Chiefs

GP: 82 | W: 53 | L: 24 | OTL: 5 | P: 111
GF: 330 | GA: 258 | PP%: 24.85% | PK%: 79.51%
GM : Ricky Doyon | Morale : 50 | Team Overall : 47
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
#
Player Name
C
L
R
D
CON
CK
FG
DI
SK
ST
EN
DU
PH
FO
PA
SC
DF
PS
EX
LD
PO
MO
OV
TA
SP
1Nick CousinsXXX100.00634384705760635371466059614436050560
2Brendan GaunceXX100.00603585697559464749435073484336050550
3Ty RattieX100.00473591715763374736445062454440050530
4Vinni LettieriXX100.00503595686653375143544856483532050530
5Quinton HowdenXX100.00553587676351354635414964474136050520
6Christopher DiDomenicoXX100.00553585715257374735425260423734050520
7Paul ThompsonX100.00575071696949354035463365473734050500
8German Rubtsov (R)X100.00505050506250505050505050503230050490
9Spencer Foo (R)X100.00503595686258354050354461483532050490
10Conner Bleackley (R)X100.00455049496443434549454550473230050470
11Daniel Catenacci (R)XX100.00503595646352353535353559483734050470
12Ben HuttonX100.00555085646871634435464169454636050580
13MacKenzie Weegar (R)X100.00743582636958474235404369483734050560
14Jakub Jerabek (R)X100.00563590666453404635464567483532050550
15Travis Sanheim (R)X100.00533585695753444535464364483532050540
16Paul PostmaX100.00553589626450404235453954485146050520
17Robbie Russo (R)X100.00493591666049353035293176473532050520
18Darren DietzX100.00564371636644323435333567463532050510
19Dean Kukan (R)X100.00503589646049363535373264483734050510
Scratches
1Brendan ShinniminX100.00453576715742303442383162453532050460
2J.C. LiponX100.00553580695741313735423250463532050460
3Eeli Tolvanen (R)XX100.00443595616153353535353550483532050450
4Pascal Laberge (R)X100.00454545455345454545454545453230050450
5Greg CareyXX100.00414545456939394145414145433230050440
6Pius Suter (R)X100.00434545455042424345434345443230050440
7Adam Brooks (R)X100.00404040405240404040404040403230050410
8Maxim Shalunov (R)X100.00364040406035353640363640383230050390
9Matthew Bradley (R)X100.00353737376635353537353537363230050390
10Matt CareyX100.00308535396629403135313142453532050380
11Gregory Chase (R)X100.00333737376633333337333337353230050380
12Andre PeterssonXX100.00309030334829313135313133453532050350
13Jonas Siegenthaler (R)X100.00434545457442424345434345443230050450
14Matthew Spencer (R)X100.00434545456842424345434345443230050450
15Tyler Lewington (R)X100.00353737376435353537353537363230050390
TEAM AVERAGE100.0048426857624740414040415445363305048
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
#
Goalie Name
CON
SK
DU
EN
SZ
AG
RB
SC
HS
RT
PH
PS
EX
LD
PO
MO
OV
TA
SP
1Antoine Bibeau (R)100.0046455580454852444362603532050500
2Marek Mazanec100.0021455469274343334390884036050450
Scratches
1Jordan Binnington100.0043454360424141414159583532050440
2Chris Driedger100.0013454878234343334362603734050430
TEAM AVERAGE100.003145507234444538436867373405046
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
#
Player Name
Team Name
POS
GP
G
A
P
+/-
PIM
PIM5
HIT
HTT
SHT
OSB
OSM
SHT%
SB
MP
AMG
PPG
PPA
PPP
PPS
PPM
PKG
PKA
PKP
PKS
PKM
GW
GT
FO%
FOT
GA
TA
EG
HT
P/20
PSG
PSS
FW
FL
FT
S1
S2
S3
1Brendan GaunceChiefs (Stl)C/LW82415192263801371642578620415.95%19162319.791117285324210171466356.23%90700031.13030001254
2Magnus PaajarviSt-LouisLW/RW7943418433120641392977825514.48%23176022.2912112348251224132215249.24%32900020.952100001064
3Nick CousinsChiefs (Stl)C/LW/RW82294776443751211652296317512.66%10161019.64414184525611241594061.66%166400000.9436001197
4Noah HanifinSt-LouisD4815486318480795996337915.63%35104221.7291019561670330113010.00%000111.2100000621
5Ty RattieChiefs (Stl)RW822635611918027952084915412.50%5142817.42369281770000133139.08%8700000.8501000253
6Vinni LettieriChiefs (Stl)C/RW8217365310100341041604213010.63%8136816.684913201610001351149.75%60700000.7711000140
7Ben HuttonChiefs (Stl)D7994150336010746810332748.74%91178222.5731215492640112205100.00%000000.5600002103
8MacKenzie WeegarChiefs (Stl)D821429432590014654100277214.00%80163319.928715482410111182310.00%000000.5311000114
9Quinton HowdenChiefs (Stl)C/LW80192342032094651734011310.98%10132816.60066111051122644335.34%13300000.6300000241
10Christopher DiDomenicoChiefs (Stl)C/RW82212041-203551161111844912511.41%7128215.642134290002278336.78%71500000.6400001136
11Travis SanheimChiefs (Stl)D82731383260714667203610.45%46126015.3765112881022184100.00%000000.6000000212
12Jakub JerabekChiefs (Stl)D8282735136069508421549.52%73133516.29268381100000123000.00%100000.5201000102
13Paul ThompsonChiefs (Stl)RW374610-1318061394614318.70%551313.87000030110221046.55%5800000.3900000001
14Robbie RussoChiefs (Stl)D450101056022211111180.00%244219.3700028000113000.00%000000.4700000010
15Stefan NoesenSt-LouisC/RW5279400391741611.76%07715.46134722000000050.94%10600002.3300000001
16Spencer FooChiefs (Stl)RW45729-140015203592220.00%13157.02213419000021060.87%2300000.5700000001
17German RubtsovChiefs (Stl)C45448-7261036252891814.29%33367.47000121011100045.58%28300000.4811011010
18Eeli TolvanenChiefs (Stl)LW/RW34437-62011122041520.00%745613.44101190000130029.03%3100000.3111000010
19Darren DietzChiefs (Stl)D67167-92806813187185.56%265728.55000630000070000.00%200000.2400000000
20Justin SchultzSt-LouisD633610097104630.00%614524.22213819000012000.00%000000.8300000010
21Dean KukanChiefs (Stl)D67145-101202018144107.14%215077.57112421000037000.00%000000.2012000000
22Paul PostmaChiefs (Stl)D41055151002845520.00%123518.580111800014000.00%000000.2801000000
23Daniel CatenacciChiefs (Stl)C/LW3011-200100110.00%04515.0700000000010050.00%200000.4400000000
24Adam BrooksChiefs (Stl)C19000400201110.00%0743.950001130000120033.33%2100000.0000000000
25Conner BleackleyChiefs (Stl)C4000000300030.00%0194.8900002000030030.00%1000000.0000000000
26J.C. LiponChiefs (Stl)RW15000140403110.00%0604.04000111000000023.53%1700000.0000000000
Team Total or Average137527548075516154830131512882166614163312.70%5122135415.5371111182464226461218361582381551.88%499600160.711028015404440
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
#
Goalie Name
Team Name
GP
W
L
OTL
PCT
GAA
MP
PIM
SO
GA
SA
SAR
A
EG
PS %
PSA
ST
BG
S1
S2
S3
1Antoine BibeauChiefs (Stl)69451940.8772.9839322419515910210.71839692121
2Marek MazanecChiefs (Stl)158300.8683.4672800423180100.00001158000
3Jordan BinningtonChiefs (Stl)70210.8972.9730300151460100.3333222000
Team Total or Average91532450.8773.0549642425220550410.690428282121


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name
Team Name
POS
Age
Birthday
Rookie
Weight
Height
No Trade
Available For Trade
Force Waivers
Contract
Status
Type
Current Salary
Salary Cap
Salary Cap Remaining
Exclude from Salary Cap
Link
Adam BrooksChiefs (Stl)C211996-05-06Yes175 Lbs5 ft10NoNoNo4ELCPro & Farm742,500$74,250$0$NoLink
Andre PeterssonChiefs (Stl)LW/RW271990-09-11No169 Lbs5 ft9NoNoNo2RFAPro & Farm501,000$50,100$0$NoLink
Antoine BibeauChiefs (Stl)G231994-05-01Yes210 Lbs6 ft3NoNoNo2RFAPro & Farm655,000$65,500$0$NoLink
Ben HuttonChiefs (Stl)D241993-04-20No207 Lbs6 ft2NoNoNo2RFAPro & Farm868,000$86,800$0$NoLink
Brendan GaunceChiefs (Stl)C/LW231994-03-25No217 Lbs6 ft2NoNoNo2RFAPro & Farm833,000$83,300$0$NoLink
Brendan ShinniminChiefs (Stl)C261991-01-07No185 Lbs5 ft10NoNoNo1RFAPro & Farm718,000$71,800$0$NoLink
Chris DriedgerChiefs (Stl)G231994-05-18No205 Lbs6 ft4NoNoNo1RFAPro & Farm730,000$73,000$0$NoLink
Christopher DiDomenicoChiefs (Stl)C/RW281989-02-20No174 Lbs5 ft11NoNoNo3UFAPro & Farm675,000$67,500$0$NoLink
Conner BleackleyChiefs (Stl)C211996-02-07Yes192 Lbs6 ft0NoNoNo2ELCPro & Farm895,000$89,500$0$NoLink
Daniel CatenacciChiefs (Stl)C/LW241993-03-09Yes193 Lbs5 ft10NoNoNo2RFAPro & Farm575,000$57,500$0$NoLink
Darren DietzChiefs (Stl)D241993-07-17No201 Lbs6 ft1NoNoNo2RFAPro & Farm690,000$69,000$0$NoLink
Dean KukanChiefs (Stl)D241993-07-08Yes186 Lbs6 ft2NoNoNo2RFAPro & Farm743,000$74,300$0$NoLink
Eeli TolvanenChiefs (Stl)LW/RW181999-04-22Yes191 Lbs5 ft10NoNoNo4ELCPro & Farm925,000$92,500$0$NoLink
German RubtsovChiefs (Stl)C191998-06-27Yes190 Lbs6 ft0NoNoNo4ELCPro & Farm925,000$92,500$0$NoLink
Greg CareyChiefs (Stl)C/LW271990-04-05No204 Lbs5 ft10NoNoNo2RFAPro & Farm825,000$82,500$0$NoLink
Gregory ChaseChiefs (Stl)C221995-01-01Yes195 Lbs6 ft0NoNoNo2RFAPro & Farm693,000$69,300$0$NoLink
J.C. LiponChiefs (Stl)RW241993-07-10No183 Lbs6 ft0NoNoNo2RFAPro & Farm675,000$67,500$0$NoLink
Jakub JerabekChiefs (Stl)D261991-05-12Yes200 Lbs5 ft11NoNoNo4RFAPro & Farm925,000$92,500$0$NoLink
Jonas SiegenthalerChiefs (Stl)D201997-05-06Yes220 Lbs6 ft3NoNoNo3ELCPro & Farm825,000$82,500$0$NoLink
Jordan BinningtonChiefs (Stl)G241993-07-11No167 Lbs6 ft1NoNoNo2RFAPro & Farm625,000$62,500$0$NoLink
MacKenzie WeegarChiefs (Stl)D231994-01-02Yes212 Lbs6 ft0NoNoNo2RFAPro & Farm680,000$68,000$0$NoLink
Marek MazanecChiefs (Stl)G261991-07-18No187 Lbs6 ft4NoNoNo4RFAPro & Farm700,000$70,000$0$NoLink
Matt CareyChiefs (Stl)LW251992-02-28No195 Lbs6 ft0NoNoNo1RFAPro & Farm600,000$60,000$0$NoLink
Matthew BradleyChiefs (Stl)C201997-01-22Yes195 Lbs6 ft0NoNoNo3ELCPro & Farm525,000$52,500$0$NoLink
Matthew SpencerChiefs (Stl)D201997-03-24Yes207 Lbs6 ft1NoNoNo3ELCPro & Farm825,000$82,500$0$NoLink
Maxim ShalunovChiefs (Stl)RW241993-01-31Yes185 Lbs6 ft3NoNoNo2RFAPro & Farm650,000$65,000$0$NoLink
Nick CousinsChiefs (Stl)C/LW/RW241993-07-20No185 Lbs5 ft11NoNoNo1RFAPro & Farm843,000$84,300$0$NoLink
Pascal LabergeChiefs (Stl)C191998-04-09Yes174 Lbs6 ft1NoNoNo4ELCPro & Farm842,500$84,250$0$NoLink
Paul PostmaChiefs (Stl)D281989-02-22No195 Lbs6 ft3NoNoNo2UFAPro & Farm850,000$85,000$0$NoLink
Paul ThompsonChiefs (Stl)RW281988-11-30No200 Lbs6 ft1NoNoNo2UFAPro & Farm575,000$57,500$0$NoLink
Pius SuterChiefs (Stl)C211996-05-24Yes170 Lbs5 ft11NoNoNo3ELCPro & Farm825,000$82,500$0$NoLink
Quinton HowdenChiefs (Stl)C/LW251992-01-21No189 Lbs6 ft2NoNoNo4RFAPro & Farm850,000$85,000$0$NoLink
Robbie RussoChiefs (Stl)D241993-02-15Yes189 Lbs6 ft0NoNoNo2RFAPro & Farm925,000$92,500$0$NoLink
Spencer FooChiefs (Stl)RW231994-05-19Yes190 Lbs6 ft0NoNoNo4RFAPro & Farm925,000$92,500$0$NoLink
Travis SanheimChiefs (Stl)D211996-03-29Yes181 Lbs6 ft3NoNoNo2ELCPro & Farm925,000$92,500$0$NoLink
Ty RattieChiefs (Stl)RW241993-02-05No184 Lbs5 ft11NoNoNo3RFAPro & Farm900,000$90,000$0$NoLink
Tyler LewingtonChiefs (Stl)D221994-12-05Yes197 Lbs6 ft1NoNoNo3RFAPro & Farm525,000$52,500$0$NoLink
Vinni LettieriChiefs (Stl)C/RW221995-02-06No195 Lbs5 ft11YesNoNo6RFAPro & Farm2,000,000$200,000$0$NoLink
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
3823.34192 Lbs6 ft02.61789,711$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Brendan GaunceNick CousinsVinni Lettieri40122
2Quinton HowdenChristopher DiDomenicoTy Rattie30122
3Daniel CatenacciGerman RubtsovPaul Thompson20122
4Nick CousinsConner BleackleySpencer Foo10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Ben HuttonMacKenzie Weegar40122
2Jakub JerabekTravis Sanheim30122
3Paul PostmaRobbie Russo20122
4Darren DietzDean Kukan10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Brendan GaunceNick CousinsVinni Lettieri60122
2Quinton HowdenChristopher DiDomenicoTy Rattie40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Ben HuttonMacKenzie Weegar60122
2Jakub JerabekTravis Sanheim40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Nick CousinsBrendan Gaunce60122
2Vinni LettieriTy Rattie40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Ben HuttonMacKenzie Weegar60122
2Jakub JerabekTravis Sanheim40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Nick Cousins60122Ben HuttonMacKenzie Weegar60122
2Brendan Gaunce40122Jakub JerabekTravis Sanheim40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Nick CousinsBrendan Gaunce60122
2Vinni LettieriTy Rattie40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Ben HuttonMacKenzie Weegar60122
2Jakub JerabekTravis Sanheim40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Brendan GaunceNick CousinsVinni LettieriBen HuttonMacKenzie Weegar
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Brendan GaunceNick CousinsVinni LettieriBen HuttonMacKenzie Weegar
Extra Forwards
Normal PowerPlayPenalty Kill
Paul Thompson, Spencer Foo, German RubtsovPaul Thompson, Spencer FooGerman Rubtsov
Extra Defensemen
Normal PowerPlayPenalty Kill
Paul Postma, Robbie Russo, Darren DietzPaul PostmaRobbie Russo, Darren Dietz
Penalty Shots
Nick Cousins, Brendan Gaunce, Vinni Lettieri, Ty Rattie, Christopher DiDomenico
Goalie
#1 : Antoine Bibeau, #2 : Marek Mazanec


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Overall
Home
Visitor
#
VS Team
GP
W
L
T
OTW
OTL
SOW
SOL
GF
GA
Diff
GP
W
L
T
OTW
OTL
SOW
SOL
GF
GA
Diff
GP
W
L
T
OTW
OTL
SOW
SOL
GF
GA
Diff
P
PCT
G
A
TP
SO
EG
GP1
GP2
GP3
GP4
SHF
SH1
SP2
SP3
SP4
SHA
SHB
Pim
Hit
PPA
PPG
PP%
PKA
PK GA
PK%
PK GF
W OF FO
T OF FO
OF FO%
W DF FO
T DF FO
DF FO%
W NT FO
T NT FO
NT FO%
PZ DF
PZ OF
PZ NT
PC DF
PC OF
PC NT
1Admirals321000001192110000002022110000099040.66711203101138103831490865864803787822195114321.43%60100.00%01440263854.59%1157212254.52%743142252.25%2168149216775941124605
2Baby Hawks53100001191632110000087132000001119270.7001930490013810383141238658648037813934349723834.78%16381.25%11440263854.59%1157212254.52%743142252.25%2168149216775941124605
3Bears20001010972100010004311000001054141.000914230013810383148186586480378611716307114.29%8187.50%01440263854.59%1157212254.52%743142252.25%2168149216775941124605
4Bruins21100000541110000003121010000023-120.50051015001381038314548658648037849121828200.00%9277.78%01440263854.59%1157212254.52%743142252.25%2168149216775941124605
5Cabaret Lady Mary Ann220000001183110000004311100000075241.00011213200138103831488865864803786025165612433.33%8275.00%01440263854.59%1157212254.52%743142252.25%2168149216775941124605
6Caroline220000001165110000007341100000043141.0001121320013810383147386586480378601116409444.44%5180.00%01440263854.59%1157212254.52%743142252.25%2168149216775941124605
7Chill541000001697321000009542200000074380.8001628440113810383141358658648037810233318420630.00%13192.31%11440263854.59%1157212254.52%743142252.25%2168149216775941124605
8Comets320000011376210000016511100000072550.83313243700138103831484865864803786714165612216.67%80100.00%01440263854.59%1157212254.52%743142252.25%2168149216775941124605
9Cougars21100000710-31010000037-41100000043120.500713200013810383146186586480378722220287114.29%50100.00%01440263854.59%1157212254.52%743142252.25%2168149216775941124605
10Crunch21100000770110000004221010000035-220.5007132000138103831484865864803783915224514428.57%11372.73%01440263854.59%1157212254.52%743142252.25%2168149216775941124605
11Heat3210000014862200000010281010000046-240.66714223611138103831410086586480378822430708112.50%14285.71%01440263854.59%1157212254.52%743142252.25%2168149216775941124605
12Jayhawks312000001013-31010000045-12110000068-220.3331017270013810383149186586480378792157639333.33%14564.29%01440263854.59%1157212254.52%743142252.25%2168149216775941124605
13Las Vegas3120000010100211000008711010000023-120.3331019290013810383148986586480378701420361400.00%9544.44%01440263854.59%1157212254.52%743142252.25%2168149216775941124605
14Manchots22000000945110000005231100000042241.000917260013810383147586586480378301110428225.00%5260.00%01440263854.59%1157212254.52%743142252.25%2168149216775941124605
15Marlies21100000972110000005231010000045-120.5009142300138103831459865864803785712123511436.36%6183.33%01440263854.59%1157212254.52%743142252.25%2168149216775941124605
16Minnesota42000002181442100000110732100000187160.750183452001381038314145865864803788623427113646.15%20385.00%01440263854.59%1157212254.52%743142252.25%2168149216775941124605
17Monarchs3110001012102100000105412110000076140.66712183000138103831494865864803789926207716318.75%10370.00%11440263854.59%1157212254.52%743142252.25%2168149216775941124605
18Monsters2110000069-3110000003211010000037-420.5006111700138103831445865864803785913103512325.00%5260.00%01440263854.59%1157212254.52%743142252.25%2168149216775941124605
19Monsters43100000151232110000047-322000000115660.7501523380013810383141228658648037810130456921314.29%15566.67%11440263854.59%1157212254.52%743142252.25%2168149216775941124605
20Oceanics412000101320-720100010711-42110000069-340.500132033001381038314978658648037813147407711436.36%19573.68%01440263854.59%1157212254.52%743142252.25%2168149216775941124605
21Oil Kings3300000013492200000010371100000031261.0001324370013810383148786586480378621122449111.11%11190.91%01440263854.59%1157212254.52%743142252.25%2168149216775941124605
22Phantoms20200000811-31010000035-21010000056-100.000814220013810383145586586480378501718388225.00%9366.67%01440263854.59%1157212254.52%743142252.25%2168149216775941124605
23Rocket2200000014311110000009091100000053241.000142741011381038314548658648037838178279222.22%40100.00%01440263854.59%1157212254.52%743142252.25%2168149216775941124605
24Senators22000000633110000003121100000032141.0006121800138103831450865864803783166388337.50%30100.00%01440263854.59%1157212254.52%743142252.25%2168149216775941124605
25Sharks302000011015-51000000156-12020000059-410.1671018280013810383141108658648037810120147912216.67%7271.43%01440263854.59%1157212254.52%743142252.25%2168149216775941124605
26Sound Tigers211000008531010000023-11100000062420.50081422001381038314598658648037830161235500.00%5260.00%01440263854.59%1157212254.52%743142252.25%2168149216775941124605
27Spiders220000001147110000008261100000032141.0001120310013810383147586586480378531116389444.44%8187.50%11440263854.59%1157212254.52%743142252.25%2168149216775941124605
28Stars42100010181442110000076121000010118360.750183351001381038314132865864803788226477817317.65%16381.25%01440263854.59%1157212254.52%743142252.25%2168149216775941124605
29Thunder211000005411010000002-21100000052320.50058130013810383144686586480378311324415240.00%12191.67%11440263854.59%1157212254.52%743142252.25%2168149216775941124605
Total8247240105533025872412411010231661155141231300032164143211110.677330578908141381038314256886586480378205657167515523348324.85%2885979.51%71440263854.59%1157212254.52%743142252.25%2168149216775941124605
31Wolf Pack210000101257110000008261000001043141.0001219310013810383141108658648037857814449222.22%70100.00%11440263854.59%1157212254.52%743142252.25%2168149216775941124605
_Since Last GM Reset8247240105533025872412411010231661155141231300032164143211110.677330578908141381038314256886586480378205657167515523348324.85%2885979.51%71440263854.59%1157212254.52%743142252.25%2168149216775941124605
_Vs Conference422710000141801324822146000029464302013400012866818600.71418032150112138103831413338658648037810372873957801774223.73%1563378.85%21440263854.59%1157212254.52%743142252.25%2168149216775941124605
_Vs Division2474000039376171233000015032181241000024344-1170.3549316225512138103831474586586480378638152198476941515.96%791877.22%11440263854.59%1157212254.52%743142252.25%2168149216775941124605

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
82111W133057890825682056571675155214
All Games
GPWLOTWOTL SOWSOLGFGA
8247241055330258
Home Games
GPWLOTWOTL SOWSOLGFGA
4124111023166115
Visitor Games
GPWLOTWOTL SOWSOLGFGA
4123130032164143
Last 10 Games
WLOTWOTL SOWSOL
640000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
3348324.85%2885979.51%7
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
865864803781381038314
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
1440263854.59%1157212254.52%743142252.25%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
2168149216775941124605


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Day
Game
Visitor Team
Score
Home Team
Score
ST
OT
SO
RI
Link
2 - 2018-10-0411Oceanics4Chiefs5WXXBoxScore
4 - 2018-10-0624Baby Hawks2Chiefs4WBoxScore
9 - 2018-10-1154Heat2Chiefs6WBoxScore
11 - 2018-10-1368Chiefs2Baby Hawks3LXXBoxScore
12 - 2018-10-1472Admirals0Chiefs2WBoxScore
15 - 2018-10-1786Chiefs5Rocket3WBoxScore
18 - 2018-10-20106Chiefs4Marlies5LBoxScore
20 - 2018-10-22120Chiefs1Oceanics6LBoxScore
23 - 2018-10-25137Monsters2Chiefs3WBoxScore
25 - 2018-10-27155Baby Hawks5Chiefs4LBoxScore
30 - 2018-11-01186Las Vegas6Chiefs5LBoxScore
32 - 2018-11-03201Minnesota3Chiefs7WBoxScore
35 - 2018-11-06221Caroline3Chiefs7WBoxScore
38 - 2018-11-09239Sharks6Chiefs5LXXBoxScore
40 - 2018-11-11253Minnesota4Chiefs3LXXBoxScore
43 - 2018-11-14273Chiefs4Baby Hawks2WBoxScore
45 - 2018-11-16290Chiefs2Las Vegas3LBoxScore
46 - 2018-11-17302Chiefs3Sharks6LBoxScore
48 - 2018-11-19313Monarchs4Chiefs5WXXBoxScore
50 - 2018-11-21326Chiefs3Chill2WBoxScore
52 - 2018-11-23344Chill2Chiefs4WBoxScore
53 - 2018-11-24348Oceanics7Chiefs2LBoxScore
57 - 2018-11-28377Chiefs4Cougars3WBoxScore
59 - 2018-11-30393Chiefs5Monsters1WBoxScore
60 - 2018-12-01404Chiefs0Jayhawks4LBoxScore
64 - 2018-12-05426Oil Kings2Chiefs6WBoxScore
66 - 2018-12-07441Chiefs5Oceanics3WBoxScore
68 - 2018-12-09454Comets3Chiefs2LXXBoxScore
70 - 2018-12-11470Cabaret Lady Mary Ann3Chiefs4WBoxScore
73 - 2018-12-14492Monsters1Chiefs3WBoxScore
75 - 2018-12-16507Heat0Chiefs4WBoxScore
77 - 2018-12-18524Chiefs3Oil Kings1WBoxScore
79 - 2018-12-20539Chiefs7Comets2WBoxScore
81 - 2018-12-22550Chiefs4Heat6LBoxScore
86 - 2018-12-27572Crunch2Chiefs4WBoxScore
88 - 2018-12-29592Manchots2Chiefs5WBoxScore
90 - 2018-12-31604Wolf Pack2Chiefs8WBoxScore
93 - 2019-01-03627Bears3Chiefs4WXBoxScore
95 - 2019-01-05642Sound Tigers3Chiefs2LBoxScore
97 - 2019-01-07653Chiefs5Phantoms6LBoxScore
98 - 2019-01-08664Stars2Chiefs1LBoxScore
100 - 2019-01-10677Rocket0Chiefs9WBoxScore
102 - 2019-01-12695Chiefs5Stars4WXXBoxScore
104 - 2019-01-14709Chiefs5Bears4WXXBoxScore
105 - 2019-01-15711Chiefs6Sound Tigers2WBoxScore
107 - 2019-01-17726Chiefs2Bruins3LBoxScore
109 - 2019-01-19742Senators1Chiefs3WBoxScore
111 - 2019-01-21757Chiefs2Monarchs4LBoxScore
113 - 2019-01-23769Chiefs8Admirals3WBoxScore
123 - 2019-02-02797Chiefs3Monsters7LBoxScore
126 - 2019-02-05811Chiefs7Cabaret Lady Mary Ann5WBoxScore
128 - 2019-02-07831Chiefs5Thunder2WBoxScore
130 - 2019-02-09843Chill0Chiefs4WBoxScore
131 - 2019-02-10852Chiefs4Chill2WBoxScore
133 - 2019-02-12869Spiders2Chiefs8WBoxScore
135 - 2019-02-14884Chiefs6Jayhawks4WBoxScore
137 - 2019-02-16894Chiefs6Monsters4WBoxScore
138 - 2019-02-17905Chiefs4Minnesota5LXXBoxScore
140 - 2019-02-19921Marlies2Chiefs5WBoxScore
142 - 2019-02-21937Chiefs6Stars4WBoxScore
144 - 2019-02-23947Bruins1Chiefs3WBoxScore
145 - 2019-02-24959Chiefs4Minnesota2WBoxScore
147 - 2019-02-26975Chill3Chiefs1LBoxScore
Trade Deadline --- Trades can’t be done after this day is simulated!
150 - 2019-03-01995Chiefs4Caroline3WBoxScore
151 - 2019-03-021007Stars4Chiefs6WBoxScore
155 - 2019-03-061031Chiefs1Admirals6LBoxScore
156 - 2019-03-071042Chiefs5Monarchs2WBoxScore
158 - 2019-03-091049Chiefs2Sharks3LBoxScore
161 - 2019-03-121076Jayhawks5Chiefs4LBoxScore
163 - 2019-03-141086Chiefs3Senators2WBoxScore
165 - 2019-03-161099Chiefs4Manchots2WBoxScore
166 - 2019-03-171112Chiefs3Crunch5LBoxScore
168 - 2019-03-191127Oil Kings1Chiefs4WBoxScore
170 - 2019-03-211140Cougars7Chiefs3LBoxScore
172 - 2019-03-231159Thunder2Chiefs0LBoxScore
174 - 2019-03-251173Las Vegas1Chiefs3WBoxScore
178 - 2019-03-291197Chiefs4Wolf Pack3WXXBoxScore
179 - 2019-03-301208Chiefs3Spiders2WBoxScore
181 - 2019-04-011225Monsters6Chiefs1LBoxScore
183 - 2019-04-031240Chiefs5Baby Hawks4WBoxScore
184 - 2019-04-041248Phantoms5Chiefs3LBoxScore
186 - 2019-04-061258Comets2Chiefs4WBoxScore



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price5020
Attendance62,57231,137
Attendance PCT76.31%75.94%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
0 2286 - 76.19% 91,496$3,751,340$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
3,326,253$ 3,000,900$ 2,942,937$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
16,048$ 3,326,253$ 38 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 0 16,048$ 0$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
2018824724010553302587241241101023166115514123130003216414321111330578908141381038314256886586480378205657167515523348324.85%2885979.51%71440263854.59%1157212254.52%743142252.25%2168149216775941124605
Total Regular Season824724010553302587241241101023166115514123130003216414321111330578908141381038314256886586480378205657167515523348324.85%2885979.51%71440263854.59%1157212254.52%743142252.25%2168149216775941124605