Monarchs

GP: 82 | W: 36 | L: 37 | OTL: 9 | P: 81
GF: 329 | GA: 381 | PP%: 21.45% | PK%: 77.62%
DG: Benoit Plouffe | Morale : 50 | Moyenne d'Équipe : 48
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Lauri KorpikoskiXX100.00553589716660765436515770446151050600
2Curtis LazarXXX100.00754387697256555237554867484537050570
3Brendan Leipsic (R)XX100.00493588725455465663595263483734050560
4Joseph BlandisiXX100.00553575675658365247515256484136050530
5Warren Foegele (R)X100.00513595756453354035384270483532050510
6Kenny AgostinoX100.00493580666961354235414251453936050490
7Daniel Ciampini (R)X100.00434545455742424345434345443230050440
8Mitchell Stephens (R)X100.00434545456142424345434345443230050440
9Evgeny GrachevXXX100.00308733428029373135313144453734050390
10Viktor SvedbergX100.00523588588546334035354568463532050530
11Andreas Englund (R)X100.00563588636252353135303268483734050510
12Philip LarsenX100.00473589665850354335454156474742050510
13Dennis Cholowski (R)X100.00505050506550505050505050503230050490
14Ryan Lindgren (R)X100.00454545456445454545454545453230050460
15Frederic Allard (R)X100.00434343435843434343434343433230050440
16Jesper Lindgren (R)X100.00384040404637373840383840393230050400
Rayé
1Liam O'Brien (R)X100.00564362627450353535353557483936050470
2Matthew Mistele (R)X100.00353737376435353537353537363230050380
MOYENNE D'ÉQUIPE100.0048426656644842434143435445383405048
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Evan Fitzpatrick (R)100.0045454576454545454545453230050470
Rayé
1Carter Hart (R)100.0045454566454545454545453230050460
2Wouter Peeters (R)100.0043434378434343434343433230050460
3Jack Lafontaine (R)100.0043434374434343434343433230050450
4Thomas Heemskerk100.0043454374424141414141403230050440
5Eamon McAdam (R)100.0041434169403939393939383230050420
MOYENNE D'ÉQUIPE100.004344437343434343434342323005045
Nom du Coach PH DF OF PD EX LD PO CNT Âge Contrat Salaire
Sheldon Keefe47888045657366CAN373500,000$


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur Nom de l'ÉquipePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Joseph BlandisiMonarchs (LA )C/LW824955104192209525941011930911.95%64162719.849122175177033103013446.72%242700041.28190001347
2Curtis LazarMonarchs (LA )C/LW/RW82455810320862020816639211927711.48%47139717.05813217117720241095242.74%12400001.47020129176
3Philip LarsenMonarchs (LA )D82112536-19715797386304112.79%58114914.022241220000024100.00%000000.6300000114
4Andreas EnglundMonarchs (LA )D82102535-56801018284295211.90%817288.880000000000100.00%000000.9611000153
5Viktor SvedbergMonarchs (LA )D82152035-1960011690117428112.82%79115014.034261220000024010.00%000000.6100000014
6Mitchell StephensMonarchs (LA )C8214213534156354107316813.08%94195.11000000000111050.00%49800001.6700001211
7Brendan LeipsicMonarchs (LA )LW/RW216282202142992420.69%71055.0400000000000050.00%400001.5100000111
8Evgeny GrachevMonarchs (LA )C/LW/RW820111407103010.00%81631.990000001131630042.13%17800000.1200000000
9Daniel CiampiniMonarchs (LA )LW82101-200441011210.00%0340.4200000000030055.10%4900000.5800000010
10Warren FoegeleMonarchs (LA )LW82000000010000.00%160.0800000000000033.33%900000.0011000000
Stats d'équipe Total ou en Moyenne759151207358035430675753123838086512.20%35467828.942329521703962461763811746.91%328900041.06313013273126
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien Nom de l'ÉquipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
Stats d'équipe Total ou en Moyenne0.0000.0000.000


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du Joueur Nom de l'ÉquipePOS Âge Date de Naissance Nouveau Joueur Poids Taille Non-Échange Disponible pour Échange Ballotage Forcé Contrat StatusType Salaire Actuel Cap Salariale Cap Salariale Restant Exclus du Cap Salarial Link
Andreas EnglundMonarchs (LA )D211996-01-21Yes189 Lbs6 ft3NoNoNo2Contrat d'EntréePro & Farm825,000$82,500$0$NoLien
Brendan LeipsicMonarchs (LA )LW/RW231994-05-19Yes180 Lbs5 ft10NoNoNo2Avec RestrictionPro & Farm693,000$69,300$0$NoLien
Carter HartMonarchs (LA )G191998-08-13Yes180 Lbs6 ft2NoNoNo4Contrat d'EntréePro & Farm792,500$79,250$0$NoLien
Curtis LazarMonarchs (LA )C/LW/RW221995-02-02No209 Lbs6 ft0NoNoNo1Avec RestrictionPro & Farm925,000$92,500$0$NoLien
Daniel CiampiniMonarchs (LA )LW261990-11-25Yes185 Lbs5 ft11NoNoNo3Avec RestrictionPro & Farm825,000$82,500$0$NoLien
Dennis CholowskiMonarchs (LA )D191998-02-15Yes200 Lbs6 ft1NoNoNo4Contrat d'EntréePro & Farm925,000$92,500$0$NoLien
Eamon McAdamMonarchs (LA )G231994-09-24Yes188 Lbs6 ft2NoNoNo2Avec RestrictionPro & Farm700,000$70,000$0$NoLien
Evan FitzpatrickMonarchs (LA )G191998-01-28Yes202 Lbs6 ft3NoNoNo4Contrat d'EntréePro & Farm742,500$74,250$0$NoLien
Evgeny GrachevMonarchs (LA )C/LW/RW271990-02-21No225 Lbs6 ft4NoNoNo1Avec RestrictionPro & Farm800,000$80,000$0$NoLien
Frederic AllardMonarchs (LA )D191997-12-27Yes184 Lbs6 ft1NoNoNo4Contrat d'EntréePro & Farm742,500$74,250$0$NoLien
Jack LafontaineMonarchs (LA )G191998-01-06Yes197 Lbs6 ft3NoNoNo4Contrat d'EntréePro & Farm700,000$70,000$0$NoLien
Jesper LindgrenMonarchs (LA )D201997-05-19Yes161 Lbs6 ft0NoNoNo3Contrat d'EntréePro & Farm650,000$65,000$0$NoLien
Joseph BlandisiMonarchs (LA )C/LW231994-07-18No182 Lbs6 ft0NoNoNo2Avec RestrictionPro & Farm665,000$66,500$0$NoLien
Kenny AgostinoMonarchs (LA )LW251992-04-30No202 Lbs6 ft0NoNoNo3Avec RestrictionPro & Farm800,000$80,000$0$NoLien
Lauri KorpikoskiMonarchs (LA )LW/RW311986-07-28No193 Lbs6 ft1YesNoNo4Sans RestrictionPro & Farm1,500,000$150,000$0$NoLien
Liam O'BrienMonarchs (LA )C231994-07-29Yes215 Lbs6 ft1NoNoNo1Avec RestrictionPro & Farm1,000,002$100,000$0$NoLien
Matthew MisteleMonarchs (LA )LW211995-10-17Yes190 Lbs6 ft2NoNoNo3Contrat d'EntréePro & Farm525,000$52,500$0$NoLien
Mitchell StephensMonarchs (LA )C201997-02-05Yes190 Lbs5 ft11NoNoNo3Contrat d'EntréePro & Farm825,000$82,500$0$NoLien
Philip LarsenMonarchs (LA )D271989-12-07No185 Lbs6 ft1NoNoNo1Avec RestrictionPro & Farm1,600,000$160,000$0$NoLien
Ryan LindgrenMonarchs (LA )D191998-02-11Yes198 Lbs6 ft0NoNoNo4Contrat d'EntréePro & Farm825,000$82,500$0$NoLien
Thomas HeemskerkMonarchs (LA )G271990-04-11No200 Lbs6 ft0NoNoNo2Avec RestrictionPro & Farm825,000$82,500$0$NoLien
Viktor SvedbergMonarchs (LA )D261991-05-24No238 Lbs6 ft8NoNoNo2Avec RestrictionPro & Farm575,000$57,500$0$NoLien
Warren FoegeleMonarchs (LA )LW211996-04-01Yes190 Lbs6 ft2NoNoNo2Contrat d'EntréePro & Farm700,000$70,000$0$NoLien
Wouter PeetersMonarchs (LA )G191998-07-31Yes205 Lbs6 ft4NoNoNo4Contrat d'EntréePro & Farm700,000$70,000$0$NoLien
Joueurs TotalÂge MoyenPoids MoyenTaille MoyenneContrat MoyenSalaire Moyen 1e Année
2422.46195 Lbs6 ft12.71827,521$



Attaque à 5 contre 5
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Joseph BlandisiCurtis Lazar40122
230122
320122
4Mitchell Stephens10122
Défense à 5 contre 5
Ligne #DéfenseDéfense% TempsPHYDFOF
140122
2Viktor SvedbergPhilip Larsen30122
3Andreas Englund20122
410122
Attaque en Avantage Numérique
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Joseph BlandisiCurtis Lazar60122
240122
Défense en Avantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
160122
2Viktor SvedbergPhilip Larsen40122
Attaque à 4 en Désavantage Numérique
Ligne #CentreAilier% TempsPHYDFOF
1Joseph Blandisi60122
2Curtis Lazar40122
Défense à 4 en Désavantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
160122
2Viktor SvedbergPhilip Larsen40122
3 joueurs en Désavantage Numérique
Ligne #Ailier% TempsPHYDFOFDéfenseDéfense% TempsPHYDFOF
1Joseph Blandisi6012260122
240122Viktor SvedbergPhilip Larsen40122
Attaque à 4 contre 4
Ligne #CentreAilier% TempsPHYDFOF
1Joseph Blandisi60122
2Curtis Lazar40122
Défense à 4 contre 4
Ligne #DéfenseDéfense% TempsPHYDFOF
160122
2Viktor SvedbergPhilip Larsen40122
Attaque Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Joseph BlandisiCurtis Lazar
Défense Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Joseph BlandisiCurtis Lazar
Attaquants Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Daniel Ciampini, Warren Foegele, Evgeny GrachevDaniel Ciampini, Warren FoegeleEvgeny Grachev
Défenseurs Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Andreas Englund, , Andreas Englund,
Tirs de Pénalité
Joseph Blandisi, , , Curtis Lazar,
Gardien
#1 : , #2 :


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
LigueDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals40400000821-1320200000410-620200000411-700.000815230013310586101089918959699318459498211218.18%23386.96%11078253642.51%1102270340.77%631151041.79%1779121221486341046482
2Baby Hawks311010001315-220101000811-31100000054140.6671319320013310586101119918959699311813296410220.00%12283.33%01078253642.51%1102270340.77%631151041.79%1779121221486341046482
3Bears20101000101001010000056-11000100054120.5001018280013310586106999189596993631712459111.11%6266.67%11078253642.51%1102270340.77%631151041.79%1779121221486341046482
4Bruins2010010058-31000010034-11010000024-210.2505914101331058610549918959699362251450500.00%60100.00%01078253642.51%1102270340.77%631151041.79%1779121221486341046482
5Cabaret Lady Mary Ann21100000131121010000057-21100000084420.5001321340013310586101059918959699398221246600.00%6350.00%01078253642.51%1102270340.77%631151041.79%1779121221486341046482
6Caroline210000101174110000005231000001065141.00011182900133105861089991895969936513255315533.33%11372.73%01078253642.51%1102270340.77%631151041.79%1779121221486341046482
7Chiefs311000011012-22110000067-11000000145-130.50010203000133105861099991895969939430326510330.00%16381.25%01078253642.51%1102270340.77%631151041.79%1779121221486341046482
8Chill3120000079-21010000034-12110000045-120.33371320001331058610789918959699379182256900.00%11463.64%11078253642.51%1102270340.77%631151041.79%1779121221486341046482
9Comets431000001920-122000000106421100000914-560.7501934530013310586101709918959699316046327818633.33%16287.50%01078253642.51%1102270340.77%631151041.79%1779121221486341046482
10Cougars20100001614-81010000029-71000000145-110.250610160013310586106299189596993952521337342.86%9277.78%01078253642.51%1102270340.77%631151041.79%1779121221486341046482
11Crunch2020000047-31010000023-11010000024-200.000471100133105861075991895969935820304413323.08%8275.00%01078253642.51%1102270340.77%631151041.79%1779121221486341046482
12Heat422000001114-32200000064220200000510-540.50011193000133105861013799189596993135403010314214.29%14378.57%01078253642.51%1102270340.77%631151041.79%1779121221486341046482
13Jayhawks403000101425-1120200000614-820100010811-320.2501422360013310586101279918959699317746651029222.22%20670.00%01078253642.51%1102270340.77%631151041.79%1779121221486341046482
14Las Vegas5410000025232321000001515022000000108280.8002544690013310586101879918959699315943519621419.05%23578.26%01078253642.51%1102270340.77%631151041.79%1779121221486341046482
15Manchots210000011082110000005231000000156-130.7501020300013310586107299189596993689294110220.00%11463.64%11078253642.51%1102270340.77%631151041.79%1779121221486341046482
16Marlies20200000513-81010000037-41010000026-400.00058130013310586104799189596993823520347114.29%10460.00%01078253642.51%1102270340.77%631151041.79%1779121221486341046482
17Minnesota311001001415-11000010045-1211000001010030.50014243800133105861097991895969931033034609222.22%17476.47%01078253642.51%1102270340.77%631151041.79%1779121221486341046482
18Monsters20100001710-31000000145-11010000035-210.2507121900133105861081991895969937028204810330.00%10280.00%01078253642.51%1102270340.77%631151041.79%1779121221486341046482
19Monsters312000001517-211000000514202000001016-620.333152540001331058610112991895969939931146715426.67%7185.71%01078253642.51%1102270340.77%631151041.79%1779121221486341046482
20Oceanics303000001020-1020200000713-61010000037-400.00010172700133105861086991895969931484235541200.00%17852.94%01078253642.51%1102270340.77%631151041.79%1779121221486341046482
21Oil Kings4310000018126220000009362110000099060.7501831490113310586101359918959699310920338617423.53%14285.71%01078253642.51%1102270340.77%631151041.79%1779121221486341046482
22Phantoms220000001073110000006421100000043141.0001017270013310586107799189596993532119355120.00%7357.14%01078253642.51%1102270340.77%631151041.79%1779121221486341046482
23Rocket220000001156110000005321100000062441.0001120310013310586109499189596993662012277228.57%60100.00%21078253642.51%1102270340.77%631151041.79%1779121221486341046482
24Senators2110000069-3110000004311010000026-420.500610160013310586104299189596993683023189222.22%9366.67%01078253642.51%1102270340.77%631151041.79%1779121221486341046482
25Sharks422000001819-122000000129320200000610-440.50018325000133105861018999189596993191382810718527.78%14192.86%11078253642.51%1102270340.77%631151041.79%1779121221486341046482
26Sound Tigers220000001046110000004131100000063341.00010172700133105861085991895969935726263311218.18%13192.31%01078253642.51%1102270340.77%631151041.79%1779121221486341046482
27Spiders20100100714-71000010056-11010000028-610.2507111800133105861060991895969939720264712216.67%13284.62%01078253642.51%1102270340.77%631151041.79%1779121221486341046482
28Stars30100002913-41010000046-22000000257-220.33391524001331058610101991895969938629266110330.00%13376.92%01078253642.51%1102270340.77%631151041.79%1779121221486341046482
29Thunder2100001013103100000106511100000075241.00013233600133105861061991895969935915204713430.77%10370.00%01078253642.51%1102270340.77%631151041.79%1779121221486341046482
Total82313702336329381-5241191601311169178-941122101025160203-43810.494329569898111331058610291699189596993299184183017263317121.45%3628177.62%71078253642.51%1102270340.77%631151041.79%1779121221486341046482
31Wolf Pack211000001091110000006331010000046-220.50010182800133105861010699189596993883041449111.11%100100.00%01078253642.51%1102270340.77%631151041.79%1779121221486341046482
_Since Last GM Reset82313702336329381-5241191601311169178-941122101025160203-43810.494329569898111331058610291699189596993299184183017263317121.45%3628177.62%71078253642.51%1102270340.77%631151041.79%1779121221486341046482
_Vs Conference36111901212136171-351877002117782-518412010015989-30300.41713624037610133105861012159918959699313694133847411502617.33%1704076.47%51078253642.51%1102270340.77%631151041.79%1779121221486341046482
_Vs Division16310001006377-14824001003041-11816000003336-370.2196310817110133105861054099189596993588192152299671522.39%641773.44%21078253642.51%1102270340.77%631151041.79%1779121221486341046482

Total Pour les Joueurs
Matchs JouésPointsSéquenceButsPassesPointsTirs PourTirs ContreTirs BloquésMinutes de PénalitéMises en ÉchecButs en Filet DésertBlanchissage
8281W132956989829162991841830172611
Tous les Matchs
GPWLOTWOTL SOWSOLGFGA
8231372336329381
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
4119161311169178
Matchs Éxtérieurs
GPWLOTWOTL SOWSOLGFGA
4112211025160203
Derniers 10 Matchs
WLOTWOTL SOWSOL
550000
Tentatives en Avantage NumériqueButs en Avantage Numérique% en Avantage NumériqueTentatives en Désavantage NumériqueButs Contre en Désavantage Numérique% en Désavantage NumériqueButs Pour en Désavantage Numérique
3317121.45%3628177.62%7
Tirs en 1e PériodeTirs en 2e PériodeTirs en 3e PériodeTirs en 4e PériodeButs en 1e PériodeButs en 2e PériodeButs en 3e PériodeButs en 4e Période
991895969931331058610
Mises en Jeu
Gagnées en Zone OffensiveTotal en Zone Offensive% Gagnées en Zone Offensive Gagnées en Zone DéfensiveTotal en Zone Défensive% Gagnées en Zone DéfensiveGagnées en Zone NeutreTotal en Zone Neutre% Gagnées en Zone Neutre
1078253642.51%1102270340.77%631151041.79%
Temps Avec la Rondelle
En Zone OffensiveContrôle en Zone OffensiveEn Zone DéfensiveContrôle en Zone DéfensiveEn Zone NeutreContrôle en Zone Neutre
1779121221486341046482


Derniers Match Joués
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe Visiteuse Score Équipe Locale Score ST OT SO RI Lien
3 - 2018-10-0516Sharks4Monarchs5WSommaire du Match
5 - 2018-10-0731Cougars9Monarchs2LSommaire du Match
7 - 2018-10-0940Monarchs3Oceanics7LSommaire du Match
9 - 2018-10-1151Monarchs6Rocket2WSommaire du Match
11 - 2018-10-1359Monarchs2Senators6LSommaire du Match
13 - 2018-10-1574Monarchs2Marlies6LSommaire du Match
16 - 2018-10-1897Sound Tigers1Monarchs4WSommaire du Match
18 - 2018-10-20105Crunch3Monarchs2LSommaire du Match
21 - 2018-10-23128Monarchs2Stars3LXXSommaire du Match
23 - 2018-10-25138Monarchs4Minnesota6LSommaire du Match
26 - 2018-10-28159Wolf Pack3Monarchs6WSommaire du Match
30 - 2018-11-01190Phantoms4Monarchs6WSommaire du Match
32 - 2018-11-03205Monsters5Monarchs4LXXSommaire du Match
35 - 2018-11-06222Admirals5Monarchs4LSommaire du Match
37 - 2018-11-08235Minnesota5Monarchs4LXSommaire du Match
39 - 2018-11-10252Heat3Monarchs4WSommaire du Match
42 - 2018-11-13271Marlies7Monarchs3LSommaire du Match
45 - 2018-11-16288Monarchs5Baby Hawks4WSommaire du Match
46 - 2018-11-17300Monarchs1Chill4LSommaire du Match
48 - 2018-11-19313Monarchs4Chiefs5LXXSommaire du Match
50 - 2018-11-21331Monsters1Monarchs5WSommaire du Match
53 - 2018-11-24357Comets4Monarchs6WSommaire du Match
54 - 2018-11-25361Oil Kings3Monarchs6WSommaire du Match
56 - 2018-11-27376Monarchs7Comets5WSommaire du Match
58 - 2018-11-29388Monarchs6Oil Kings3WSommaire du Match
59 - 2018-11-30394Monarchs3Heat6LSommaire du Match
61 - 2018-12-02412Caroline2Monarchs5WSommaire du Match
63 - 2018-12-04425Jayhawks6Monarchs3LSommaire du Match
65 - 2018-12-06439Spiders6Monarchs5LXSommaire du Match
67 - 2018-12-08445Las Vegas7Monarchs5LSommaire du Match
69 - 2018-12-10462Monarchs4Cougars5LXXSommaire du Match
70 - 2018-12-11466Monarchs2Crunch4LSommaire du Match
72 - 2018-12-13480Monarchs3Monsters5LSommaire du Match
74 - 2018-12-15499Monarchs5Manchots6LXXSommaire du Match
77 - 2018-12-18527Oceanics8Monarchs3LSommaire du Match
81 - 2018-12-22549Monarchs4Sharks6LSommaire du Match
82 - 2018-12-23564Monarchs5Las Vegas4WSommaire du Match
86 - 2018-12-27578Jayhawks8Monarchs3LSommaire du Match
88 - 2018-12-29585Las Vegas6Monarchs7WSommaire du Match
90 - 2018-12-31607Monarchs5Monsters9LSommaire du Match
91 - 2019-01-01614Monarchs5Las Vegas4WSommaire du Match
93 - 2019-01-03628Thunder5Monarchs6WXXSommaire du Match
95 - 2019-01-05643Oil Kings0Monarchs3WSommaire du Match
97 - 2019-01-07656Monarchs2Sharks4LSommaire du Match
100 - 2019-01-10682Senators3Monarchs4WSommaire du Match
102 - 2019-01-12698Manchots2Monarchs5WSommaire du Match
105 - 2019-01-15717Monarchs6Minnesota4WSommaire du Match
107 - 2019-01-17732Monarchs3Stars4LXXSommaire du Match
109 - 2019-01-19741Monarchs5Monsters7LSommaire du Match
111 - 2019-01-21757Chiefs2Monarchs4WSommaire du Match
123 - 2019-02-02795Monarchs6Sound Tigers3WSommaire du Match
125 - 2019-02-04806Monarchs4Wolf Pack6LSommaire du Match
126 - 2019-02-05812Monarchs2Spiders8LSommaire du Match
128 - 2019-02-07826Monarchs4Phantoms3WSommaire du Match
130 - 2019-02-09838Monarchs2Bruins4LSommaire du Match
132 - 2019-02-11861Monarchs5Bears4WXSommaire du Match
135 - 2019-02-14886Comets2Monarchs4WSommaire du Match
137 - 2019-02-16903Bruins4Monarchs3LXSommaire du Match
139 - 2019-02-18914Bears6Monarchs5LSommaire du Match
142 - 2019-02-21936Monarchs3Chill1WSommaire du Match
144 - 2019-02-23949Monarchs8Cabaret Lady Mary Ann4WSommaire du Match
146 - 2019-02-25964Monarchs7Thunder5WSommaire du Match
147 - 2019-02-26972Monarchs6Caroline5WXXSommaire du Match
Date Limite d'Échange --- Les échange ne peuvent plus se faire après la simulation de cette journée!
149 - 2019-02-28990Stars6Monarchs4LSommaire du Match
151 - 2019-03-021000Baby Hawks7Monarchs3LSommaire du Match
154 - 2019-03-051028Rocket3Monarchs5WSommaire du Match
156 - 2019-03-071042Chiefs5Monarchs2LSommaire du Match
158 - 2019-03-091056Monarchs2Jayhawks6LSommaire du Match
159 - 2019-03-101064Monarchs1Admirals5LSommaire du Match
163 - 2019-03-141091Chill4Monarchs3LSommaire du Match
165 - 2019-03-161101Cabaret Lady Mary Ann7Monarchs5LSommaire du Match
167 - 2019-03-181120Oceanics5Monarchs4LSommaire du Match
170 - 2019-03-211147Sharks5Monarchs7WSommaire du Match
172 - 2019-03-231163Admirals5Monarchs0LSommaire du Match
174 - 2019-03-251176Monarchs2Heat4LSommaire du Match
175 - 2019-03-261182Monarchs3Oil Kings6LSommaire du Match
177 - 2019-03-281195Monarchs2Comets9LSommaire du Match
179 - 2019-03-301214Baby Hawks4Monarchs5WXSommaire du Match
181 - 2019-04-011228Heat1Monarchs2WSommaire du Match
182 - 2019-04-021238Monarchs6Jayhawks5WXXSommaire du Match
185 - 2019-04-051256Monarchs3Admirals6LSommaire du Match
186 - 2019-04-061270Las Vegas2Monarchs3WSommaire du Match



Capacité de l'Aréna - Tendance du Prix des Billets - %
Niveau 1Niveau 2
Capacité de l'Aréna20001000
Prix des Billets5020
Assistance60,54130,929
Assistance PCT73.83%75.44%

Revenus
Matchs à domicile RestantsAssistance Moyenne - %Revenus Moyen par MatchRevenus Annuels à ce JourCapacité de l'ArénaPopularité de l'Équipe
0 2231 - 74.37% 88,918$3,645,630$3000100

Dépenses
Dépenses Annuelles à Ce JourSalaire Total des JoueursSalaire Total Moyen des JoueursSalaire des Coachs
2,060,665$ 1,986,050$ 1,986,050$ 0$
Cap Salarial Par JourCap salarial à ce jourJoueurs Inclut dans la Cap SalarialeJoueurs Exclut dans la Cap Salariale
10,621$ 2,060,665$ 24 0

Éstimation
Revenus de la Saison ÉstimésJours Restants de la SaisonDépenses Par JourDépenses de la Saison Éstimées
0$ 0 10,621$ 0$




LigueDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
201882313702336329381-5241191601311169178-941122101025160203-4381329569898111331058610291699189596993299184183017263317121.45%3628177.62%71078253642.51%1102270340.77%631151041.79%1779121221486341046482
Total Saison Régulière82313702336329381-5241191601311169178-941122101025160203-4381329569898111331058610291699189596993299184183017263317121.45%3628177.62%71078253642.51%1102270340.77%631151041.79%1779121221486341046482