Oceanics

GP: 82 | W: 66 | L: 12 | OTL: 4 | P: 136
GF: 407 | GA: 252 | PP%: 30.09% | PK%: 79.00%
GM : Stéphane Gagné | Morale : 50 | Team Overall : 47
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Miles WoodXX100.00595669716763805942526657484336050590
2Brandon PirriXX100.00484385705872455681506156535046050570
3Zac RinaldoXX100.00845676746252454735415263485144050550
4Cory ConacherXX100.00533580715359465235455854454841050540
5Frank VatranoXX100.00593579666862494843415463454437050540
6Frederik GauthierX100.00483583668457375080415859484036050540
7Anthony CirelliX100.00473586785555364760445067483532050530
8Michael SgarbossaXX100.00544387715852384776494658474238050520
9Patrick BrownXX100.00543592677356364262394466473734050510
10Sam CarrickXXX100.00564374686051324365394568463532050510
11Andrew AgozzinoXX100.00463593705846314252503264463532050490
12Stanislav GalievXX100.00473588666046334135424063463532050490
13Tyler WotherspoonX100.00533594626857343635413173544239050540
14Michal JordanX100.00513585606350383635323974464136050530
15Marcus Pettersson (R)X100.00523587665750374335434364483532050520
16Patrick Sieloff (R)X100.00643595616753353735334164483734050520
17Mark Alt (R)X100.00543591616749363135303264483734050500
18Christian WolaninX100.00503595685951353735353951483532050490
Scratches
1Frederick Gaudreau (R)XX100.00453592705553374249483555483835050490
2Andrew PoturalskiX100.00463594775450333349333364473532050470
3Nicolas RoyX100.00503595637352353567353560483532050470
4Artur Kayumov (R)XX100.00454545455345454545454545453230050450
5Brett BulmerXX100.00544349627441313235323258463734050450
6Deven Sideroff (R)X100.00414343435740404143414143423230050430
7Jean-Christophe Beaudin (R)XX100.00414343436140404143414143423230050430
8William Lockwood (R)X100.00434343435143434343434343433230050430
9Teemu HartikainenXXX100.00307347477429433135313147454136050410
10Glenn Gawdin (R)X100.00384040406437373840383840393230050410
11Mathieu Joseph (R)XX100.00384040405237373840383840393230050400
12Matt Schmalz (R)XX100.00353737377735353537353537363230050390
13Pavel Karnaukhov (R)X100.00353737376735353537353537363230050390
14Logan Stanley (R)X100.00505050508050505050505050503230050500
15Chad Krys (R)X100.00454545455845454545454545453230050450
16Kenney Morrison (R)X100.00434545456642424345434345443230050450
17Josh Jacobs (R)X100.00414545456239394145414145433230050440
18Mitchell Vande Sompel (R)X100.00414343436040404143414143423230050430
19Sam Ruopp (R)X100.00353737376435353537353537363230050390
20Stephen Desrocher (R)X100.00353737376935353537353537363230050390
21Yann SauveX100.00308535356929403135313135453734050380
TEAM AVERAGE100.0047426656644739414640425345373305048
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Richard Bachman100.0042458765434648434362604844050500
2Adin Hill100.0037457577364850354565873532050480
Scratches
1Marek Langhamer (R)100.0045454569414545374565453734050470
2CJ Motte (R)100.0043454363424141414141403230050430
3Joren Van Pottelberghe (R)100.0039403968393838383838373230050410
4Martin Ouellette (R)100.0035373557343333333333333230050370
TEAM AVERAGE100.004043546739424338415150363305044
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Brandon PirriOceanics (Win)C/LW7943781213760121983198222513.48%9153619.45113344762601012597368.08%196400011.5824000993
2Miles WoodOceanics (Win)LW/RW805169120393557313739711329012.85%12158519.821322359525401158511347.79%11300011.51341009108
3Cory ConacherOceanics (Win)LW/RW8238631013931574892967720612.84%7132716.1912223469242000007248.96%9600001.5200001727
4Zac RinaldoOceanics (Win)LW/RW8238599735143252211342887818013.19%11146317.8413173054257000077345.76%11800001.3303113488
5Frederik GauthierOceanics (Win)C8239569538335421362926220313.36%10141017.2181725622410002516167.98%157400011.3504100656
6Frank VatranoOceanics (Win)LW/RW7839539234555140872628018214.89%9142818.31815235423211241318254.81%10400001.29150101034
7Anthony CirelliOceanics (Win)C824027674880441402206616518.18%12106512.990112321341365256.55%109100001.2611000876
8Tyler WotherspoonOceanics (Win)D82204262244607274126516915.87%84184822.54121527542440002219500.00%000000.6712000124
9Marcus PetterssonOceanics (Win)D74143953433607655118366011.86%66155421.01111122642110113189100.00%000000.6801000114
10Patrick SieloffOceanics (Win)D821437515540010240103377413.59%79169720.7071522552390110208100.00%000000.6001000132
11Michael SgarbossaOceanics (Win)C/LW82153247462408178146529910.27%491811.2100023000002065.38%5200001.0200000222
12Patrick BrownOceanics (Win)C/RW8293746482606110013647936.62%15124215.1501153200082602056.04%53000000.7400000030
13Michal JordanOceanics (Win)D54829371628066419038588.89%47116721.6231013431651122134020.00%000000.6300000020
14Mark AltOceanics (Win)D827253228500963463195411.11%61137616.79033760000189100.00%000000.4600000103
15Sam CarrickOceanics (Win)C/LW/RW8251722-9492589889327765.38%1295311.62112227011102720058.20%74400100.4600014010
16Andrew AgozzinoOceanics (Win)C/LW828715-1260147876305010.53%86467.8800000000000151.52%3300000.4600000001
17Stanislav GalievOceanics (Win)LW/RW826915-1210029418724666.90%96537.96000211000000040.00%3500000.4600000110
18Christian WolaninOceanics (Win)D82111122949577153612182.78%45132516.17011434000053000.00%000000.1800001000
19Luke SchennWinnipegD935825020305196815.79%817619.57224820000013000.00%000000.9100400100
20Frederick GaudreauOceanics (Win)C/RW7257400291031020.00%013319.14123323000070047.06%3400001.0501000020
21Logan StanleyOceanics (Win)D2742619315446275814.81%1255720.653141676000077000.00%000000.2200100000
22Nicolas RoyOceanics (Win)C2011200031110.00%03316.9600008000000044.44%3600000.5900000000
Team Total or Average14764047031107553756100144515883205946219512.61%5202410116.3310518929467726545712432001631962.28%652400130.92826839616158
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Adin HillOceanics (Win)6050620.8822.8034246116013540400.706175824200
2Richard BachmanOceanics (Win)2816620.8663.47152201886560010.66792458001
Team Total or Average88661240.8773.0149476224820100410.692268282201


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract StatusType Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Link
Adin HillOceanics (Win)G211996-05-11No202 Lbs6 ft6NoNoNo3ELCPro & Farm700,000$70,000$0$NoLink
Andrew AgozzinoOceanics (Win)C/LW261991-01-03No187 Lbs5 ft10NoNoNo1RFAPro & Farm590,000$59,000$0$NoLink
Andrew PoturalskiOceanics (Win)C231994-01-14No180 Lbs5 ft10NoNoNo3RFAPro & Farm792,000$79,200$0$NoLink
Anthony CirelliOceanics (Win)C201997-07-15No180 Lbs6 ft0NoNoNo3ELCPro & Farm700,000$70,000$0$NoLink
Artur KayumovOceanics (Win)LW/RW191998-02-14Yes176 Lbs5 ft11NoNoNo4ELCPro & Farm825,000$82,500$0$NoLink
Brandon Pirri (Out of Payroll)Oceanics (Win)C/LW261991-04-10No186 Lbs6 ft0NoNoNo2RFAPro & Farm2,000,000$0$0$YesLink
Brett BulmerOceanics (Win)LW/RW251992-04-26No212 Lbs6 ft4NoNoNo1RFAPro & Farm775,000$77,500$0$NoLink
CJ MotteOceanics (Win)G251991-12-10Yes175 Lbs6 ft0NoNoNo2RFAPro & Farm825,000$82,500$0$NoLink
Chad KrysOceanics (Win)D191998-04-10Yes185 Lbs6 ft0NoNoNo4ELCPro & Farm825,000$82,500$0$NoLink
Christian WolaninOceanics (Win)D221995-03-17No185 Lbs6 ft2NoNoNo3RFAPro & Farm650,000$65,000$0$NoLink
Cory ConacherOceanics (Win)LW/RW271989-12-14No180 Lbs5 ft8NoNoNo1RFAPro & Farm818,000$81,800$0$NoLink
Deven SideroffOceanics (Win)RW201997-04-14Yes183 Lbs6 ft0NoNoNo3ELCPro & Farm700,000$70,000$0$NoLink
Frank VatranoOceanics (Win)LW/RW231994-03-14No201 Lbs5 ft9NoNoNo2RFAPro & Farm743,000$74,300$0$NoLink
Frederick GaudreauOceanics (Win)C/RW241993-05-01Yes179 Lbs6 ft0NoNoNo3RFAPro & Farm595,000$59,500$0$NoLink
Frederik GauthierOceanics (Win)C221995-04-26No232 Lbs6 ft5NoNoNo2RFAPro & Farm925,000$92,500$0$NoLink
Glenn GawdinOceanics (Win)C201997-03-25Yes191 Lbs6 ft1NoNoNo3ELCPro & Farm650,000$65,000$0$NoLink
Jean-Christophe BeaudinOceanics (Win)C/RW201997-03-27Yes187 Lbs6 ft2NoNoNo3ELCPro & Farm700,000$70,000$0$NoLink
Joren Van PottelbergheOceanics (Win)G201997-06-05Yes187 Lbs6 ft2NoNoNo3ELCPro & Farm650,000$65,000$0$NoLink
Josh JacobsOceanics (Win)D211996-02-15Yes193 Lbs6 ft1NoNoNo2ELCPro & Farm825,000$82,500$0$NoLink
Kenney MorrisonOceanics (Win)D251992-02-13Yes200 Lbs6 ft2NoNoNo3RFAPro & Farm825,000$82,500$0$NoLink
Logan StanleyOceanics (Win)D191998-05-26Yes231 Lbs6 ft7NoNoNo4ELCPro & Farm925,000$92,500$0$NoLink
Marcus PetterssonOceanics (Win)D211996-05-08Yes180 Lbs6 ft4NoNoNo2ELCPro & Farm725,000$72,500$0$NoLink
Marek LanghamerOceanics (Win)G231994-07-22Yes190 Lbs6 ft2NoNoNo2RFAPro & Farm648,000$64,800$0$NoLink
Mark AltOceanics (Win)D251991-10-18Yes201 Lbs6 ft4NoNoNo1RFAPro & Farm790,000$79,000$0$NoLink
Martin OuelletteOceanics (Win)G251991-12-30Yes160 Lbs6 ft1NoNoNo2RFAPro & Farm525,000$52,500$0$NoLink
Mathieu JosephOceanics (Win)LW/RW201997-02-09Yes172 Lbs6 ft1NoNoNo3ELCPro & Farm650,000$65,000$0$NoLink
Matt SchmalzOceanics (Win)C/RW211996-03-21Yes217 Lbs6 ft6NoNoNo3ELCPro & Farm525,000$52,500$0$NoLink
Michael SgarbossaOceanics (Win)C/LW251992-07-25No186 Lbs6 ft0NoNoNo3RFAPro & Farm650,000$65,000$0$NoLink
Michal JordanOceanics (Win)D271990-07-17No195 Lbs6 ft1NoNoNo3RFAPro & Farm700,000$70,000$0$NoLink
Miles WoodOceanics (Win)LW/RW221995-09-13No195 Lbs6 ft2NoNoNo2RFAPro & Farm925,000$92,500$0$NoLink
Mitchell Vande SompelOceanics (Win)D201997-02-11Yes190 Lbs5 ft10NoNoNo3ELCPro & Farm700,000$70,000$0$NoLink
Nicolas RoyOceanics (Win)C201997-02-05No208 Lbs6 ft4NoNoNo3ELCPro & Farm650,000$65,000$0$NoLink
Patrick BrownOceanics (Win)C/RW251992-05-29No210 Lbs6 ft1NoNoNo1RFAPro & Farm1,101,000$110,100$0$NoLink
Patrick SieloffOceanics (Win)D231994-05-15Yes205 Lbs6 ft1NoNoNo2RFAPro & Farm925,000$92,500$0$NoLink
Pavel KarnaukhovOceanics (Win)LW201997-03-15Yes194 Lbs6 ft3NoNoNo3ELCPro & Farm525,000$52,500$0$NoLink
Richard BachmanOceanics (Win)G301987-07-25No183 Lbs5 ft10NoNoNo2UFAPro & Farm650,000$65,000$0$NoLink
Sam CarrickOceanics (Win)C/LW/RW251992-02-04No188 Lbs6 ft0NoNoNo1RFAPro & Farm1,010,000$101,000$0$NoLink
Sam RuoppOceanics (Win)D211996-06-03Yes195 Lbs6 ft4NoNoNo3ELCPro & Farm525,000$52,500$0$NoLink
Stanislav GalievOceanics (Win)LW/RW251992-01-17No187 Lbs6 ft1NoNoNo1RFAPro & Farm550,000$55,000$0$NoLink
Stephen DesrocherOceanics (Win)D211996-01-26Yes206 Lbs6 ft4NoNoNo3ELCPro & Farm525,000$52,500$0$NoLink
Teemu HartikainenOceanics (Win)C/LW/RW271990-05-03No214 Lbs6 ft1NoNoNo1RFAPro & Farm875,000$87,500$0$NoLink
Tyler WotherspoonOceanics (Win)D241993-03-12No207 Lbs6 ft2NoNoNo2RFAPro & Farm900,000$90,000$0$NoLink
William LockwoodOceanics (Win)RW191998-06-20Yes172 Lbs5 ft11NoNoNo4ELCPro & Farm700,000$70,000$0$NoLink
Yann SauveOceanics (Win)D271990-02-18No209 Lbs6 ft3NoNoNo1RFAPro & Farm762,000$76,200$0$NoLink
Zac RinaldoOceanics (Win)LW/RW271990-06-15No192 Lbs5 ft10NoNoNo3RFAPro & Farm800,000$80,000$0$NoLink
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
4522.89193 Lbs6 ft12.42763,867$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Zac RinaldoBrandon PirriMiles Wood40014
2Cory ConacherFrederik GauthierFrank Vatrano30014
3Michael SgarbossaAnthony CirelliPatrick Brown20014
4Andrew AgozzinoSam CarrickStanislav Galiev10023
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Michal JordanTyler Wotherspoon45014
2Marcus PetterssonPatrick Sieloff35113
3Mark AltChristian Wolanin10122
4Marcus PetterssonTyler Wotherspoon10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Zac RinaldoBrandon PirriMiles Wood60005
2Cory ConacherFrederik GauthierFrank Vatrano40005
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Michal JordanTyler Wotherspoon60014
2Marcus PetterssonPatrick Sieloff40014
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Patrick BrownSam Carrick60050
2Anthony CirelliFrank Vatrano40050
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Tyler WotherspoonMichal Jordan60050
2Patrick SieloffMarcus Pettersson40050
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Patrick Brown60050Michal JordanTyler Wotherspoon60050
2Sam Carrick40050Marcus PetterssonPatrick Sieloff40050
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Brandon PirriMiles Wood60014
2Frederik GauthierFrank Vatrano40014
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Tyler WotherspoonMichal Jordan60014
2Patrick SieloffMarcus Pettersson40023
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Frank VatranoBrandon PirriMiles WoodMichal JordanTyler Wotherspoon
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Sam CarrickAnthony CirelliPatrick BrownMichal JordanTyler Wotherspoon
Extra Forwards
Normal PowerPlayPenalty Kill
Miles Wood, Frederik Gauthier, Frank VatranoMiles Wood, Brandon PirriPatrick Brown
Extra Defensemen
Normal PowerPlayPenalty Kill
Tyler Wotherspoon, Michal Jordan, Marcus PetterssonTyler WotherspoonTyler Wotherspoon, Michal Jordan
Penalty Shots
Frederik Gauthier, Frank Vatrano, Miles Wood, Brandon Pirri, Zac Rinaldo
Goalie
#1 : Adin Hill, #2 : Richard Bachman


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals3300000014772200000010551100000042261.000142741001591321138115111810111063396619275514642.86%11190.91%01777286462.05%1335215262.04%951150863.06%2111146617336071104571
2Baby Hawks43100000191182200000013582110000066060.750193352001591321138127111810111063399329256811218.18%10370.00%01777286462.05%1335215262.04%951150863.06%2111146617336071104571
3Bears22000000963110000005411100000042241.000917260015913211387311181011106339411314329222.22%7185.71%01777286462.05%1335215262.04%951150863.06%2111146617336071104571
4Bruins220000001037110000004221100000061541.0001015250015913211388511181011106339336242513646.15%70100.00%01777286462.05%1335215262.04%951150863.06%2111146617336071104571
5Cabaret Lady Mary Ann2200000014311110000007071100000073441.000142337011591321138108111810111063394516313013430.77%8362.50%01777286462.05%1335215262.04%951150863.06%2111146617336071104571
6Caroline2200000014410110000007251100000072541.00014233700159132113810611181011106339509252712216.67%5180.00%01777286462.05%1335215262.04%951150863.06%2111146617336071104571
7Chiefs42100001201372110000096321000001117450.625203656001591321138131111810111063399719248019526.32%11463.64%11777286462.05%1335215262.04%951150863.06%2111146617336071104571
8Chill430000102115622000000107321000010118381.0002137580015913211381441118101110633910327327612541.67%16475.00%01777286462.05%1335215262.04%951150863.06%2111146617336071104571
9Comets321000001082110000004222110000066040.66710162600159132113812111181011106339601220488112.50%10370.00%01777286462.05%1335215262.04%951150863.06%2111146617336071104571
10Cougars20100001812-41000000145-11010000047-310.250814220015913211387411181011106339651330409222.22%9544.44%01777286462.05%1335215262.04%951150863.06%2111146617336071104571
11Crunch220000001358110000007431100000061541.000132538001591321138871118101110633941148246350.00%30100.00%01777286462.05%1335215262.04%951150863.06%2111146617336071104571
12Heat31000020171252100001012841000001054161.00017244100159132113813711181011106339711859582229.09%15473.33%11777286462.05%1335215262.04%951150863.06%2111146617336071104571
13Jayhawks33000000155101100000041322000000114761.00015284300159132113810311181011106339773031508337.50%120100.00%01777286462.05%1335215262.04%951150863.06%2111146617336071104571
14Las Vegas3210000013103110000004222110000098140.66713203300159132113810511181011106339961630578225.00%14378.57%11777286462.05%1335215262.04%951150863.06%2111146617336071104571
15Manchots22000000734110000004221100000031241.00071421001591321138561118101110633926121027900.00%5180.00%01777286462.05%1335215262.04%951150863.06%2111146617336071104571
16Marlies20100100610-41010000025-31000010045-110.250611170015913211386311181011106339691716316466.67%8362.50%01777286462.05%1335215262.04%951150863.06%2111146617336071104571
17Minnesota54100000291811211000001376330000001611580.8002950790015913211382031118101110633911833348521523.81%17382.35%11777286462.05%1335215262.04%951150863.06%2111146617336071104571
18Monarchs330000002010101100000073422000000137661.000203656001591321138148111810111063398620245117847.06%120100.00%01777286462.05%1335215262.04%951150863.06%2111146617336071104571
19Monsters220000001248110000007341100000051441.0001219310015913211387511181011106339451815407342.86%50100.00%01777286462.05%1335215262.04%951150863.06%2111146617336071104571
20Monsters522000012325-23110000113130211000001012-250.5002340630015913211381641118101110633914528488424937.50%24675.00%01777286462.05%1335215262.04%951150863.06%2111146617336071104571
21Oil Kings330000001679220000009541100000072561.000162743001591321138137111810111063396715256611218.18%10370.00%01777286462.05%1335215262.04%951150863.06%2111146617336071104571
22Phantoms220000001165110000005141100000065141.0001120310015913211387611181011106339541312399666.67%6183.33%01777286462.05%1335215262.04%951150863.06%2111146617336071104571
23Rocket22000000844110000004311100000041341.00081523001591321138951118101110633934914288225.00%7271.43%01777286462.05%1335215262.04%951150863.06%2111146617336071104571
24Senators220000001037110000007161100000032141.000101828001591321138651118101110633935812286233.33%60100.00%01777286462.05%1335215262.04%951150863.06%2111146617336071104571
25Sharks3210000014131211000001011-11100000042240.6671423370015913211381691118101110633910228186515426.67%8187.50%01777286462.05%1335215262.04%951150863.06%2111146617336071104571
26Sound Tigers220000001174110000006511100000052341.0001118290015913211385711181011106339373163911545.45%7271.43%01777286462.05%1335215262.04%951150863.06%2111146617336071104571
27Spiders2110000047-3110000004311010000004-420.5004610001591321138701118101110633956174439700.00%11190.91%01777286462.05%1335215262.04%951150863.06%2111146617336071104571
28Stars43100000178922000000122102110000056-160.750172845111591321138134111810111063398329387416425.00%18383.33%01777286462.05%1335215262.04%951150863.06%2111146617336071104571
29Thunder220000001073110000005411100000053241.0001018280015913211387211181011106339561844417342.86%12466.67%11777286462.05%1335215262.04%951150863.06%2111146617336071104571
Total826312001334072521554133500012215123924130700121192129631360.82940770311101215913211383205111810111063392011520762144534910530.09%3006379.00%51777286462.05%1335215262.04%951150863.06%2111146617336071104571
31Wolf Pack220000001266110000007251100000054141.000122234001591321138105111810111063396011123811327.27%6183.33%01777286462.05%1335215262.04%951150863.06%2111146617336071104571
_Since Last GM Reset826312001334072521554133500012215123924130700121192129631360.82940770311101215913211383205111810111063392011520762144534910530.09%3006379.00%51777286462.05%1335215262.04%951150863.06%2111146617336071104571
_Vs Conference35303001101711076418162000009358351714100110784929630.9001713014720015913211381373111810111063398692303206261535737.25%1272084.25%11777286462.05%1335215262.04%951150863.06%2111146617336071104571
_Vs Division16102001107947328520000040241685000110392316230.7197913921801159132113864911181011106339378101179247682638.24%601771.67%11777286462.05%1335215262.04%951150863.06%2111146617336071104571

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
82136W1407703111032052011520762144512
All Games
GPWLOTWOTL SOWSOLGFGA
8263120133407252
Home Games
GPWLOTWOTL SOWSOLGFGA
413350012215123
Visitor Games
GPWLOTWOTL SOWSOLGFGA
413070121192129
Last 10 Games
WLOTWOTL SOWSOL
730000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
34910530.09%3006379.00%5
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
111810111063391591321138
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
1777286462.05%1335215262.04%951150863.06%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
2111146617336071104571


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
2 - 2018-10-0411Oceanics4Chiefs5LXXBoxScore
4 - 2018-10-0618Oceanics2Stars4LBoxScore
7 - 2018-10-0940Monarchs3Oceanics7WBoxScore
9 - 2018-10-1155Oceanics6Chill4WBoxScore
12 - 2018-10-1473Caroline2Oceanics7WBoxScore
14 - 2018-10-1684Oil Kings4Oceanics5WBoxScore
16 - 2018-10-1894Comets2Oceanics4WBoxScore
18 - 2018-10-20104Jayhawks1Oceanics4WBoxScore
20 - 2018-10-22120Chiefs1Oceanics6WBoxScore
22 - 2018-10-24130Marlies5Oceanics2LBoxScore
24 - 2018-10-26145Oceanics4Cougars7LBoxScore
25 - 2018-10-27153Oceanics4Marlies5LXBoxScore
30 - 2018-11-01179Oceanics7Cabaret Lady Mary Ann3WBoxScore
31 - 2018-11-02192Cabaret Lady Mary Ann0Oceanics7WBoxScore
38 - 2018-11-09240Monsters6Oceanics5LXXBoxScore
40 - 2018-11-11256Spiders3Oceanics4WBoxScore
43 - 2018-11-14274Bears4Oceanics5WBoxScore
45 - 2018-11-16287Crunch4Oceanics7WBoxScore
48 - 2018-11-19316Oceanics2Comets3LBoxScore
50 - 2018-11-21330Oceanics5Heat4WXXBoxScore
52 - 2018-11-23334Oceanics7Minnesota4WBoxScore
53 - 2018-11-24348Oceanics7Chiefs2WBoxScore
56 - 2018-11-27373Manchots2Oceanics4WBoxScore
58 - 2018-11-29387Baby Hawks4Oceanics8WBoxScore
60 - 2018-12-01401Oceanics0Spiders4LBoxScore
61 - 2018-12-02408Oceanics5Wolf Pack4WBoxScore
63 - 2018-12-04418Oceanics5Sound Tigers2WBoxScore
66 - 2018-12-07441Chiefs5Oceanics3LBoxScore
68 - 2018-12-09455Phantoms1Oceanics5WBoxScore
70 - 2018-12-11473Baby Hawks1Oceanics5WBoxScore
72 - 2018-12-13485Oil Kings1Oceanics4WBoxScore
73 - 2018-12-14493Oceanics4Baby Hawks2WBoxScore
75 - 2018-12-16510Thunder4Oceanics5WBoxScore
77 - 2018-12-18527Oceanics8Monarchs3WBoxScore
79 - 2018-12-20541Oceanics4Sharks2WBoxScore
81 - 2018-12-22557Oceanics4Comets3WBoxScore
86 - 2018-12-27574Heat4Oceanics7WBoxScore
88 - 2018-12-29584Minnesota4Oceanics3LBoxScore
90 - 2018-12-31610Oceanics7Oil Kings2WBoxScore
94 - 2019-01-04629Oceanics3Manchots1WBoxScore
96 - 2019-01-06648Stars0Oceanics5WBoxScore
98 - 2019-01-08665Monsters3Oceanics5WBoxScore
100 - 2019-01-10678Oceanics3Minnesota2WBoxScore
101 - 2019-01-11684Cougars5Oceanics4LXXBoxScore
103 - 2019-01-13700Admirals1Oceanics3WBoxScore
105 - 2019-01-15718Las Vegas2Oceanics4WBoxScore
107 - 2019-01-17730Oceanics5Chill4WXXBoxScore
109 - 2019-01-19743Oceanics3Stars2WBoxScore
118 - 2019-01-28771Oceanics6Phantoms5WBoxScore
119 - 2019-01-29773Oceanics6Bruins1WBoxScore
121 - 2019-01-31780Monsters3Oceanics7WBoxScore
123 - 2019-02-02791Admirals4Oceanics7WBoxScore
126 - 2019-02-05818Sharks6Oceanics4LBoxScore
128 - 2019-02-07828Oceanics4Rocket1WBoxScore
130 - 2019-02-09844Oceanics3Senators2WBoxScore
131 - 2019-02-10855Oceanics6Crunch1WBoxScore
133 - 2019-02-12872Wolf Pack2Oceanics7WBoxScore
135 - 2019-02-14882Monsters4Oceanics3LBoxScore
137 - 2019-02-16896Senators1Oceanics7WBoxScore
141 - 2019-02-20926Oceanics6Monsters4WBoxScore
143 - 2019-02-22944Oceanics7Las Vegas2WBoxScore
145 - 2019-02-24961Oceanics5Jayhawks3WBoxScore
147 - 2019-02-26976Minnesota3Oceanics10WBoxScore
Trade Deadline --- Trades can’t be done after this day is simulated!
150 - 2019-03-01996Chill4Oceanics5WBoxScore
152 - 2019-03-031014Oceanics5Monsters1WBoxScore
154 - 2019-03-051023Oceanics5Thunder3WBoxScore
157 - 2019-03-081046Oceanics7Caroline2WBoxScore
159 - 2019-03-101061Oceanics4Bears2WBoxScore
161 - 2019-03-121077Sharks5Oceanics6WBoxScore
163 - 2019-03-141089Bruins2Oceanics4WBoxScore
165 - 2019-03-161102Heat4Oceanics5WXXBoxScore
167 - 2019-03-181120Oceanics5Monarchs4WBoxScore
169 - 2019-03-201135Oceanics4Admirals2WBoxScore
170 - 2019-03-211146Oceanics2Las Vegas6LBoxScore
172 - 2019-03-231154Chill3Oceanics5WBoxScore
174 - 2019-03-251175Stars2Oceanics7WBoxScore
177 - 2019-03-281193Sound Tigers5Oceanics6WBoxScore
179 - 2019-03-301204Rocket3Oceanics4WBoxScore
181 - 2019-04-011226Oceanics2Baby Hawks4LBoxScore
182 - 2019-04-021234Oceanics6Minnesota5WBoxScore
184 - 2019-04-041251Oceanics4Monsters8LBoxScore
186 - 2019-04-061268Oceanics6Jayhawks1WBoxScore



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price4020
Attendance60,51230,643
Attendance PCT73.80%74.74%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
0 2223 - 74.11% 73,984$3,033,340$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
3,445,149$ 3,437,400$ 3,424,067$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
17,312$ 3,252,604$ 44 1

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 0 18,382$ 0$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
20188263120013340725215541335000122151239241307001211921296313640770311101215913211383205111810111063392011520762144534910530.09%3006379.00%51777286462.05%1335215262.04%951150863.06%2111146617336071104571
Total Regular Season8263120013340725215541335000122151239241307001211921296313640770311101215913211383205111810111063392011520762144534910530.09%3006379.00%51777286462.05%1335215262.04%951150863.06%2111146617336071104571