Wolf Pack

GP: 82 | W: 25 | L: 52 | OTL: 5 | P: 55
GF: 327 | GA: 421 | PP%: 19.81% | PK%: 75.78%
GM : Jeff Dumais | Morale : 50 | Team Overall : 44
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Hunter ShinkarukXX100.00483586725553334735464762473734050510
2Borna RendulicXX100.00513594666949333340333365473734050470
3Mitch CallahanX100.00533594706244333335333366473734050470
4Sergei PlotnikovX100.00643580647044373549393260463532050470
5Blake SpeersXX100.00423594705746333335333367473532050470
6Jordan CaronXX100.00564382667145323235323257464943050460
7Cole Bardreau (R)XX100.00454545455745454545454545453230050450
8Mike VecchioneXX100.00423594726446333370333351473532050450
9Alexandre Mallet (R)XX100.00414545456739394145414145433230050440
10Cliff Pu (R)X100.00434343436643434343434343433230050440
11Anton Karlsson (R)XX100.00394343436037373943393943413230050420
12Max Zimmer (R)X100.00404040405940404040404040403230050420
13Matt BartkowskiX100.00704383616463434435454361485248050560
14Anton Lindholm (R)X100.00783587636161453635393274483734050560
15Christian Jaros (R)X100.00543595616744353135303262483532050490
16Gleason Fournier (R)X100.00394343436137373943393943413230050420
17Tomas KundratekX100.00308040496629453135313147453734050420
Scratches
1Jakub Culek (R)X100.00394343436037373943393943413230050420
2Pavel Kraskovsky (R)X100.00353737376835353537353537363230050390
3Jason Wilson (R)X100.00333737377133333337333337353230050380
4Adam PayerlXX100.00308535357629403135313135453532050370
5Kevin CzuczmanX100.00308436456829483135313135453532050400
6Simon Bourque (R)X100.00353737376335353537353537363230050390
7Joey Laleggia (R)X100.00333737375533333337333337353230050380
TEAM AVERAGE100.0045446052644238364037365043353305044
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Jared Coreau (R)100.0036458385354946355265453734050500
2Samu Perhonen (R)100.0041434168403939393939383230050420
Scratches
1Karel Vejmelka (R)100.0036373676363535353535353230050400
2Nicola Riopel100.0035373567343333333333333230050380
3Henri Kiviaho (R)100.0035373560343333333333333230050370
TEAM AVERAGE100.003740467136383735384137333105041
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Rod Brind'Amour57697165717067CAN471500,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Dominik SimonRangersC/LW/RW5632447641160581012126014815.09%10105318.811010204719802251135256.07%10700021.4402000493
2Matt BenningRangersD451642581760011169107296014.95%5499122.036915521331014117200.00%000101.1700000644
3Jean-Sebastien DeaRangersC/RW5431245513515661872596918111.97%3476714.20112519000002162.51%93100011.43010121023
4Alexandre MalletWolf Pack (Ran)C/LW82231639-1782301141081675112313.77%307168.7400000000004045.74%96200001.0933213252
5Evan RodriguesRangersC/LW/RW109514700122734103226.47%317517.503146360000141166.89%14800011.6000000201
6Simon BourqueWolf Pack (Ran)D503912-1655591211781717.65%374288.560000000000000.00%000000.5600100001
7Christian JarosWolf Pack (Ran)D31099818034131814190.00%3360219.43044896000021000.00%000000.3000000011
8Blake SpeersWolf Pack (Ran)C/RW8000040310112100.00%49612.0800000000000030.00%1000000.0000000000
Team Total or Average336114149263412705048953682524359013.82%205483014.38202545118483123926614454.87%215800141.0936325242115
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Samu PerhonenWolf Pack (Ran)82234550.8725.4539896036228290230.667278282621
Team Total or Average82234550.8725.4539896036228290230.667278282621


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract StatusType Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Link
Adam PayerlWolf Pack (Ran)C/RW261991-03-04No218 Lbs6 ft3NoNoNo1RFAPro & Farm600,000$60,000$0$NoLink
Alexandre MalletWolf Pack (Ran)C/LW251992-05-22Yes195 Lbs6 ft1NoNoNo2RFAPro & Farm825,000$82,500$0$NoLink
Anton KarlssonWolf Pack (Ran)LW/RW211996-08-03Yes187 Lbs6 ft1NoNoNo2ELCPro & Farm700,000$70,000$0$NoLink
Anton Lindholm (Out of Payroll)Wolf Pack (Ran)D221994-11-29Yes191 Lbs5 ft11NoNoNo3RFAPro & Farm667,000$0$0$YesLink
Blake SpeersWolf Pack (Ran)C/RW201997-01-02No185 Lbs5 ft11NoNoNo3ELCPro & Farm667,000$66,700$0$NoLink
Borna RendulicWolf Pack (Ran)LW/RW251992-03-25No200 Lbs6 ft2NoNoNo1RFAPro & Farm610,000$61,000$0$NoLink
Christian JarosWolf Pack (Ran)D211996-04-02Yes201 Lbs6 ft3NoNoNo4ELCPro & Farm730,000$73,000$0$NoLink
Cliff PuWolf Pack (Ran)C191998-06-03Yes193 Lbs6 ft2NoNoNo4ELCPro & Farm742,500$74,250$0$NoLink
Cole BardreauWolf Pack (Ran)C/RW241993-07-22Yes185 Lbs5 ft10NoNoNo4RFAPro & Farm650,000$65,000$0$NoLink
Gleason FournierWolf Pack (Ran)D261991-09-08Yes191 Lbs6 ft0NoNoNo2RFAPro & Farm700,000$70,000$0$NoLink
Henri KiviahoWolf Pack (Ran)G231994-02-26Yes167 Lbs6 ft1NoNoNo2RFAPro & Farm615,000$61,500$0$NoLink
Hunter ShinkarukWolf Pack (Ran)LW/RW221994-10-13No181 Lbs5 ft10NoNoNo2RFAPro & Farm925,000$92,500$0$NoLink
Jakub CulekWolf Pack (Ran)LW251992-09-07Yes185 Lbs6 ft3NoNoNo2RFAPro & Farm700,000$70,000$0$NoLink
Jared CoreauWolf Pack (Ran)G251991-11-05Yes220 Lbs6 ft6NoNoNo2RFAPro & Farm600,000$60,000$0$NoLink
Jason WilsonWolf Pack (Ran)LW221995-01-14Yes205 Lbs6 ft2NoNoNo2RFAPro & Farm525,000$52,500$0$NoLink
Joey LaleggiaWolf Pack (Ran)D251992-07-24Yes182 Lbs5 ft9NoNoNo2RFAPro & Farm843,000$84,300$0$NoLink
Jordan CaronWolf Pack (Ran)LW/RW261990-11-02No204 Lbs6 ft3NoNoNo1RFAPro & Farm500,000$50,000$0$NoLink
Karel VejmelkaWolf Pack (Ran)G211996-05-25Yes202 Lbs6 ft3NoNoNo3ELCPro & Farm525,000$52,500$0$NoLink
Kevin CzuczmanWolf Pack (Ran)D261991-01-09No204 Lbs6 ft3NoNoNo5RFAPro & Farm500,000$50,000$0$NoLink
Matt BartkowskiWolf Pack (Ran)D291988-06-04No196 Lbs6 ft1YesNoNo5UFAPro & Farm750,000$75,000$0$NoLink
Max ZimmerWolf Pack (Ran)LW191997-10-29Yes187 Lbs6 ft0NoNoNo4ELCPro & Farm650,000$65,000$0$NoLink
Mike VecchioneWolf Pack (Ran)C/RW241993-02-25No194 Lbs5 ft10NoNoNo3RFAPro & Farm925,000$92,500$0$NoLink
Mitch CallahanWolf Pack (Ran)RW261991-08-17No190 Lbs6 ft0NoNoNo5RFAPro & Farm555,555$55,556$0$NoLink
Nicola RiopelWolf Pack (Ran)G281989-02-20No185 Lbs6 ft0NoNoNo2UFAPro & Farm525,000$52,500$0$NoLink
Pavel KraskovskyWolf Pack (Ran)C211996-09-11Yes194 Lbs6 ft4NoNoNo3ELCPro & Farm525,000$52,500$0$NoLink
Samu PerhonenWolf Pack (Ran)G241993-03-07Yes184 Lbs6 ft5NoNoNo2RFAPro & Farm700,000$70,000$0$NoLink
Sergei PlotnikovWolf Pack (Ran)LW271990-06-03No202 Lbs6 ft2NoNoNo2RFAPro & Farm925,000$92,500$0$NoLink
Simon BourqueWolf Pack (Ran)D201997-01-12Yes195 Lbs6 ft1NoNoNo3ELCPro & Farm525,000$52,500$0$NoLink
Tomas KundratekWolf Pack (Ran)D271989-12-26No201 Lbs6 ft2NoNoNo2RFAPro & Farm450,000$45,000$0$NoLink
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2923.76194 Lbs6 ft12.69660,519$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
140122
230122
3Alexandre Mallet20122
410122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
140122
230122
320122
410122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
160122
240122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
160122
240122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
160122
240122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
160122
240122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
16012260122
24012240122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
160122
240122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
160122
240122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Extra Forwards
Normal PowerPlayPenalty Kill
, , ,
Extra Defensemen
Normal PowerPlayPenalty Kill
, , ,
Penalty Shots
, , , ,
Goalie
#1 : , #2 : Samu Perhonen


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals21100000121021010000035-21100000095420.500122335001291138288810321028109651862617508225.00%5180.00%01095265941.18%1203289641.54%635152741.58%151399924206491021439
2Baby Hawks21100000990110000005231010000047-320.50091625001291138284410321028109651882624456116.67%12283.33%01095265941.18%1203289641.54%635152741.58%151399924206491021439
3Bears404000001128-1720200000614-820200000514-900.00011193000129113828138103210281096511966314651516.67%7357.14%01095265941.18%1203289641.54%635152741.58%151399924206491021439
4Bruins321000001284110000006242110000066040.6671222340012911382813210321028109651791627661218.33%10370.00%01095265941.18%1203289641.54%635152741.58%151399924206491021439
5Cabaret Lady Mary Ann312000001218-621100000911-21010000037-420.333121931001291138281731032102810965113035376210110.00%9277.78%11095265941.18%1203289641.54%635152741.58%151399924206491021439
6Caroline4310000021174211000001011-122000000116560.750214263001291138281991032102810965117555368521419.05%13376.92%01095265941.18%1203289641.54%635152741.58%151399924206491021439
7Chiefs20100001512-71000000134-11010000028-610.2505914001291138285710321028109651110281850700.00%9277.78%01095265941.18%1203289641.54%635152741.58%151399924206491021439
8Chill20200000411-71010000005-51010000046-200.000471110129113828621032102810965168912441100.00%5180.00%01095265941.18%1203289641.54%635152741.58%151399924206491021439
9Comets202000001014-41010000067-11010000047-300.0001018280012911382874103210281096511023831438337.50%13561.54%01095265941.18%1203289641.54%635152741.58%151399924206491021439
10Cougars302000011418-41010000057-220100001911-210.16714274100129113828107103210281096511465620639444.44%10370.00%01095265941.18%1203289641.54%635152741.58%151399924206491021439
11Crunch31200000151411010000045-121100000119220.333152843001291138281521032102810965113034285219526.32%13561.54%01095265941.18%1203289641.54%635152741.58%151399924206491021439
12Heat2110000078-1110000006331010000015-420.50071421001291138287910321028109651892825427228.57%9366.67%01095265941.18%1203289641.54%635152741.58%151399924206491021439
13Jayhawks20200000510-51010000014-31010000046-200.00051015001291138287410321028109651892722397114.29%11372.73%01095265941.18%1203289641.54%635152741.58%151399924206491021439
14Las Vegas2020000069-31010000035-21010000034-100.00061117001291138288610321028109651852520361119.09%10190.00%01095265941.18%1203289641.54%635152741.58%151399924206491021439
15Manchots42200000171702110000069-321100000118340.5001733500012911382814210321028109651138384910312325.00%17664.71%01095265941.18%1203289641.54%635152741.58%151399924206491021439
16Marlies312000001214-21100000064220200000610-420.33312223400129113828981032102810965114748166212325.00%8275.00%01095265941.18%1203289641.54%635152741.58%151399924206491021439
17Minnesota20200000712-51010000024-21010000058-300.00071421001291138287910321028109651962514386233.33%7357.14%01095265941.18%1203289641.54%635152741.58%151399924206491021439
18Monarchs21100000910-1110000006421010000036-320.500916250012911382888103210281096511062439511000.00%9188.89%01095265941.18%1203289641.54%635152741.58%151399924206491021439
19Monsters404000001527-1220200000613-720200000914-500.0001527420012911382814110321028109651200474095900.00%15380.00%01095265941.18%1203289641.54%635152741.58%151399924206491021439
20Monsters20200000815-71010000046-21010000049-500.000816240012911382870103210281096519025143611327.27%7185.71%01095265941.18%1203289641.54%635152741.58%151399924206491021439
21Oceanics20200000612-61010000045-11010000027-500.00069150012911382860103210281096511053322486116.67%11372.73%01095265941.18%1203289641.54%635152741.58%151399924206491021439
22Oil Kings2110000079-2110000006241010000017-620.5007132000129113828791032102810965169201647400.00%8362.50%01095265941.18%1203289641.54%635152741.58%151399924206491021439
23Phantoms421000102118321000010121022110000098160.750213960001291138281291032102810965114747559210330.00%19478.95%11095265941.18%1203289641.54%635152741.58%151399924206491021439
24Rocket31100001810-22010000158-31100000032130.500816240012911382813810321028109651851918681218.33%9277.78%01095265941.18%1203289641.54%635152741.58%151399924206491021439
25Senators312000001416-2211000008801010000068-220.33314284200129113828104103210281096511272433569333.33%12283.33%01095265941.18%1203289641.54%635152741.58%151399924206491021439
26Sharks2100000112120110000005411000000178-130.7501224360012911382888103210281096511334218397342.86%90100.00%01095265941.18%1203289641.54%635152741.58%151399924206491021439
27Sound Tigers413000001518-321100000541202000001014-420.2501528432012911382812410321028109651126415610410220.00%21385.71%01095265941.18%1203289641.54%635152741.58%151399924206491021439
28Spiders403001001424-1020100100913-420200000511-610.125142741001291138281581032102810965119046268116425.00%13376.92%01095265941.18%1203289641.54%635152741.58%151399924206491021439
29Stars21000010972110000003211000001065141.00091625001291138287210321028109651602218549333.33%8187.50%01095265941.18%1203289641.54%635152741.58%151399924206491021439
30Thunder302000101014-4201000109901010000015-420.333101828001291138281421032102810965112233335914428.57%13469.23%01095265941.18%1203289641.54%635152741.58%151399924206491021439
Total82225200134327421-9441142200122163190-274183000012164231-67550.335327611938301291138283177103210281096513514100079817753086119.81%3227875.78%21095265941.18%1203289641.54%635152741.58%151399924206491021439
_Since Last GM Reset82225200134327421-9441142200122163190-274183000012164231-67550.335327611938301291138283177103210281096513514100079817753086119.81%3227875.78%21095265941.18%1203289641.54%635152741.58%151399924206491021439
_Vs Conference46123000121184239-55238120012091109-18234180000193130-37300.32618434252630129113828169410321028109651197053745710151613018.63%1743977.59%11095265941.18%1203289641.54%635152741.58%151399924206491021439
_Vs Division2831100110114149-351424001105474-201417000006075-1590.161114215329201291138281031103210281096511172337276625931718.28%1052576.19%11095265941.18%1203289641.54%635152741.58%151399924206491021439

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
8255W1327611938317735141000798177530
All Games
GPWLOTWOTL SOWSOLGFGA
8222520134327421
Home Games
GPWLOTWOTL SOWSOLGFGA
4114220122163190
Visitor Games
GPWLOTWOTL SOWSOLGFGA
418300012164231
Last 10 Games
WLOTWOTL SOWSOL
360001
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
3086119.81%3227875.78%2
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
10321028109651129113828
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
1095265941.18%1203289641.54%635152741.58%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
151399924206491021439


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
2 - 2018-10-046Chill5Wolf Pack0LBoxScore
4 - 2018-10-0619Wolf Pack6Crunch7LBoxScore
5 - 2018-10-0729Wolf Pack8Caroline4WBoxScore
9 - 2018-10-1149Sharks4Wolf Pack5WBoxScore
11 - 2018-10-1357Oil Kings2Wolf Pack6WBoxScore
14 - 2018-10-1679Monsters6Wolf Pack4LBoxScore
15 - 2018-10-1787Wolf Pack3Bears6LBoxScore
19 - 2018-10-21116Heat3Wolf Pack6WBoxScore
21 - 2018-10-23122Cabaret Lady Mary Ann7Wolf Pack4LBoxScore
23 - 2018-10-25139Wolf Pack4Baby Hawks7LBoxScore
26 - 2018-10-28159Wolf Pack3Monarchs6LBoxScore
28 - 2018-10-30177Wolf Pack7Sharks8LXXBoxScore
30 - 2018-11-01189Wolf Pack9Admirals5WBoxScore
33 - 2018-11-04208Crunch5Wolf Pack4LBoxScore
35 - 2018-11-06216Rocket5Wolf Pack4LXXBoxScore
38 - 2018-11-09238Wolf Pack4Cougars5LXXBoxScore
39 - 2018-11-10251Wolf Pack2Monsters5LBoxScore
41 - 2018-11-12260Comets7Wolf Pack6LBoxScore
44 - 2018-11-15277Wolf Pack5Sound Tigers7LBoxScore
46 - 2018-11-17297Cabaret Lady Mary Ann4Wolf Pack5WBoxScore
48 - 2018-11-19309Stars2Wolf Pack3WBoxScore
50 - 2018-11-21320Sound Tigers1Wolf Pack4WBoxScore
52 - 2018-11-23332Wolf Pack4Phantoms5LBoxScore
53 - 2018-11-24347Bears6Wolf Pack4LBoxScore
55 - 2018-11-26365Senators4Wolf Pack5WBoxScore
58 - 2018-11-29384Wolf Pack6Senators8LBoxScore
60 - 2018-12-01399Wolf Pack3Rocket2WBoxScore
61 - 2018-12-02408Oceanics5Wolf Pack4LBoxScore
67 - 2018-12-08450Wolf Pack3Cabaret Lady Mary Ann7LBoxScore
69 - 2018-12-10463Wolf Pack1Thunder5LBoxScore
73 - 2018-12-14488Jayhawks4Wolf Pack1LBoxScore
75 - 2018-12-16505Las Vegas5Wolf Pack3LBoxScore
77 - 2018-12-18519Admirals5Wolf Pack3LBoxScore
81 - 2018-12-22553Wolf Pack3Marlies5LBoxScore
82 - 2018-12-23562Phantoms5Wolf Pack6WXXBoxScore
86 - 2018-12-27568Monsters5Wolf Pack2LBoxScore
88 - 2018-12-29593Wolf Pack4Chill6LBoxScore
90 - 2018-12-31604Wolf Pack2Chiefs8LBoxScore
92 - 2019-01-02617Manchots2Wolf Pack4WBoxScore
94 - 2019-01-04633Wolf Pack4Monsters9LBoxScore
96 - 2019-01-06647Wolf Pack4Jayhawks6LBoxScore
98 - 2019-01-08666Wolf Pack3Las Vegas4LBoxScore
100 - 2019-01-10673Sound Tigers3Wolf Pack1LBoxScore
102 - 2019-01-12688Wolf Pack5Sound Tigers7LBoxScore
103 - 2019-01-13701Wolf Pack7Monsters9LBoxScore
105 - 2019-01-15712Caroline6Wolf Pack8WBoxScore
107 - 2019-01-17728Baby Hawks2Wolf Pack5WBoxScore
109 - 2019-01-19744Wolf Pack0Bruins2LBoxScore
119 - 2019-01-29774Phantoms5Wolf Pack6WBoxScore
121 - 2019-01-31779Wolf Pack3Spiders7LBoxScore
123 - 2019-02-02796Thunder3Wolf Pack2LBoxScore
125 - 2019-02-04806Monarchs4Wolf Pack6WBoxScore
127 - 2019-02-06822Bruins2Wolf Pack6WBoxScore
129 - 2019-02-08837Caroline5Wolf Pack2LBoxScore
131 - 2019-02-10859Marlies4Wolf Pack6WBoxScore
133 - 2019-02-12872Wolf Pack2Oceanics7LBoxScore
136 - 2019-02-15888Wolf Pack5Crunch2WBoxScore
138 - 2019-02-17904Wolf Pack3Manchots4LBoxScore
140 - 2019-02-19919Wolf Pack3Caroline2WBoxScore
142 - 2019-02-21932Minnesota4Wolf Pack2LBoxScore
144 - 2019-02-23946Spiders8Wolf Pack5LBoxScore
145 - 2019-02-24956Wolf Pack2Bears8LBoxScore
Trade Deadline --- Trades can’t be done after this day is simulated!
148 - 2019-02-27981Thunder6Wolf Pack7WXXBoxScore
150 - 2019-03-01994Rocket3Wolf Pack1LBoxScore
152 - 2019-03-031009Bears8Wolf Pack2LBoxScore
154 - 2019-03-051025Wolf Pack6Stars5WXXBoxScore
156 - 2019-03-071036Wolf Pack5Cougars6LBoxScore
158 - 2019-03-091054Spiders5Wolf Pack4LXBoxScore
160 - 2019-03-111071Wolf Pack1Oil Kings7LBoxScore
162 - 2019-03-131082Wolf Pack4Comets7LBoxScore
164 - 2019-03-151097Wolf Pack1Heat5LBoxScore
165 - 2019-03-161108Wolf Pack5Minnesota8LBoxScore
168 - 2019-03-191124Cougars7Wolf Pack5LBoxScore
172 - 2019-03-231155Wolf Pack3Marlies5LBoxScore
174 - 2019-03-251171Manchots7Wolf Pack2LBoxScore
176 - 2019-03-271186Wolf Pack6Bruins4WBoxScore
178 - 2019-03-291197Chiefs4Wolf Pack3LXXBoxScore
180 - 2019-03-311215Wolf Pack5Phantoms3WBoxScore
181 - 2019-04-011222Wolf Pack2Spiders4LBoxScore
183 - 2019-04-031239Senators4Wolf Pack3LBoxScore
185 - 2019-04-051254Monsters8Wolf Pack4LBoxScore
186 - 2019-04-061264Wolf Pack8Manchots4WBoxScore



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price4020
Attendance61,02230,835
Attendance PCT74.42%75.21%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
0 2240 - 74.68% 74,575$3,057,580$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
1,963,015$ 1,915,506$ 1,906,006$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
9,887$ 1,932,353$ 28 1

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 0 10,243$ 0$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
201882225200134327421-9441142200122163190-274183000012164231-6755327611938301291138283177103210281096513514100079817753086119.81%3227875.78%21095265941.18%1203289641.54%635152741.58%151399924206491021439
Total Regular Season82225200134327421-9441142200122163190-274183000012164231-6755327611938301291138283177103210281096513514100079817753086119.81%3227875.78%21095265941.18%1203289641.54%635152741.58%151399924206491021439