433230050430
11Brycen Martin (R)X100.00394343436337373943393943413230050420
12Joey Leach (R)X100.00394343436137373943393943413230050420
13Adam Janosik (R)X100.00394343435037373943393943413230050410
14Justin Weller (R)X100.00364040406835353640363640383230050410
15Loic Leduc (R)X100.00364040406435353640363640383230050400
16Joshua Brown (R)X100.00333737377133333337333337353230050390
17Mike McKee (R)X100.00333737377833333337333337353230050390
18Teigan ZahnX100.00333737377233333337333337353230050390
MOYENNE D'ÉQUIPE100.0047436054664741434442435145373305047
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Malcolm Subban (R)100.0048459075464646454565944036050510
2Harri Sateri (R)100.0046457776454647454565453532050500
3Alex Lyon (R)100.0047456575444647424565873532050490
Rayé
1Troy Grosenick100.0046455067454441434656553532050470
MOYENNE D'ÉQUIPE100.004745717345464544456370363305049
Nom du Coach PH DF OF PD EX LD PO CNT Âge Contrat Salaire
Larry Robinson54516260999270CAN671500,000$


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur Nom de l'ÉquipePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Peter HollandBears (Was)C8042831253756206320930810424113.64%31164220.53731386125901183056366.43%193900001.5236022584
2Phillip Di GiuseppeBears (Was)LW/RW744955104374601691212928021416.78%14149120.161216287525310162016748.89%13500031.391600011310
3Joe MorrowBears (Was)D82227597226601541032037811210.84%115192523.481226381102810004268200.00%000001.0100000638
4Drew MillerBears (Was)LW/RW7132518316335671162778322211.55%37133918.8615142965220202141538135.44%7900021.2424000587
5Andreas MartinsenBears (Was)LW/RW71322961934082782276014214.10%8110715.6091322502180000206161.04%7700001.1012000451
6Madison BoweyBears (Was)D8294655738094639629749.38%95159819.495914502200110238110.00%000000.6900000211
7Matthew PecaBears (Was)C752429536135251551975413412.18%1797012.942248530000392056.38%105000001.0900001132
8Michael McCarronBears (Was)C/RW711128391088201369413755968.03%9107315.124131727214000030158.41%91600000.7300211003
9Emile PoirierBears (Was)LW/RW82172138-132074721273910113.39%10101112.341239460001603046.05%7600000.7500000133
10Mikhail SergachevBears (Was)D421324376340595694245113.83%4394522.526713441250002130120.00%000000.7800000211
11Kevin PorterBears (Was)C/LW/RW71112536-822049102934010311.83%2091812.9410142800011022040.10%39900000.7800000020
12Filip ChytilBears (Was)C8252732-10340619510349734.85%53106513.000002110000180045.26%47500000.6001000012
13Ryan CarpenterBears (Was)C/RW1616163215140215479235420.25%333520.9625712411014563067.57%40700011.9100000222
14Matt StajanWashingtonC19724311614032468232628.54%536018.972791968011091172.48%40700001.7204000310
15Jakub ZborilBears (Was)D826212757951032833152518.18%73156219.065712182180110216000.00%000000.3500010002
16Tyler BiggsBears (Was)RW71121022-104759334103267111.65%116098.5900000000002037.93%2900000.7200000210
17Boris KatchoukBears (Was)LW46125170215342447132225.53%44269.2600001000001057.58%3300000.8000001110
18Nathan BastianBears (Was)RW464111511604314506238.00%24229.1700008000071051.79%5600000.7100000101
19Phillipe MyersBears (Was)D55410141675105222951613.79%4590416.45112848000053010.00%000000.3100010001
20Sean DayBears (Was)D35088212058612250.00%3057616.47011216000055000.00%000000.2800000002
21Gemel SmithBears (Was)C/LW/RW423514021318101411.11%16315.9700037000000066.67%300001.5700000010
22Ryan GroppBears (Was)LW81011001120150.00%0212.6400006000050075.00%400000.9500000000
23Alexei EmelinWashingtonD1000100220020.00%22424.770000200004000.00%000000.0000000000
Stats d'équipe Total ou en Moyenne126633160193216477070152715082609827185812.69%6282039616.11841542385672354448401952451859.16%608500060.91723255464450
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien Nom de l'ÉquipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Malcolm SubbanBears (Was)40241320.8793.5022600113210920310.8005400200
2Harri SateriBears (Was)3621720.8883.151946821029090400.692133140311
Stats d'équipe Total ou en Moyenne76452040.8833.3442068323420010710.722187140511


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du Joueur Nom de l'ÉquipePOS Âge Date de Naissance Nouveau Joueur Poids Taille Non-Échange Disponible pour Échange Ballotage Forcé Contrat StatusType Salaire Actuel Cap Salariale Cap Salariale Restant Exclus du Cap Salarial Link
Adam JanosikBears (Was)D251992-09-07Yes170 Lbs5 ft11NoNoNo2Avec RestrictionPro & Farm700,000$70,000$0$NoLien
Alex LyonBears (Was)G241992-12-09Yes201 Lbs6 ft1NoNoNo4Avec RestrictionPro & Farm874,125$87,412$0$NoLien
Andreas MartinsenBears (Was)LW/RW271990-06-13No229 Lbs6 ft3NoNoNo2Avec RestrictionPro & Farm743,000$74,300$0$NoLien
Boris KatchoukBears (Was)LW191998-06-18Yes210 Lbs6 ft2NoNoNo4Contrat d'EntréePro & Farm742,500$74,250$0$NoLien
Brycen MartinBears (Was)D211996-05-09Yes195 Lbs6 ft1NoNoNo2Contrat d'EntréePro & Farm700,000$70,000$0$NoLien
Drew MillerBears (Was)LW/RW331984-02-17No183 Lbs6 ft2NoNoNo3Sans RestrictionPro & Farm830,000$83,000$0$NoLien
Emile PoirierBears (Was)LW/RW221994-12-14No185 Lbs6 ft1NoNoNo1Avec RestrictionPro & Farm925,000$92,500$0$NoLien
Filip ChytilBears (Was)C181999-09-05Yes202 Lbs6 ft2NoNoNo4Contrat d'EntréePro & Farm925,000$92,500$0$NoLien
Gemel SmithBears (Was)C/LW/RW231994-04-16Yes190 Lbs5 ft10NoNoNo2Avec RestrictionPro & Farm645,000$645,000$0$NoLien
Greg NemiszBears (Was)C/RW271990-06-05No197 Lbs6 ft3NoNoNo1Avec RestrictionPro & Farm500,000$50,000$0$NoLien
Harri SateriBears (Was)G271989-12-29Yes205 Lbs6 ft1NoNoNo2Avec RestrictionPro & Farm650,000$65,000$0$NoLien
Jakub ZborilBears (Was)D201997-02-21Yes185 Lbs6 ft2NoNoNo3Contrat d'EntréePro & Farm895,000$89,500$0$NoLien
Jeremy GregoireBears (Was)C221995-09-05Yes190 Lbs5 ft11NoNoNo2Avec RestrictionPro & Farm620,000$62,000$0$NoLien
Joe MorrowBears (Was)D241992-12-09No196 Lbs6 ft0NoNoNo1Avec RestrictionPro & Farm833,000$83,300$0$NoLien
Joey LeachBears (Was)D251992-01-29Yes187 Lbs6 ft3NoNoNo2Avec RestrictionPro & Farm700,000$70,000$0$NoLien
Joshua BrownBears (Was)D231994-01-21Yes213 Lbs6 ft5NoNoNo2Avec RestrictionPro & Farm630,000$63,000$0$NoLien
Justin WellerBears (Was)D261991-07-26Yes205 Lbs6 ft2NoNoNo2Avec RestrictionPro & Farm650,000$65,000$0$NoLien
Kelsey TessierBears (Was)C271990-01-16No169 Lbs5 ft9NoNoNo2Avec RestrictionPro & Farm650,000$65,000$0$NoLien
Kevin PorterBears (Was)C/LW/RW311986-03-12No191 Lbs5 ft11NoNoNo2Sans RestrictionPro & Farm750,000$75,000$0$NoLien
Loic LeducBears (Was)D231994-06-14Yes194 Lbs6 ft5NoNoNo2Avec RestrictionPro & Farm615,000$61,500$0$NoLien
Madison BoweyBears (Was)D221995-04-22Yes198 Lbs6 ft2NoNoNo2Avec RestrictionPro & Farm642,000$64,200$0$NoLien
Malcolm SubbanBears (Was)G231993-12-21Yes200 Lbs6 ft2NoNoNo1Avec RestrictionPro & Farm925,000$92,500$0$NoLien
Mathieu BriseboisBears (Was)D251992-04-17Yes180 Lbs5 ft11NoNoNo2Avec RestrictionPro & Farm655,000$65,500$0$NoLien
Matthew PecaBears (Was)C241993-04-27Yes178 Lbs5 ft8NoNoNo2Avec RestrictionPro & Farm667,000$66,700$0$NoLien
Michael McCarronBears (Was)C/RW221995-03-07No230 Lbs6 ft6NoNoNo2Avec RestrictionPro & Farm925,000$92,500$0$NoLien
Mike McKeeBears (Was)D241993-08-17Yes229 Lbs6 ft4NoNoNo2Avec RestrictionPro & Farm525,000$52,500$0$NoLien
Mikhail SergachevBears (Was)D191998-06-25Yes215 Lbs6 ft3NoNoNo3Contrat d'EntréePro & Farm925,000$92,500$0$NoLien
Nathan BastianBears (Was)RW191997-12-06Yes219 Lbs6 ft4NoNoNo4Contrat d'EntréePro & Farm742,500$74,250$0$NoLien
Peter HollandBears (Was)C261991-01-14No205 Lbs6 ft2NoNoNo1Avec RestrictionPro & Farm824,000$82,400$0$NoLien
Phillip Di GiuseppeBears (Was)LW/RW231993-10-09No200 Lbs6 ft0NoNoNo2Avec RestrictionPro & Farm818,000$81,800$0$NoLien
Phillipe MyersBears (Was)D201997-01-25Yes202 Lbs6 ft5NoNoNo4Contrat d'EntréePro & Farm825,000$82,500$0$NoLien
Ryan CarpenterBears (Was)C/RW261991-01-18No200 Lbs6 ft0NoNoNo3Avec RestrictionPro & Farm1,250,000$125,000$0$NoLien
Ryan GroppBears (Was)LW211996-09-16Yes205 Lbs6 ft3NoNoNo3Contrat d'EntréePro & Farm825,000$82,500$0$NoLien
Sean DayBears (Was)D191998-01-09Yes224 Lbs6 ft2NoNoNo4Contrat d'EntréePro & Farm742,500$74,250$0$NoLien
Shea TheodoreBears (Was)D221995-08-03No195 Lbs6 ft2NoNoNo2Avec RestrictionPro & Farm925,000$925,000$0$NoLien
Steven ShipleyBears (Was)C251992-04-22Yes205 Lbs6 ft2NoNoNo2Avec RestrictionPro & Farm650,000$65,000$0$NoLien
Teigan ZahnBears (Was)D271990-01-04No218 Lbs6 ft1NoNoNo2Avec RestrictionPro & Farm525,000$52,500$0$NoLien
Troy GrosenickBears (Was)G281989-08-27No185 Lbs6 ft1NoNoNo1Sans RestrictionPro & Farm650,000$65,000$0$NoLien
Tyler BiggsBears (Was)RW241993-04-30Yes205 Lbs6 ft2NoNoNo2Avec RestrictionPro & Farm833,000$83,300$0$NoLien
Joueurs TotalÂge MoyenPoids MoyenTaille MoyenneContrat MoyenSalaire Moyen 1e Année
3923.74200 Lbs6 ft22.28755,170$



Attaque à 5 contre 5
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Phillip Di GiuseppePeter Holland40122
2Drew MillerMichael McCarronAndreas Martinsen30122
3Kevin PorterMatthew PecaEmile Poirier20122
4Filip ChytilTyler Biggs10122
Défense à 5 contre 5
Ligne #DéfenseDéfense% TempsPHYDFOF
1Joe Morrow40122
2Madison BoweyJakub Zboril30122
3Filip Chytil20122
4Joe Morrow10122
Attaque en Avantage Numérique
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Phillip Di GiuseppePeter Holland60122
2Drew MillerMichael McCarronAndreas Martinsen40122
Défense en Avantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Joe Morrow60122
2Madison BoweyJakub Zboril40122
Attaque à 4 en Désavantage Numérique
Ligne #CentreAilier% TempsPHYDFOF
1Peter HollandPhillip Di Giuseppe60122
2Drew Miller40122
Défense à 4 en Désavantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Joe Morrow60122
2Madison BoweyJakub Zboril40122
3 joueurs en Désavantage Numérique
Ligne #Ailier% TempsPHYDFOFDéfenseDéfense% TempsPHYDFOF
1Peter Holland60122Joe Morrow60122
2Phillip Di Giuseppe40122Madison BoweyJakub Zboril40122
Attaque à 4 contre 4
Ligne #CentreAilier% TempsPHYDFOF
1Peter HollandPhillip Di Giuseppe60122
2Drew Miller40122
Défense à 4 contre 4
Ligne #DéfenseDéfense% TempsPHYDFOF
1Joe Morrow60122
2Madison BoweyJakub Zboril40122
Attaque Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Phillip Di GiuseppePeter HollandJoe Morrow
Défense Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Phillip Di GiuseppePeter HollandJoe Morrow
Attaquants Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
, Matthew Peca, Kevin Porter, Matthew PecaKevin Porter
Défenseurs Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
, Madison Bowey, Jakub ZborilMadison Bowey, Jakub Zboril
Tirs de Pénalité
Peter Holland, Phillip Di Giuseppe, , Drew Miller, Andreas Martinsen
Gardien
#1 : , #2 :


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
LigueDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals22000000844110000004131100000043141.000815230014811290118887987993043388333117211.76%9188.89%01468263355.75%1244240151.81%802143755.81%2090144217926091079553
2Baby Hawks220000001055110000005231100000053241.0001017270014811290114987987993043481316333133.33%70100.00%01468263355.75%1244240151.81%802143755.81%2090144217926091079553
3Bruins3300000013852200000011831100000020261.00013233601148112901184879879930436420305014321.43%15473.33%01468263355.75%1244240151.81%802143755.81%2090144217926091079553
4Cabaret Lady Mary Ann3300000016882200000011561100000053261.00016314700148112901113487987993043882033611400.00%14192.86%01468263355.75%1244240151.81%802143755.81%2090144217926091079553
5Caroline41100020201642100001012752010001089-160.7502031511014811290111698798799304311838457716743.75%20290.00%01468263355.75%1244240151.81%802143755.81%2090144217926091079553
6Chiefs2000010179-21000000145-11000010034-120.500713200014811290116187987993043811414338112.50%7185.71%01468263355.75%1244240151.81%802143755.81%2090144217926091079553
7Chill220000001138110000004131100000072541.00011172800148112901164879879930435610245613430.77%12191.67%11468263355.75%1244240151.81%802143755.81%2090144217926091079553
8Comets211000009721010000045-11100000052320.500917260014811290117787987993043511914358337.50%7185.71%01468263355.75%1244240151.81%802143755.81%2090144217926091079553
9Cougars30300000610-42020000058-31010000012-100.00061218001481129011738798799304310126306211436.36%15193.33%01468263355.75%1244240151.81%802143755.81%2090144217926091079553
10Crunch33000000181082200000014861100000042261.000183149001481129011131879879930436017145616318.75%7271.43%01468263355.75%1244240151.81%802143755.81%2090144217926091079553
11Heat21100000330110000002021010000013-220.500369011481129011438798799304349113145500.00%13192.31%01468263355.75%1244240151.81%802143755.81%2090144217926091079553
12Jayhawks20200000510-51010000026-41010000034-100.00058130014811290116187987993043871516379111.11%8275.00%01468263355.75%1244240151.81%802143755.81%2090144217926091079553
13Las Vegas21100000770110000004221010000035-220.500714210014811290116287987993043541614379222.22%7271.43%01468263355.75%1244240151.81%802143755.81%2090144217926091079553
14Manchots421000101697220000009182010001078-160.7501625410114811290111078798799304310321307020315.00%14378.57%01468263355.75%1244240151.81%802143755.81%2090144217926091079553
15Marlies302000011118-71010000059-42010000169-310.167111627001481129011848798799304312027405410330.00%17476.47%01468263355.75%1244240151.81%802143755.81%2090144217926091079553
16Minnesota22000000963110000005411100000042241.0009172600148112901165879879930435016173212541.67%7357.14%01468263355.75%1244240151.81%802143755.81%2090144217926091079553
17Monarchs21000100101001000010045-11100000065130.7501015250014811290116387987993043691918426233.33%9188.89%01468263355.75%1244240151.81%802143755.81%2090144217926091079553
18Monsters42200000191902110000089-1211000001110140.5001935540014811290111338798799304314042477424625.00%21290.48%01468263355.75%1244240151.81%802143755.81%2090144217926091079553
19Monsters2020000058-31010000035-21010000023-100.00058130014811290114887987993043692418469111.11%9366.67%01468263355.75%1244240151.81%802143755.81%2090144217926091079553
20Oceanics2020000069-31010000024-21010000045-100.000610160014811290114187987993043732418487114.29%9277.78%01468263355.75%1244240151.81%802143755.81%2090144217926091079553
21Oil Kings210000101064100000103211100000074341.000101727001481129011838798799304335512509111.11%6183.33%01468263355.75%1244240151.81%802143755.81%2090144217926091079553
22Phantoms4310000013112220000006422110000077060.7501322350014811290111228798799304310021456415533.33%21385.71%01468263355.75%1244240151.81%802143755.81%2090144217926091079553
23Rocket310011001612411000000624200011001010050.83316244000148112901197879879930436318215918527.78%8362.50%01468263355.75%1244240151.81%802143755.81%2090144217926091079553
24Senators320010001183110000003212100100086261.00011182900148112901110687987993043722618581218.33%9277.78%01468263355.75%1244240151.81%802143755.81%2090144217926091079553
25Sharks2010100078-1100010002111010000057-220.500713200014811290118387987993043892918498225.00%9188.89%01468263355.75%1244240151.81%802143755.81%2090144217926091079553
26Sound Tigers4310000015132211000008802200000075260.750152843001481129011113879879930439834497715533.33%18477.78%01468263355.75%1244240151.81%802143755.81%2090144217926091079553
27Spiders422000002022-222000000118320200000914-540.5002039590014811290111158798799304311142537119631.58%24483.33%01468263355.75%1244240151.81%802143755.81%2090144217926091079553
28Stars2200000016511110000007251100000093641.00016264200148112901176879879930435010124316637.50%6183.33%11468263355.75%1244240151.81%802143755.81%2090144217926091079553
29Thunder3210000012120110000005412110000078-140.66712233500148112901180879879930439735565911545.45%18477.78%01468263355.75%1244240151.81%802143755.81%2090144217926091079553
Total824624033423572877041279011211831335041191502221174154201110.677357617974131481129011270887987993043237266781616013619125.21%3616183.10%41468263355.75%1244240151.81%802143755.81%2090144217926091079553
31Wolf Pack4400000028111722000000145922000000146881.000284674001481129011196879879930431384730927342.86%15193.33%21468263355.75%1244240151.81%802143755.81%2090144217926091079553
_Since Last GM Reset824624033423572877041279011211831335041191502221174154201110.677357617974131481129011270887987993043237266781616013619125.21%3616183.10%41468263355.75%1244240151.81%802143755.81%2090144217926091079553
_Vs Conference462813021112001653522164011009670262412901011104959640.69620034554502148112901114798798799304313684055098951985125.76%2203783.18%31468263355.75%1244240151.81%802143755.81%2090144217926091079553

Total Pour les Joueurs
Matchs JouésPointsSéquenceButsPassesPointsTirs PourTirs ContreTirs BloquésMinutes de PénalitéMises en ÉchecButs en Filet DésertBlanchissage
82111L135761797427082372667816160113
Tous les Matchs
GPWLOTWOTL SOWSOLGFGA
8246243342357287
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
412791121183133
Matchs Éxtérieurs
GPWLOTWOTL SOWSOLGFGA
4119152221174154
Derniers 10 Matchs
WLOTWOTL SOWSOL
730000
Tentatives en Avantage NumériqueButs en Avantage Numérique% en Avantage NumériqueTentatives en Désavantage NumériqueButs Contre en Désavantage Numérique% en Désavantage NumériqueButs Pour en Désavantage Numérique
3619125.21%3616183.10%4
Tirs en 1e PériodeTirs en 2e PériodeTirs en 3e PériodeTirs en 4e PériodeButs en 1e PériodeButs en 2e PériodeButs en 3e PériodeButs en 4e Période
879879930431481129011
Mises en Jeu
Gagnées en Zone OffensiveTotal en Zone Offensive% Gagnées en Zone Offensive Gagnées en Zone DéfensiveTotal en Zone Défensive% Gagnées en Zone DéfensiveGagnées en Zone NeutreTotal en Zone Neutre% Gagnées en Zone Neutre
1468263355.75%1244240151.81%802143755.81%
Temps Avec la Rondelle
En Zone OffensiveContrôle en Zone OffensiveEn Zone DéfensiveContrôle en Zone DéfensiveEn Zone NeutreContrôle en Zone Neutre
2090144217926091079553


Derniers Match Joués
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe Visiteuse Score Équipe Locale Score ST OT SO RI Lien
1 - 2018-10-032Bruins5Bears7WSommaire du Match
2 - 2018-10-047Bears1Manchots3LSommaire du Match
8 - 2018-10-1043Las Vegas2Bears4WSommaire du Match
9 - 2018-10-1148Bears4Spiders7LSommaire du Match
11 - 2018-10-1365Marlies9Bears5LSommaire du Match
15 - 2018-10-1787Wolf Pack3Bears6WSommaire du Match
17 - 2018-10-1999Cabaret Lady Mary Ann2Bears5WSommaire du Match
20 - 2018-10-22121Bears5Comets2WSommaire du Match
23 - 2018-10-25142Bears7Oil Kings4WSommaire du Match
25 - 2018-10-27151Bears1Heat3LSommaire du Match
30 - 2018-11-01182Bears5Rocket6LXSommaire du Match
32 - 2018-11-03200Stars2Bears7WSommaire du Match
34 - 2018-11-05213Oil Kings2Bears3WXXSommaire du Match
36 - 2018-11-07224Manchots0Bears2WSommaire du Match
38 - 2018-11-09237Monsters5Bears3LSommaire du Match
40 - 2018-11-11255Jayhawks6Bears2LSommaire du Match
42 - 2018-11-13269Bears4Minnesota2WSommaire du Match
43 - 2018-11-14274Bears4Oceanics5LSommaire du Match
45 - 2018-11-16289Bears2Monsters3LSommaire du Match
48 - 2018-11-19311Bears5Rocket4WXSommaire du Match
50 - 2018-11-21322Baby Hawks2Bears5WSommaire du Match
52 - 2018-11-23337Cougars4Bears2LSommaire du Match
53 - 2018-11-24347Bears6Wolf Pack4WSommaire du Match
55 - 2018-11-26364Bears3Sound Tigers2WSommaire du Match
59 - 2018-11-30391Spiders3Bears5WSommaire du Match
61 - 2018-12-02407Admirals1Bears4WSommaire du Match
63 - 2018-12-04424Bears3Las Vegas5LSommaire du Match
65 - 2018-12-06436Bears3Jayhawks4LSommaire du Match
67 - 2018-12-08451Bears5Monsters6LSommaire du Match
70 - 2018-12-11467Cougars4Bears3LSommaire du Match
73 - 2018-12-14491Bears3Caroline5LSommaire du Match
74 - 2018-12-15500Crunch4Bears7WSommaire du Match
78 - 2018-12-19528Manchots1Bears7WSommaire du Match
80 - 2018-12-21543Crunch4Bears7WSommaire du Match
81 - 2018-12-22554Bears4Senators3WSommaire du Match
86 - 2018-12-27570Caroline2Bears6WSommaire du Match
88 - 2018-12-29589Bears4Senators3WXSommaire du Match
90 - 2018-12-31599Chill1Bears4WSommaire du Match
93 - 2019-01-03627Bears3Chiefs4LXSommaire du Match
94 - 2019-01-04632Bears9Stars3WSommaire du Match
96 - 2019-01-06649Bears1Cougars2LSommaire du Match
98 - 2019-01-08661Phantoms2Bears3WSommaire du Match
100 - 2019-01-10671Bears2Bruins0WSommaire du Match
102 - 2019-01-12692Monsters4Bears5WSommaire du Match
104 - 2019-01-14709Chiefs5Bears4LXXSommaire du Match
105 - 2019-01-15716Bears7Chill2WSommaire du Match
108 - 2019-01-18735Sound Tigers2Bears5WSommaire du Match
110 - 2019-01-20751Bears5Baby Hawks3WSommaire du Match
112 - 2019-01-22760Sharks1Bears2WXSommaire du Match
113 - 2019-01-23765Bears3Marlies4LXXSommaire du Match
122 - 2019-02-01785Heat0Bears2WSommaire du Match
124 - 2019-02-03802Bruins3Bears4WSommaire du Match
126 - 2019-02-05814Comets5Bears4LSommaire du Match
128 - 2019-02-07827Monsters5Bears3LSommaire du Match
130 - 2019-02-09849Cabaret Lady Mary Ann3Bears6WSommaire du Match
132 - 2019-02-11861Monarchs5Bears4LXSommaire du Match
133 - 2019-02-12866Bears6Monsters4WSommaire du Match
135 - 2019-02-14887Bears5Sharks7LSommaire du Match
138 - 2019-02-17909Bears4Admirals3WSommaire du Match
139 - 2019-02-18914Bears6Monarchs5WSommaire du Match
142 - 2019-02-21929Bears3Marlies5LSommaire du Match
144 - 2019-02-23945Bears4Crunch2WSommaire du Match
145 - 2019-02-24956Wolf Pack2Bears8WSommaire du Match
147 - 2019-02-26971Senators2Bears3WSommaire du Match
Date Limite d'Échange --- Les échange ne peuvent plus se faire après la simulation de cette journée!
150 - 2019-03-01993Bears4Sound Tigers3WSommaire du Match
152 - 2019-03-031009Bears8Wolf Pack2WSommaire du Match
155 - 2019-03-061029Bears1Phantoms4LSommaire du Match
157 - 2019-03-081045Spiders5Bears6WSommaire du Match
159 - 2019-03-101061Oceanics4Bears2LSommaire du Match
161 - 2019-03-121073Bears6Manchots5WXXSommaire du Match
163 - 2019-03-141085Bears6Phantoms3WSommaire du Match
165 - 2019-03-161106Bears4Thunder3WSommaire du Match
168 - 2019-03-191122Bears5Spiders7LSommaire du Match
169 - 2019-03-201133Thunder4Bears5WSommaire du Match
171 - 2019-03-221148Minnesota4Bears5WSommaire du Match
173 - 2019-03-241164Phantoms2Bears3WSommaire du Match
175 - 2019-03-261178Caroline5Bears6WXXSommaire du Match
177 - 2019-03-281190Bears5Caroline4WXXSommaire du Match
179 - 2019-03-301207Bears3Thunder5LSommaire du Match
181 - 2019-04-011221Bears5Cabaret Lady Mary Ann3WSommaire du Match
184 - 2019-04-041246Rocket2Bears6WSommaire du Match
186 - 2019-04-061265Sound Tigers6Bears3LSommaire du Match



Capacité de l'Aréna - Tendance du Prix des Billets - %
Niveau 1Niveau 2
Capacité de l'Aréna20001000
Prix des Billets4020
Assistance61,27731,024
Assistance PCT74.73%75.67%

Revenus
Matchs à domicile RestantsAssistance Moyenne - %Revenus Moyen par MatchRevenus Annuels à ce JourCapacité de l'ArénaPopularité de l'Équipe
0 2251 - 75.04% 74,916$3,071,560$3000100

Dépenses
Dépenses Annuelles à Ce JourSalaire Total des JoueursSalaire Total Moyen des JoueursSalaire des Coachs
3,291,826$ 4,358,162$ 4,358,162$ 0$
Cap Salarial Par JourCap salarial à ce jourJoueurs Inclut dans la Cap SalarialeJoueurs Exclut dans la Cap Salariale
23,306$ 3,291,826$ 39 0

Éstimation
Revenus de la Saison ÉstimésJours Restants de la SaisonDépenses Par JourDépenses de la Saison Éstimées
0$ 0 23,306$ 0$




LigueDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
201882462403342357287704127901121183133504119150222117415420111357617974131481129011270887987993043237266781616013619125.21%3616183.10%41468263355.75%1244240151.81%802143755.81%2090144217926091079553
Total Saison Régulière82462403342357287704127901121183133504119150222117415420111357617974131481129011270887987993043237266781616013619125.21%3616183.10%41468263355.75%1244240151.81%802143755.81%2090144217926091079553