Monsters

GP: 82 | W: 47 | L: 28 | OTL: 7 | P: 101
GF: 333 | GA: 292 | PP%: 22.34% | PK%: 80.17%
DG: Benoit Toupin | Morale : 50 | Moyenne d'Équipe : 48
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Marcus KrugerX100.00604382745864715085505071486158050590
2Andrew DesjardinsXXX100.00645683666758664467424664445651050550
3Teemu PulkkinenXX100.00513583735756445236446060474338050540
4Adam Erne (R)XX100.00574384637456395060415852483734050520
5William Carrier (R)XX100.00844382607453444550424853483734050510
6Jeremy MorinXX100.00505074666246404336424559504441050500
7Julien Gauthier (R)X100.00505050508050505050505050503230050500
8Jerry D'AmigoX100.00433588657146313772353871453734050490
9Dominic Toninato (R)X100.00533586646949403957423559483532050480
10Nick Sorensen (R)X100.00473584685748334245503357473532050480
11Zach Senyshyn (R)X100.00475049496846464749474750483230050480
12Scott KosmachukX100.00453586705746313435373264463532050470
13Tanner Richard (R)X100.00513578706450333347333360473532050460
14Jakub KindlX100.00613579626658434235443965475548050560
15Erik BurgdoerferX100.00553595636854353335333265483734050520
16Rasmus RissanenX100.00513576577242293135313171453532050500
17Jeremy Roy (R)X100.00434545456442424345434345443230050450
18Mark CundariX100.00308535516229463135313155453734050440
Rayé
1Alexander KhokhlachevXX100.00453593735546313240323261523936050460
2Kasper Bjorkqvist (R)XX100.00434343436843434343434343433230050440
3Mario Lucia (R)XX100.00414545456139394145414145433230050430
4Adam Tambellini (R)XX100.00394343435137373943393943413230050410
5Maxim Kitsyn (R)X100.00333737376733333337333337353230050380
6Keaton Middleton (R)X100.00404040408140404040404040403230050430
7Reece Scarlett (R)X100.00333737375033333337333337353230050370
MOYENNE D'ÉQUIPE100.0049426757654741404640405545383505048
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Charlie Lindgren (R)100.0043459666415147405465703936050510
2Jean-Francois Berube100.0039457264384646374565454037050470
Rayé
1David Honzik (R)100.0041434179403939393939383230050430
MOYENNE D'ÉQUIPE100.004144707040454439465651373405047
Nom du Coach PH DF OF PD EX LD PO CNT Âge Contrat Salaire


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur Nom de l'ÉquipePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Marcus KrugerMonsters (Clb)C8250651151146011426537111531313.48%43180722.041227398128300032764268.14%163200221.2726000944
2Teemu PulkkinenMonsters (Clb)LW/RW82524698311806913634910226914.90%16134416.39121022862700001168248.18%11000011.4611000768
3Andrew DesjardinsMonsters (Clb)C/LW/RW822556812568201071672296117710.92%21148418.10919286429210171753162.80%87900001.0915013178
4Pontus AbergColumbusLW/RW542840682980311001825715215.38%12100618.6458133816800031025246.77%6200011.3501000725
5Jakub KindlMonsters (Clb)D82115162146201308714252907.75%102187122.8351015592800110240300.00%000000.6600000303
6Dominic ToninatoMonsters (Clb)C82134558196125671371283910010.16%9128215.6441418332610000321055.02%142300000.9000112213
7Erik BurgdoerferMonsters (Clb)D821332451380726091415914.29%71161119.6591322432490000220110.00%000000.5600000033
8Jeremy MorinMonsters (Clb)LW/RW82212344-95220331091994913410.55%24100512.2700032000095053.19%4700000.8700301140
9William CarrierMonsters (Clb)LW/RW82162743-2960188721454110511.03%13121414.8114552101141412160.34%11600000.7100000222
10Adam ErneMonsters (Clb)LW/RW5321204112361030471383610115.22%780115.1225727148000053256.06%6600011.0201001132
11Rasmus RissanenMonsters (Clb)D82132336-43208659101376812.87%73154718.879615502320114194110.00%000000.4700000122
12Julien GauthierMonsters (Clb)RW8214203426359336113247412.39%06758.2410112000012050.00%3800011.0100001151
13Nick RitchieColumbusLW181414289280684279225717.72%641523.1033613600004530053.02%14900011.3502000512
14Nick SorensenMonsters (Clb)RW81101727-5160217111034839.09%135646.9724612810001131056.82%8800010.9600000101
15Alex BiegaColumbusD3661824050087497224648.33%4683723.274812481250002103210.00%000000.5700000121
16Vinnie HinostrozaColumbusC/LW/RW1481624196051438121921.05%421115.09112115000083042.86%1400002.2700000311
17Drew StaffordColumbusLW/RW20149239120195086256816.28%447223.6222411610003670152.03%27100010.9723000421
18Alexander KhokhlachevMonsters (Clb)C/LW47101121-150027471234814.08%1455311.7700002000042042.27%56300000.7601000001
19Jeremy RoyMonsters (Clb)D824162021113151382137182110.81%65127915.61044891000044100.00%000000.3100002020
20Zach SenyshynMonsters (Clb)RW817411-2001072841425.00%41321.633251738000012015.00%2000001.6600000010
21Keaton MiddletonMonsters (Clb)D50347934057582737.50%3380016.00000021000070110.00%000000.1700000011
22Jerry D'AmigoMonsters (Clb)LW3000-220034210.00%33511.840000000000000.00%000000.0000000000
23Mark CundariMonsters (Clb)D3000100400100.00%24214.280000300003000.00%000000.0000000000
24Reece ScarlettMonsters (Clb)D2000140300000.00%03517.810000500000000.00%000000.0000000000
25Scott KosmachukMonsters (Clb)RW1000000000000.00%033.480000000000000.00%000000.0000000000
26Tanner RichardMonsters (Clb)C2000-120061030.00%02412.2800000000000046.67%3000000.0000000000
Stats d'équipe Total ou en Moyenne136735355791017384795143416172722821202712.97%5852106115.41841402246002719134321787501558.30%550800290.866204210494949
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien Nom de l'ÉquipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Charlie LindgrenMonsters (Clb)82472570.8773.42466114226621670600.63219820314
2Jean-Francois BerubeMonsters (Clb)110300.8624.4229900221590300.0000082000
Stats d'équipe Total ou en Moyenne93472870.8763.48496014228823260900.632198282314


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du Joueur Nom de l'ÉquipePOS Âge Date de Naissance Nouveau Joueur Poids Taille Non-Échange Disponible pour Échange Ballotage Forcé Contrat StatusType Salaire Actuel Cap Salariale Cap Salariale Restant Exclus du Cap Salarial Link
Adam ErneMonsters (Clb)LW/RW221995-04-20Yes214 Lbs6 ft1NoNoNo2Avec RestrictionPro & Farm865,000$86,500$0$NoLien
Adam TambelliniMonsters (Clb)C/LW221994-11-01Yes169 Lbs6 ft2NoNoNo2Avec RestrictionPro & Farm743,000$74,300$0$NoLien
Alexander KhokhlachevMonsters (Clb)C/LW241993-09-09No181 Lbs5 ft10NoNoNo3Avec RestrictionPro & Farm600,000$60,000$0$NoLien
Andrew DesjardinsMonsters (Clb)C/LW/RW311986-07-27No195 Lbs6 ft1NoNoNo2Sans RestrictionPro & Farm850,000$85,000$0$NoLien
Charlie Lindgren (Sur la Masse Salariale)Monsters (Clb)G231993-12-18Yes182 Lbs6 ft1NoNoNo2Avec RestrictionPro & Farm925,000$0$0$YesLien
David HonzikMonsters (Clb)G241993-08-09Yes209 Lbs6 ft3NoNoNo2Avec RestrictionPro & Farm700,000$70,000$0$NoLien
Dominic ToninatoMonsters (Clb)C231994-05-09Yes200 Lbs6 ft2NoNoNo2Avec RestrictionPro & Farm525,000$52,500$0$NoLien
Erik BurgdoerferMonsters (Clb)D281988-12-11No207 Lbs6 ft1NoNoNo1Sans RestrictionPro & Farm500,000$50,000$0$NoLien
Jakub KindlMonsters (Clb)D301987-02-10No199 Lbs6 ft3NoNoNo1Sans RestrictionPro & Farm1,200,000$120,000$0$NoLien
Jean-Francois BerubeMonsters (Clb)G261991-07-13No177 Lbs6 ft1NoNoNo2Avec RestrictionPro & Farm575,000$57,500$0$NoLien
Jeremy MorinMonsters (Clb)LW/RW261991-04-16No189 Lbs6 ft1NoNoNo2Avec RestrictionPro & Farm825,000$82,500$0$NoLien
Jeremy RoyMonsters (Clb)D201997-05-14Yes199 Lbs6 ft0NoNoNo3Contrat d'EntréePro & Farm825,000$82,500$0$NoLien
Jerry D'AmigoMonsters (Clb)LW261991-02-19No208 Lbs5 ft11NoNoNo2Avec RestrictionPro & Farm550,000$55,000$0$NoLien
Julien GauthierMonsters (Clb)RW191997-10-15Yes225 Lbs6 ft4NoNoNo4Contrat d'EntréePro & Farm925,000$92,500$0$NoLien
Kasper BjorkqvistMonsters (Clb)LW/RW201997-07-10Yes198 Lbs6 ft1NoNoNo4Contrat d'EntréePro & Farm700,000$70,000$0$NoLien
Keaton MiddletonMonsters (Clb)D191998-02-10Yes235 Lbs6 ft5NoNoNo4Contrat d'EntréePro & Farm715,000$71,500$0$NoLien
Marcus KrugerMonsters (Clb)C271990-05-27No186 Lbs6 ft0NoNoNo1Avec RestrictionPro & Farm1,000,000$100,000$0$NoLien
Mario LuciaMonsters (Clb)LW/RW231994-07-22Yes187 Lbs6 ft2NoNoNo2Avec RestrictionPro & Farm825,000$82,500$0$NoLien
Mark CundariMonsters (Clb)D271990-04-23No195 Lbs5 ft9NoNoNo1Avec RestrictionPro & Farm500,000$50,000$0$NoLien
Maxim KitsynMonsters (Clb)LW251991-12-24Yes194 Lbs6 ft2NoNoNo2Avec RestrictionPro & Farm620,000$62,000$0$NoLien
Nick SorensenMonsters (Clb)RW221994-10-23Yes182 Lbs6 ft1NoNoNo2Avec RestrictionPro & Farm792,000$79,200$0$NoLien
Rasmus RissanenMonsters (Clb)D261991-07-13No217 Lbs6 ft3NoNoNo1Avec RestrictionPro & Farm650,000$65,000$0$NoLien
Reece ScarlettMonsters (Clb)D241993-03-31Yes168 Lbs6 ft1NoNoNo2Avec RestrictionPro & Farm600,000$60,000$0$NoLien
Scott KosmachukMonsters (Clb)RW231994-01-24No185 Lbs5 ft11NoNoNo2Avec RestrictionPro & Farm743,000$74,300$0$NoLien
Tanner RichardMonsters (Clb)C241993-04-06Yes192 Lbs6 ft0NoNoNo2Avec RestrictionPro & Farm675,000$67,500$0$NoLien
Teemu PulkkinenMonsters (Clb)LW/RW251992-01-02No185 Lbs5 ft10NoNoNo2Avec RestrictionPro & Farm700,000$70,000$0$NoLien
William CarrierMonsters (Clb)LW/RW221994-12-29Yes212 Lbs6 ft2NoNoNo2Avec RestrictionPro & Farm640,000$64,000$0$NoLien
Zach SenyshynMonsters (Clb)RW201997-03-30Yes196 Lbs6 ft3NoNoNo3Contrat d'EntréePro & Farm895,000$89,500$0$NoLien
Joueurs TotalÂge MoyenPoids MoyenTaille MoyenneContrat MoyenSalaire Moyen 1e Année
2823.96196 Lbs6 ft12.14737,964$



Attaque à 5 contre 5
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Marcus Kruger40122
2William CarrierAndrew DesjardinsTeemu Pulkkinen30122
3Jeremy MorinDominic ToninatoJulien Gauthier20122
4Nick Sorensen10122
Défense à 5 contre 5
Ligne #DéfenseDéfense% TempsPHYDFOF
1Jakub Kindl40122
2Erik BurgdoerferRasmus Rissanen30122
3Jeremy Roy20122
4Jakub Kindl10122
Attaque en Avantage Numérique
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Marcus KrugerAndrew Desjardins60122
2Dominic ToninatoTeemu Pulkkinen40122
Défense en Avantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Jakub Kindl60122
2Erik BurgdoerferRasmus Rissanen40122
Attaque à 4 en Désavantage Numérique
Ligne #CentreAilier% TempsPHYDFOF
1Marcus Kruger60122
2Andrew Desjardins40122
Défense à 4 en Désavantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Jakub Kindl60122
2Erik BurgdoerferRasmus Rissanen40122
3 joueurs en Désavantage Numérique
Ligne #Ailier% TempsPHYDFOFDéfenseDéfense% TempsPHYDFOF
160122Jakub Kindl60122
2Marcus Kruger40122Erik BurgdoerferRasmus Rissanen40122
Attaque à 4 contre 4
Ligne #CentreAilier% TempsPHYDFOF
1Marcus Kruger60122
2Andrew Desjardins40122
Défense à 4 contre 4
Ligne #DéfenseDéfense% TempsPHYDFOF
1Jakub Kindl60122
2Erik BurgdoerferRasmus Rissanen40122
Attaque Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Marcus KrugerAndrew DesjardinsJakub Kindl
Défense Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Marcus KrugerAndrew DesjardinsJakub Kindl
Attaquants Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Nick Sorensen, Zach Senyshyn, William CarrierNick Sorensen, Zach SenyshynWilliam Carrier
Défenseurs Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Jeremy Roy, , Erik BurgdoerferJeremy Roy, Erik Burgdoerfer
Tirs de Pénalité
, Marcus Kruger, Andrew Desjardins, , Teemu Pulkkinen
Gardien
#1 : Charlie Lindgren, #2 : Jean-Francois Berube


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
LigueDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals20200000610-41010000034-11010000036-300.0006915001359795106785991685846571616291100.00%6350.00%01393248556.06%1322237755.62%806144055.97%2054141518246141086548
2Baby Hawks211000008711010000045-11100000042220.50081321001359795105285991685846471824418225.00%12466.67%01393248556.06%1322237755.62%806144055.97%2054141518246141086548
3Bears4220000019190211000001011-12110000098140.50019325100135979510140859916858461334255712129.52%24675.00%01393248556.06%1322237755.62%806144055.97%2054141518246141086548
4Bruins3210000012102220000009361010000037-440.6671217290013597951010385991685846681533529333.33%13469.23%01393248556.06%1322237755.62%806144055.97%2054141518246141086548
5Cabaret Lady Mary Ann32001000171161100000073421001000108261.00017284500135979510132859916858469826206412216.67%10280.00%01393248556.06%1322237755.62%806144055.97%2054141518246141086548
6Caroline42200000221572110000096321100000139440.500223961001359795101588599168584611927277218633.33%10280.00%01393248556.06%1322237755.62%806144055.97%2054141518246141086548
7Chiefs21100000963110000007341010000023-120.50091524001359795105985991685846451224335240.00%12375.00%01393248556.06%1322237755.62%806144055.97%2054141518246141086548
8Chill2010010057-21000010045-11010000012-110.2505813001359795104085991685846592120396116.67%10190.00%01393248556.06%1322237755.62%806144055.97%2054141518246141086548
9Comets220000001147110000004311100000071641.00011193000135979510848599168584640726319333.33%13376.92%01393248556.06%1322237755.62%806144055.97%2054141518246141086548
10Cougars303000001224-121010000037-420200000917-800.0001221330013597951098859916858469731365514321.43%18855.56%01393248556.06%1322237755.62%806144055.97%2054141518246141086548
11Crunch311010001284210010009451010000034-140.6671220320013597951093859916858468136345812433.33%17194.12%01393248556.06%1322237755.62%806144055.97%2054141518246141086548
12Heat210000017611000000145-11100000031230.75071320001359795106385991685846501543321218.33%12283.33%01393248556.06%1322237755.62%806144055.97%2054141518246141086548
13Jayhawks2020000036-31010000023-11010000013-200.000369001359795105685991685846651625325120.00%7271.43%01393248556.06%1322237755.62%806144055.97%2054141518246141086548
14Las Vegas220000001165110000005321100000063341.0001118290013597951056859916858465718413113430.77%13376.92%01393248556.06%1322237755.62%806144055.97%2054141518246141086548
15Manchots4310000012102220000008622110000044060.75012203200135979510124859916858461103242791616.25%200100.00%11393248556.06%1322237755.62%806144055.97%2054141518246141086548
16Marlies302000011013-320100001810-21010000023-110.1671014240013597951077859916858469520376618527.78%10280.00%01393248556.06%1322237755.62%806144055.97%2054141518246141086548
17Minnesota2100100013103100010006511100000075241.000132033001359795106185991685846611423427114.29%9277.78%01393248556.06%1322237755.62%806144055.97%2054141518246141086548
18Monarchs210000101073110000005321000001054141.0001017270013597951070859916858468121204910220.00%10370.00%01393248556.06%1322237755.62%806144055.97%2054141518246141086548
19Monsters21000100871110000004221000010045-130.75081422001359795105685991685846681322338225.00%11190.91%01393248556.06%1322237755.62%806144055.97%2054141518246141086548
20Oceanics20200000412-81010000015-41010000037-400.000471100135979510458599168584675213028500.00%7357.14%01393248556.06%1322237755.62%806144055.97%2054141518246141086548
21Oil Kings22000000817110000005141100000030341.00081624011359795106385991685846541718337228.57%8187.50%11393248556.06%1322237755.62%806144055.97%2054141518246141086548
22Phantoms44000000191272200000010642200000096381.00019294800135979510129859916858466720388617741.18%19289.47%01393248556.06%1322237755.62%806144055.97%2054141518246141086548
23Rocket321000001082220000008531010000023-140.667101424001359795109685991685846536165314321.43%80100.00%01393248556.06%1322237755.62%806144055.97%2054141518246141086548
24Senators3210000012102110000004312110000087140.6671220320013597951095859916858466613435013538.46%19289.47%01393248556.06%1322237755.62%806144055.97%2054141518246141086548
25Sharks20100001610-41010000036-31000000134-110.25061117001359795108685991685846972412386116.67%6266.67%01393248556.06%1322237755.62%806144055.97%2054141518246141086548
26Sound Tigers430001001587220000008352100010075270.875152641011359795101108599168584611219275531722.58%11190.91%01393248556.06%1322237755.62%806144055.97%2054141518246141086548
27Spiders412000011217-52110000068-22010000169-330.375122234001359795101108599168584611430406121628.57%20575.00%01393248556.06%1322237755.62%806144055.97%2054141518246141086548
28Stars2010001045-11010000024-21000001021120.500448001359795105685991685846411422348112.50%6183.33%01393248556.06%1322237755.62%806144055.97%2054141518246141086548
29Thunder31101000981100010002112110000077040.667915240013597951080859916858467525165516212.50%8275.00%01393248556.06%1322237755.62%806144055.97%2054141518246141086548
Total824128043243332924141241103102174142324117170122215915091010.61633355688902135979510265985991685846232662785814793678222.34%3587180.17%21393248556.06%1322237755.62%806144055.97%2054141518246141086548
31Wolf Pack4400000027151222000000149522000000136781.000274976001359795102008599168584614138287715320.00%90100.00%01393248556.06%1322237755.62%806144055.97%2054141518246141086548
_Since Last GM Reset824128043243332924141241103102174142324117170122215915091010.61633355688902135979510265985991685846232662785814793678222.34%3587180.17%21393248556.06%1322237755.62%806144055.97%2054141518246141086548
_Vs Conference4623160121317816810231460110195831223910001128385-2550.5981782964740113597951014768599168584613503574578352154520.93%1923681.25%11393248556.06%1322237755.62%806144055.97%2054141518246141086548
_Vs Division28122001011269630147100000654916145100101614714260.46412621734301135979510971859916858467962082575011393223.02%1131685.84%11393248556.06%1322237755.62%806144055.97%2054141518246141086548

Total Pour les Joueurs
Matchs JouésPointsSéquenceButsPassesPointsTirs PourTirs ContreTirs BloquésMinutes de PénalitéMises en ÉchecButs en Filet DésertBlanchissage
82101L133355688926592326627858147902
Tous les Matchs
GPWLOTWOTL SOWSOLGFGA
8241284324333292
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
4124113102174142
Matchs Éxtérieurs
GPWLOTWOTL SOWSOLGFGA
4117171222159150
Derniers 10 Matchs
WLOTWOTL SOWSOL
730000
Tentatives en Avantage NumériqueButs en Avantage Numérique% en Avantage NumériqueTentatives en Désavantage NumériqueButs Contre en Désavantage Numérique% en Désavantage NumériqueButs Pour en Désavantage Numérique
3678222.34%3587180.17%2
Tirs en 1e PériodeTirs en 2e PériodeTirs en 3e PériodeTirs en 4e PériodeButs en 1e PériodeButs en 2e PériodeButs en 3e PériodeButs en 4e Période
85991685846135979510
Mises en Jeu
Gagnées en Zone OffensiveTotal en Zone Offensive% Gagnées en Zone Offensive Gagnées en Zone DéfensiveTotal en Zone Défensive% Gagnées en Zone DéfensiveGagnées en Zone NeutreTotal en Zone Neutre% Gagnées en Zone Neutre
1393248556.06%1322237755.62%806144055.97%
Temps Avec la Rondelle
En Zone OffensiveContrôle en Zone OffensiveEn Zone DéfensiveContrôle en Zone DéfensiveEn Zone NeutreContrôle en Zone Neutre
2054141518246141086548


Derniers Match Joués
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe Visiteuse Score Équipe Locale Score ST OT SO RI Lien
2 - 2018-10-0410Monsters2Cougars9LSommaire du Match
3 - 2018-10-0515Caroline4Monsters3LSommaire du Match
7 - 2018-10-0938Monsters2Monsters4WSommaire du Match
9 - 2018-10-1147Monsters6Cabaret Lady Mary Ann5WXSommaire du Match
11 - 2018-10-1363Monsters5Thunder4WSommaire du Match
16 - 2018-10-1892Phantoms2Monsters5WSommaire du Match
18 - 2018-10-20109Baby Hawks5Monsters4LSommaire du Match
21 - 2018-10-23123Jayhawks3Monsters2LSommaire du Match
23 - 2018-10-25137Monsters2Chiefs3LSommaire du Match
25 - 2018-10-27154Crunch3Monsters4WXSommaire du Match
28 - 2018-10-30170Cougars7Monsters3LSommaire du Match
30 - 2018-11-01191Monsters3Sharks4LXXSommaire du Match
32 - 2018-11-03205Monsters5Monarchs4WXXSommaire du Match
33 - 2018-11-04209Monsters3Admirals6LSommaire du Match
35 - 2018-11-06217Stars4Monsters2LSommaire du Match
38 - 2018-11-09237Monsters5Bears3WSommaire du Match
39 - 2018-11-10251Wolf Pack2Monsters5WSommaire du Match
41 - 2018-11-12262Monsters2Stars1WXXSommaire du Match
44 - 2018-11-15280Cabaret Lady Mary Ann3Monsters7WSommaire du Match
46 - 2018-11-17298Monsters4Caroline5LSommaire du Match
48 - 2018-11-19308Monsters2Marlies3LSommaire du Match
52 - 2018-11-23339Marlies5Monsters4LSommaire du Match
53 - 2018-11-24354Monsters2Manchots1WSommaire du Match
55 - 2018-11-26366Monsters7Cougars8LSommaire du Match
58 - 2018-11-29383Minnesota5Monsters6WXSommaire du Match
60 - 2018-12-01402Monsters4Sound Tigers1WSommaire du Match
63 - 2018-12-04420Heat5Monsters4LXXSommaire du Match
65 - 2018-12-06431Monsters4Phantoms2WSommaire du Match
67 - 2018-12-08451Bears5Monsters6WSommaire du Match
70 - 2018-12-11469Comets3Monsters4WSommaire du Match
72 - 2018-12-13480Monarchs3Monsters5WSommaire du Match
74 - 2018-12-15501Admirals4Monsters3LSommaire du Match
76 - 2018-12-17513Las Vegas3Monsters5WSommaire du Match
79 - 2018-12-20535Spiders5Monsters2LSommaire du Match
81 - 2018-12-22546Monsters5Phantoms4WSommaire du Match
82 - 2018-12-23559Monsters3Spiders4LXXSommaire du Match
86 - 2018-12-27568Monsters5Wolf Pack2WSommaire du Match
87 - 2018-12-28582Marlies5Monsters4LXXSommaire du Match
90 - 2018-12-31605Senators3Monsters4WSommaire du Match
94 - 2019-01-04631Monsters9Caroline4WSommaire du Match
95 - 2019-01-05641Monsters4Cabaret Lady Mary Ann3WSommaire du Match
98 - 2019-01-08663Monsters2Thunder3LSommaire du Match
100 - 2019-01-10675Chill5Monsters4LXSommaire du Match
102 - 2019-01-12692Monsters4Bears5LSommaire du Match
103 - 2019-01-13701Wolf Pack7Monsters9WSommaire du Match
105 - 2019-01-15713Spiders3Monsters4WSommaire du Match
108 - 2019-01-18734Rocket2Monsters4WSommaire du Match
109 - 2019-01-19748Monsters7Minnesota5WSommaire du Match
119 - 2019-01-29775Crunch1Monsters5WSommaire du Match
121 - 2019-01-31780Monsters3Oceanics7LSommaire du Match
123 - 2019-02-02797Chiefs3Monsters7WSommaire du Match
126 - 2019-02-05819Monsters4Monsters5LXSommaire du Match
128 - 2019-02-07836Monsters1Jayhawks3LSommaire du Match
130 - 2019-02-09851Monsters6Las Vegas3WSommaire du Match
133 - 2019-02-12866Bears6Monsters4LSommaire du Match
135 - 2019-02-14878Sound Tigers0Monsters4WSommaire du Match
137 - 2019-02-16900Monsters4Baby Hawks2WSommaire du Match
139 - 2019-02-18911Thunder1Monsters2WXSommaire du Match
140 - 2019-02-19920Monsters2Rocket3LSommaire du Match
143 - 2019-02-22940Monsters5Senators2WSommaire du Match
144 - 2019-02-23950Sharks6Monsters3LSommaire du Match
147 - 2019-02-26973Manchots2Monsters3WSommaire du Match
Date Limite d'Échange --- Les échange ne peuvent plus se faire après la simulation de cette journée!
149 - 2019-02-28986Phantoms4Monsters5WSommaire du Match
151 - 2019-03-02999Oil Kings1Monsters5WSommaire du Match
152 - 2019-03-031014Oceanics5Monsters1LSommaire du Match
154 - 2019-03-051020Monsters3Spiders5LSommaire du Match
156 - 2019-03-071034Monsters2Manchots3LSommaire du Match
158 - 2019-03-091055Manchots4Monsters5WSommaire du Match
160 - 2019-03-111066Monsters3Sound Tigers4LXSommaire du Match
161 - 2019-03-121074Bruins2Monsters3WSommaire du Match
164 - 2019-03-151094Caroline2Monsters6WSommaire du Match
165 - 2019-03-161103Monsters3Bruins7LSommaire du Match
168 - 2019-03-191131Monsters3Heat1WSommaire du Match
170 - 2019-03-211145Monsters3Oil Kings0WSommaire du Match
173 - 2019-03-241168Monsters7Comets1WSommaire du Match
175 - 2019-03-261179Sound Tigers3Monsters4WSommaire du Match
177 - 2019-03-281191Rocket3Monsters4WSommaire du Match
179 - 2019-03-301210Monsters1Chill2LSommaire du Match
180 - 2019-03-311218Monsters3Crunch4LSommaire du Match
182 - 2019-04-021230Bruins1Monsters6WSommaire du Match
185 - 2019-04-051254Monsters8Wolf Pack4WSommaire du Match
186 - 2019-04-061260Monsters3Senators5LSommaire du Match



Capacité de l'Aréna - Tendance du Prix des Billets - %
Niveau 1Niveau 2
Capacité de l'Aréna20001000
Prix des Billets3515
Assistance62,21930,523
Assistance PCT75.88%74.45%

Revenus
Matchs à domicile RestantsAssistance Moyenne - %Revenus Moyen par MatchRevenus Annuels à ce JourCapacité de l'ArénaPopularité de l'Équipe
0 2262 - 75.40% 64,281$2,635,510$3000100

Dépenses
Dépenses Annuelles à Ce JourSalaire Total des JoueursSalaire Total Moyen des JoueursSalaire des Coachs
2,239,865$ 2,066,300$ 2,066,300$ 0$
Cap Salarial Par JourCap salarial à ce jourJoueurs Inclut dans la Cap SalarialeJoueurs Exclut dans la Cap Salariale
10,555$ 2,147,344$ 27 1

Éstimation
Revenus de la Saison ÉstimésJours Restants de la SaisonDépenses Par JourDépenses de la Saison Éstimées
0$ 0 11,050$ 0$




LigueDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
20188241280432433329241412411031021741423241171701222159150910133355688902135979510265985991685846232662785814793678222.34%3587180.17%21393248556.06%1322237755.62%806144055.97%2054141518246141086548
Total Saison Régulière8241280432433329241412411031021741423241171701222159150910133355688902135979510265985991685846232662785814793678222.34%3587180.17%21393248556.06%1322237755.62%806144055.97%2054141518246141086548