Thunder

GP: 82 | W: 46 | L: 28 | OTL: 8 | P: 100
GF: 302 | GA: 259 | PP%: 20.16% | PK%: 78.90%
GM : Jean-François Moquin | Morale : 50 | Team Overall : 46
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Jacob JosefsonX100.00543589716761475081505076555347050580
2Matt MoulsonXX100.00493591667061455635526058456354050570
3Kasperi KapanenXX100.00613592766057425235426259454137050550
4Samuel Blais (R)X100.00543582655652365235525255483230050520
5Tage Thompson (R)XX100.00533587637253424935485054483532050520
6Ronalds KeninsX100.00533581676949324649454763463533050510
7Samuel Henley (R)XX100.00513594677442333735334065473532050480
8Nicklas JensenXX100.00573594687546333335333356474138050470
9Brody SutterX100.00483593637246313268323264433532050460
10Petr StrakaXX100.00413592665840293235323159453532050440
11Ryan Martindale (R)X100.00394343435837373943393943413230050420
12Brendan Guhle (R)X100.00523582696462374235523268483734050550
13Brett Lernout (R)X100.00573586607161363535373270483936050540
14Anthony BitettoX100.00625076606963434635454755484136050530
15Rinat Valiev (R)X100.00503573637148353135303264483734050500
16Jacob LarssonX100.00453582646250333035293161473532050490
17Thomas Vannelli (R)X100.00414545454939394145414145433230050430
18James Melindy (R)X100.00394343436037373943393943413230050420
Scratches
1Brett RitchieX100.00745081637560685738506352484536050570
2Tommy SestitoX100.00625030638245344135483354475046050490
3Carter AshtonXX100.00504383647543313349363154454036050460
4Grayson Downing (R)X100.00454545456645454545454545453230050460
5Adam Gilmour (R)XX100.00364040406635353640363640383230050400
6Thomas Di Pauli (R)XX100.00364040405935353640363640383230050390
7Avery Peterson (R)X100.00353737377535353537353537363230050390
8Spencer MachacekX100.00328931416929353135313142454036050380
9Jamie ArnielXX100.00309327325629353135313133453532050350
10Ryan Pulock (R)X100.00663589757065555835595769484236050620
11Simon Bertilsson (R)X100.00394343436337373943393943413230050420
12Michael Prapavessis (R)X100.00404040405840404040404040403230050420
13Calle Andersson (R)X100.00364040406935353640363640383230050410
14Adam Polasek (R)X100.00333737376233333337333337353230050380
15Michael Brodzinski (R)X100.00333737376033333337333337353230050380
16Mikael Wikstrand (R)X100.00333737375733333337333337353230050380
TEAM AVERAGE100.0047426455664538404040405244373405047
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Jonas Gunnarsson (R)100.0045454573454545454545453230050460
2Jake Paterson (R)100.0041434163403939393939383230050420
Scratches
1Linus Ullmark (R)100.0050457085494850484565454036050530
2Zachary Nagelvoort (R)100.0038403869373636363636353230050400
3Janne Juvonen (R)100.0035373566343333333333333230050380
TEAM AVERAGE100.004242467141404140404439343105044
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Matt MoulsonThunder (Tam)LW/RW684253953922060702769619115.22%12128818.9471623502390000115242.70%8900021.48050008611
2Lee StempniakTampa BayRW5742438542260681152417318417.43%1394816.640885450003514146.30%5400021.79050006104
3Jacob JosefsonThunder (Tam)C4824426646160431521983511412.12%1988718.4802242711271541366.93%114600001.4912000664
4Samuel BlaisThunder (Tam)LW82313566-324099942246915113.84%13118614.47101828612590003353030.77%7800001.11020002211
5Brendan GuhleThunder (Tam)D6810546412540878310828709.26%69151522.289182769255000088300.00%000000.8400000322
6Anthony BitettoThunder (Tam)D68839471469151284710333637.77%55142420.9551419582391011168000.00%000000.6622012122
7Kasperi KapanenThunder (Tam)LW/RW692221431020088731976314911.17%686712.5871219592680007923133.90%5900010.9912000361
8Rinat ValievThunder (Tam)D6813274015360544789346614.61%81134919.8410818462220000132200.00%000000.5900000041
9Sergey KalininTampa BayC/LW/RW4315213671155197148419310.14%1077117.947815381530002483065.48%59100010.9314001512
10Brett LernoutThunder (Tam)D821223351346010352103406911.65%92178121.729615572660000102220.00%000000.3900000112
11Tage ThompsonThunder (Tam)C/RW68171734-122005690191531118.90%14118817.483111437285000177142.18%29400000.5700000103
12Jacob LarssonThunder (Tam)D829223114280635083305410.84%123146417.8612331880002211100.00%000000.4200000140
13Nicklas JensenThunder (Tam)LW/RW82915241260746210137648.91%8108913.2800094301121881037.10%6200000.4400000012
14Tommy SestitoThunder (Tam)LW61121224-17138301676684215214.29%1091515.0106691210000374052.58%9700000.5211321004
15Ronalds KeninsThunder (Tam)LW68714218100355510235856.86%156719.8802252900031002060.81%7400000.6300000111
16Samuel HenleyThunder (Tam)C/LW6871320-580339511629716.03%1178811.59000120004921047.29%86700000.5100000110
17Brody SutterThunder (Tam)C8221618130020997314602.74%77509.15101838000040063.72%84900000.4800000010
18Ryan PulockThunder (Tam)D1649135120282031131412.90%1535121.972021222000150010.00%000000.7400000000
19James MelindyThunder (Tam)D791891197151189163176.25%37133416.891123550000173000.00%000000.1300102000
20John MitchellTampa BayC/LW122684201624259288.00%423419.55000030000411069.18%27900000.6812000001
21Petr StrakaThunder (Tam)LW/RW13167-600015192135.26%216112.41011180001100038.46%1300000.8700000000
22Adam GilmourThunder (Tam)C/RW13123-420141012678.33%215311.79112536000010045.66%17300000.3900000001
23Calle AnderssonThunder (Tam)D13123-64021442425.00%423017.71101334000013100.00%000000.2600000000
24Thomas Di PauliThunder (Tam)C/LW13123-44013814297.14%116112.44022635000050041.18%3400000.3700000000
25Adam PolasekThunder (Tam)D13022-7401031320.00%422917.67000033000017000.00%000000.1700000000
26Brett RitchieThunder (Tam)RW11011201031133.33%01616.0210114000000066.67%300001.2500000000
27Spencer MachacekThunder (Tam)RW13011-22011411320.00%21168.9800000000000054.55%1100000.1700000000
28Ryan MartindaleThunder (Tam)C13101-32051283412.50%217613.60000020000230044.44%17100000.1100000000
Team Total or Average136329550580018668565146614562581778174811.43%6312205316.18751362115782825224371866441157.24%494400060.73725436394852
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Linus UllmarkThunder (Tam)56371440.8922.7832412715013860210.53813560530
2Jonas GunnarssonThunder (Tam)3191330.8713.72158241987570100.733152668100
3Jake PatersonThunder (Tam)10000.9441.5838001180000.0000013000
Team Total or Average88462770.8853.0748626824921610310.643288281630


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract StatusType Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Link
Adam GilmourThunder (Tam)C/RW231994-01-29Yes193 Lbs6 ft2NoNoNo2RFAPro & Farm650,000$65,000$0$NoLink
Adam PolasekThunder (Tam)D261991-07-12Yes190 Lbs6 ft3NoNoNo2RFAPro & Farm525,000$52,500$0$NoLink
Anthony BitettoThunder (Tam)D271990-07-15No210 Lbs6 ft1NoNoNo1RFAPro & Farm605,000$60,500$0$NoLink
Avery PetersonThunder (Tam)C221995-06-20Yes215 Lbs6 ft3NoNoNo3RFAPro & Farm525,000$52,500$0$NoLink
Brendan GuhleThunder (Tam)D201997-07-29Yes196 Lbs6 ft2NoNoNo3ELCPro & Farm667,000$66,700$0$NoLink
Brett LernoutThunder (Tam)D221995-09-24Yes214 Lbs6 ft4NoNoNo2RFAPro & Farm667,000$66,700$0$NoLink
Brett RitchieThunder (Tam)RW241993-07-01No217 Lbs6 ft3NoNoNo1RFAPro & Farm818,000$81,800$0$NoLink
Brody SutterThunder (Tam)C261991-09-26No203 Lbs6 ft5NoNoNo1RFAPro & Farm585,000$58,500$0$NoLink
Calle AnderssonThunder (Tam)D231994-05-16Yes211 Lbs6 ft2NoNoNo2RFAPro & Farm660,000$66,000$0$NoLink
Carter AshtonThunder (Tam)LW/RW261991-04-01No215 Lbs6 ft3NoNoNo1RFAPro & Farm1,100,000$110,000$0$NoLink
Grayson DowningThunder (Tam)C251992-04-18Yes195 Lbs6 ft0NoNoNo4RFAPro & Farm650,000$65,000$0$NoLink
Jacob JosefsonThunder (Tam)C261991-03-02No196 Lbs6 ft0NoNoNo1RFAPro & Farm1,100,000$110,000$0$NoLink
Jacob LarssonThunder (Tam)D201997-04-29No191 Lbs6 ft2NoNoNo3ELCPro & Farm925,000$92,500$0$NoLink
Jake PatersonThunder (Tam)G231994-05-03Yes176 Lbs6 ft0NoNoNo2RFAPro & Farm667,000$66,700$0$NoLink
James MelindyThunder (Tam)D231993-12-11Yes187 Lbs6 ft2NoNoNo2RFAPro & Farm675,000$67,500$0$NoLink
Jamie ArnielThunder (Tam)C/RW271989-11-16No183 Lbs5 ft11NoNoNo1RFAPro & Farm800,000$80,000$0$NoLink
Janne JuvonenThunder (Tam)G231994-10-03Yes183 Lbs6 ft1NoNoNo2RFAPro & Farm525,000$52,500$0$NoLink
Jonas GunnarssonThunder (Tam)G251992-03-31Yes198 Lbs6 ft1NoNoNo4RFAPro & Farm825,000$82,500$0$NoLink
Kasperi KapanenThunder (Tam)LW/RW211996-07-23No187 Lbs6 ft1NoNoNo2ELCPro & Farm925,000$92,500$0$NoLink
Linus UllmarkThunder (Tam)G241993-07-31Yes221 Lbs6 ft4NoNoNo2RFAPro & Farm792,000$79,200$0$NoLink
Matt MoulsonThunder (Tam)LW/RW331983-11-01No203 Lbs6 ft1NoNoNo3UFAPro & Farm2,074,000$207,400$0$NoLink
Michael BrodzinskiThunder (Tam)D221995-05-28Yes190 Lbs5 ft11NoNoNo2RFAPro & Farm525,000$52,500$0$NoLink
Michael PrapavessisThunder (Tam)D211996-01-07Yes185 Lbs6 ft1NoNoNo4ELCPro & Farm650,000$65,000$0$NoLink
Mikael WikstrandThunder (Tam)D231993-11-05Yes183 Lbs6 ft1NoNoNo2RFAPro & Farm830,000$83,000$0$NoLink
Nicklas JensenThunder (Tam)LW/RW241993-03-06No216 Lbs6 ft3NoNoNo2RFAPro & Farm950,000$95,000$0$NoLink
Petr StrakaThunder (Tam)LW/RW251992-06-15No185 Lbs6 ft1NoNoNo1RFAPro & Farm925,000$92,500$0$NoLink
Rinat ValievThunder (Tam)D221995-05-11Yes215 Lbs6 ft3NoNoNo2RFAPro & Farm743,000$74,300$0$NoLink
Ronalds KeninsThunder (Tam)LW261991-02-28No201 Lbs6 ft0NoNoNo1RFAPro & Farm718,000$71,800$0$NoLink
Ryan MartindaleThunder (Tam)C251991-10-27Yes183 Lbs6 ft3NoNoNo2RFAPro & Farm700,000$70,000$0$NoLink
Ryan PulockThunder (Tam)D221994-10-06Yes214 Lbs6 ft2NoNoNo2RFAPro & Farm925,000$92,500$0$NoLink
Samuel BlaisThunder (Tam)LW211996-06-17Yes181 Lbs6 ft1NoNoNo3ELCPro & Farm525,000$52,500$0$NoLink
Samuel HenleyThunder (Tam)C/LW241993-07-25Yes210 Lbs6 ft4NoNoNo2RFAPro & Farm590,000$59,000$0$NoLink
Simon BertilssonThunder (Tam)D261991-04-19Yes196 Lbs6 ft0NoNoNo2RFAPro & Farm700,000$70,000$0$NoLink
Spencer MachacekThunder (Tam)RW281988-10-14No200 Lbs6 ft1NoNoNo2UFAPro & Farm775,000$77,500$0$NoLink
Tage ThompsonThunder (Tam)C/RW191997-10-30Yes205 Lbs6 ft5NoNoNo4ELCPro & Farm925,000$92,500$0$NoLink
Thomas Di PauliThunder (Tam)C/LW231994-04-29Yes188 Lbs5 ft11NoNoNo2RFAPro & Farm650,000$65,000$0$NoLink
Thomas VannelliThunder (Tam)D221995-01-26Yes165 Lbs6 ft2NoNoNo2RFAPro & Farm667,000$66,700$0$NoLink
Tommy SestitoThunder (Tam)LW301987-09-28No228 Lbs6 ft5NoNoNo4UFAPro & Farm750,000$75,000$0$NoLink
Zachary NagelvoortThunder (Tam)G231994-01-30Yes190 Lbs6 ft2NoNoNo2RFAPro & Farm650,000$65,000$0$NoLink
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
3923.97198 Lbs6 ft22.18768,154$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Matt Moulson40122
2Tage Thompson30122
3Samuel BlaisSamuel HenleyNicklas Jensen20122
4Ronalds KeninsBrody SutterKasperi Kapanen10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Brendan GuhleBrett Lernout40122
2Anthony BitettoRinat Valiev30122
3Jacob LarssonJames Melindy20122
4Brendan GuhleBrett Lernout10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Matt MoulsonTage ThompsonKasperi Kapanen60122
2Samuel BlaisTage Thompson40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Brendan GuhleBrett Lernout60122
2Anthony BitettoRinat Valiev40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Nicklas Jensen60122
2Samuel HenleyKasperi Kapanen40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Jacob LarssonJames Melindy60122
2Anthony BitettoRinat Valiev40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
160122Brendan GuhleJames Melindy60122
240122Anthony BitettoRinat Valiev40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Brody Sutter60122
2Samuel HenleySamuel Blais40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1James MelindyJacob Larsson60122
2Anthony BitettoRinat Valiev40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Matt MoulsonBrendan GuhleBrett Lernout
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Matt MoulsonBrendan GuhleBrett Lernout
Extra Forwards
Normal PowerPlayPenalty Kill
, Samuel Blais, Ronalds Kenins, Samuel BlaisRonalds Kenins
Extra Defensemen
Normal PowerPlayPenalty Kill
Jacob Larsson, James Melindy, Anthony BitettoJacob LarssonJames Melindy, Anthony Bitetto
Penalty Shots
, , Matt Moulson, Kasperi Kapanen,
Goalie
#1 : , #2 : Jonas Gunnarsson


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals21001000532110000002111000100032141.00059140013997611072971873774546519165010330.00%80100.00%01358259452.35%1225232152.78%773140255.14%2058141218096231103568
2Baby Hawks20200000510-51010000035-21010000025-300.000591400139976110509718737745459131838700.00%9366.67%01358259452.35%1225232152.78%773140255.14%2058141218096231103568
3Bears3120000012120211000008711010000045-120.3331221330013997611097971873774548028326118422.22%11554.55%01358259452.35%1225232152.78%773140255.14%2058141218096231103568
4Bruins412001001215-3210001007612020000059-430.37512203200139976110115971873774548437189218633.33%9366.67%01358259452.35%1225232152.78%773140255.14%2058141218096231103568
5Cabaret Lady Mary Ann42101000211472200000013672010100088060.750213758001399761101879718737745412827269629620.69%13653.85%11358259452.35%1225232152.78%773140255.14%2058141218096231103568
6Caroline32100000121022110000079-21100000051440.66712233500139976110108971873774547622224515426.67%10190.00%01358259452.35%1225232152.78%773140255.14%2058141218096231103568
7Chiefs2110000045-11010000025-31100000020220.5004812011399761103197187377454461510271218.33%5260.00%01358259452.35%1225232152.78%773140255.14%2058141218096231103568
8Chill22000000954110000004221100000053241.000916250013997611048971873774543512163210440.00%8275.00%01358259452.35%1225232152.78%773140255.14%2058141218096231103568
9Comets220000001037110000002021100000083541.000101727011399761107697187377454511116308112.50%8187.50%01358259452.35%1225232152.78%773140255.14%2058141218096231103568
10Cougars412000011317-420100001710-32110000067-130.375132538001399761101099718737745412840306920420.00%14471.43%01358259452.35%1225232152.78%773140255.14%2058141218096231103568
11Crunch430000012213922000000116521000001117470.87522406200139976110185971873774549220317521523.81%13469.23%01358259452.35%1225232152.78%773140255.14%2058141218096231103568
12Heat22000000835110000004311100000040441.000815230113997611077971873774543712273612216.67%11190.91%01358259452.35%1225232152.78%773140255.14%2058141218096231103568
13Jayhawks2010001067-1100000104311010000024-220.5006915101399761106297187377454631910431119.09%5260.00%01358259452.35%1225232152.78%773140255.14%2058141218096231103568
14Las Vegas201010009901010000034-11000100065120.50091625001399761107597187377454521214436233.33%70100.00%01358259452.35%1225232152.78%773140255.14%2058141218096231103568
15Manchots321000001147110000003032110000084440.6671116270213997611070971873774545520395211436.36%17194.12%01358259452.35%1225232152.78%773140255.14%2058141218096231103568
16Marlies42200000911-2220000006332020000038-540.500917260013997611089971873774541203636931417.14%15286.67%11358259452.35%1225232152.78%773140255.14%2058141218096231103568
17Minnesota2020000047-31010000024-21010000023-100.0004812001399761106497187377454501921379111.11%7271.43%01358259452.35%1225232152.78%773140255.14%2058141218096231103568
18Monarchs201000011013-31010000057-21000000156-110.2501017270013997611059971873774546115263010330.00%13469.23%01358259452.35%1225232152.78%773140255.14%2058141218096231103568
19Monsters3110010089-1211000007701000010012-130.50081523001399761107597187377454802232498225.00%16287.50%01358259452.35%1225232152.78%773140255.14%2058141218096231103568
20Monsters21000001862110000006331000000123-130.7508132100139976110609718737745452181241700.00%60100.00%01358259452.35%1225232152.78%773140255.14%2058141218096231103568
21Oceanics20200000710-31010000035-21010000045-100.000711180013997611056971873774547219243812433.33%7357.14%01358259452.35%1225232152.78%773140255.14%2058141218096231103568
22Oil Kings22000000835110000004131100000042241.0008142200139976110739718737745426984515213.33%40100.00%01358259452.35%1225232152.78%773140255.14%2058141218096231103568
23Phantoms321000001266110000007072110000056-140.6671221330113997611098971873774545816334016212.50%90100.00%01358259452.35%1225232152.78%773140255.14%2058141218096231103568
24Rocket43000010161152200000010732100001064281.00016254100139976110127971873774549833486712216.67%22481.82%01358259452.35%1225232152.78%773140255.14%2058141218096231103568
25Senators42100001121202110000023-121000001109150.62512213300139976110115971873774541052722751815.56%11463.64%01358259452.35%1225232152.78%773140255.14%2058141218096231103568
26Sharks22000000972110000005411100000043141.000915240013997611010197187377454842126397228.57%90100.00%01358259452.35%1225232152.78%773140255.14%2058141218096231103568
27Sound Tigers33000000133101100000030322000000103761.00013243702139976110103971873774545924295910220.00%12191.67%01358259452.35%1225232152.78%773140255.14%2058141218096231103568
28Spiders30300000716-920200000511-61010000025-300.000713200013997611083971873774541012722521200.00%10370.00%01358259452.35%1225232152.78%773140255.14%2058141218096231103568
29Stars211000006511010000023-11100000042220.50061218001399761105297187377454351425316350.00%5180.00%01358259452.35%1225232152.78%773140255.14%2058141218096231103568
Total8241280322630225943412414001111521262641171403115150133171000.61030252983118139976110263997187377454219463972615563777620.16%3086578.90%21358259452.35%1225232152.78%773140255.14%2058141218096231103568
31Wolf Pack3200000114104110000005142100000199050.833142236001399761101229718737745414232377113430.77%14471.43%01358259452.35%1225232152.78%773140255.14%2058141218096231103568
_Since Last GM Reset8241280322630225943412414001111521262641171403115150133171000.61030252983118139976110263997187377454219463972615563777620.16%3086578.90%21358259452.35%1225232152.78%773140255.14%2058141218096231103568
_Vs Conference432116012031501361421137001007257152289011037879-1490.5701502584080513997611013039718737745412013554088331874222.46%1693479.88%11358259452.35%1225232152.78%773140255.14%2058141218096231103568

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
82100L230252983126392194639726155618
All Games
GPWLOTWOTL SOWSOLGFGA
8241283226302259
Home Games
GPWLOTWOTL SOWSOLGFGA
4124140111152126
Visitor Games
GPWLOTWOTL SOWSOLGFGA
4117143115150133
Last 10 Games
WLOTWOTL SOWSOL
630001
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
3777620.16%3086578.90%2
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
97187377454139976110
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
1358259452.35%1225232152.78%773140255.14%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
2058141218096231103568


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
4 - 2018-10-0621Cabaret Lady Mary Ann2Thunder7WBoxScore
9 - 2018-10-1153Comets0Thunder2WBoxScore
11 - 2018-10-1363Monsters5Thunder4LBoxScore
14 - 2018-10-1682Caroline5Thunder2LBoxScore
16 - 2018-10-1893Cougars4Thunder3LXXBoxScore
18 - 2018-10-20110Thunder2Minnesota3LBoxScore
19 - 2018-10-21115Thunder2Baby Hawks5LBoxScore
22 - 2018-10-24132Thunder2Monsters3LXXBoxScore
24 - 2018-10-26144Thunder6Las Vegas5WXBoxScore
25 - 2018-10-27157Thunder2Jayhawks4LBoxScore
28 - 2018-10-30172Spiders4Thunder2LBoxScore
30 - 2018-11-01185Chill2Thunder4WBoxScore
32 - 2018-11-03196Thunder3Rocket2WXXBoxScore
33 - 2018-11-04207Thunder5Senators3WBoxScore
35 - 2018-11-06220Oil Kings1Thunder4WBoxScore
37 - 2018-11-08232Sound Tigers0Thunder3WBoxScore
39 - 2018-11-10247Senators1Thunder2WBoxScore
42 - 2018-11-13264Thunder8Crunch3WBoxScore
44 - 2018-11-15279Thunder5Manchots0WBoxScore
46 - 2018-11-17293Thunder4Phantoms2WBoxScore
48 - 2018-11-19314Thunder5Chill3WBoxScore
50 - 2018-11-21325Cabaret Lady Mary Ann4Thunder6WBoxScore
52 - 2018-11-23341Baby Hawks5Thunder3LBoxScore
54 - 2018-11-25359Spiders7Thunder3LBoxScore
56 - 2018-11-27370Admirals1Thunder2WBoxScore
58 - 2018-11-29385Crunch3Thunder5WBoxScore
60 - 2018-12-01400Thunder5Cabaret Lady Mary Ann4WXBoxScore
62 - 2018-12-03413Thunder2Spiders5LBoxScore
63 - 2018-12-04422Thunder4Cougars3WBoxScore
65 - 2018-12-06434Bruins3Thunder2LXBoxScore
67 - 2018-12-08449Monsters3Thunder6WBoxScore
69 - 2018-12-10463Wolf Pack1Thunder5WBoxScore
72 - 2018-12-13482Marlies1Thunder2WBoxScore
75 - 2018-12-16510Thunder4Oceanics5LBoxScore
77 - 2018-12-18526Thunder8Comets3WBoxScore
79 - 2018-12-20537Thunder4Heat0WBoxScore
81 - 2018-12-22558Thunder4Oil Kings2WBoxScore
86 - 2018-12-27571Phantoms0Thunder7WBoxScore
88 - 2018-12-29590Rocket4Thunder6WBoxScore
90 - 2018-12-31611Thunder3Admirals2WXBoxScore
93 - 2019-01-03628Thunder5Monarchs6LXXBoxScore
95 - 2019-01-05644Thunder4Sharks3WBoxScore
98 - 2019-01-08663Monsters2Thunder3WBoxScore
100 - 2019-01-10676Caroline4Thunder5WBoxScore
102 - 2019-01-12689Thunder3Crunch4LXXBoxScore
103 - 2019-01-13703Thunder5Sound Tigers3WBoxScore
105 - 2019-01-15719Thunder4Stars2WBoxScore
107 - 2019-01-17729Marlies2Thunder4WBoxScore
109 - 2019-01-19746Sharks4Thunder5WBoxScore
120 - 2019-01-30776Thunder3Manchots4LBoxScore
122 - 2019-02-01783Thunder5Sound Tigers0WBoxScore
123 - 2019-02-02796Thunder3Wolf Pack2WBoxScore
126 - 2019-02-05816Las Vegas4Thunder3LBoxScore
128 - 2019-02-07831Chiefs5Thunder2LBoxScore
130 - 2019-02-09848Manchots0Thunder3WBoxScore
131 - 2019-02-10858Thunder3Cabaret Lady Mary Ann4LBoxScore
133 - 2019-02-12868Heat3Thunder4WBoxScore
135 - 2019-02-14880Stars3Thunder2LBoxScore
137 - 2019-02-16897Rocket3Thunder4WBoxScore
139 - 2019-02-18911Thunder1Monsters2LXBoxScore
140 - 2019-02-19918Thunder1Phantoms4LBoxScore
142 - 2019-02-21935Crunch3Thunder6WBoxScore
146 - 2019-02-25964Monarchs7Thunder5LBoxScore
Trade Deadline --- Trades can’t be done after this day is simulated!
148 - 2019-02-27981Thunder6Wolf Pack7LXXBoxScore
149 - 2019-02-28984Thunder3Bruins5LBoxScore
151 - 2019-03-021004Senators2Thunder0LBoxScore
154 - 2019-03-051023Oceanics5Thunder3LBoxScore
156 - 2019-03-071037Minnesota4Thunder2LBoxScore
158 - 2019-03-091052Cougars6Thunder4LBoxScore
160 - 2019-03-111065Thunder2Marlies3LBoxScore
163 - 2019-03-141087Thunder2Cougars4LBoxScore
165 - 2019-03-161106Bears4Thunder3LBoxScore
167 - 2019-03-181118Jayhawks3Thunder4WXXBoxScore
169 - 2019-03-201133Thunder4Bears5LBoxScore
170 - 2019-03-211138Thunder5Caroline1WBoxScore
172 - 2019-03-231159Thunder2Chiefs0WBoxScore
174 - 2019-03-251172Bruins3Thunder5WBoxScore
179 - 2019-03-301207Bears3Thunder5WBoxScore
181 - 2019-04-011224Thunder5Senators6LXXBoxScore
182 - 2019-04-021232Thunder3Rocket2WBoxScore
184 - 2019-04-041243Thunder1Marlies5LBoxScore
186 - 2019-04-061257Thunder2Bruins4LBoxScore



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance62,27430,472
Attendance PCT75.94%74.32%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
0 2262 - 75.40% 64,309$2,636,670$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
3,452,546$ 2,995,800$ 2,995,800$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
16,020$ 3,452,546$ 39 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 0 16,020$ 0$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
201882412803226302259434124140011115212626411714031151501331710030252983118139976110263997187377454219463972615563777620.16%3086578.90%21358259452.35%1225232152.78%773140255.14%2058141218096231103568
Total Regular Season82412803226302259434124140011115212626411714031151501331710030252983118139976110263997187377454219463972615563777620.16%3086578.90%21358259452.35%1225232152.78%773140255.14%2058141218096231103568