Chill

GP: 82 | W: 42 | L: 36 | OTL: 4 | P: 88
GF: 266 | GA: 276 | PP%: 16.18% | PK%: 80.25%
GM : Yvon Bergeron | Morale : 50 | Team Overall : 43
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Drake CaggiulaXXX100.00694383785763635635506264483936050590
2Filip ChlapikX100.00533589666753374958504861483532050530
3Michael LattaXX100.00576666677148444482424563434337050520
4Joel VerminXX100.00493588756352354145483369473734050510
5A.J. Greer (R)X100.00594360627156374435523561483734050500
6Justin Auger (R)X100.00503595608449353535353557483532050470
7Tobias LindbergXX100.00453577627550313335343270463532050470
8T.J. Tynan (R)X100.00463594754645333335333356473230050450
9Adam GaudetteX100.00453595635154353544353556483532050450
10Samuel Kurker (R)X100.00414545457039394145414145433230050440
11Keegan Kolesar (R)X100.00414343437840404143414143423230050440
12Cody GoloubefX100.00555078646559434335463967474642050550
13Joshua Mahura (R)X100.00434343435843434343434343433230050440
14Luke Green (R)X100.00434343436143434343434343433230050440
15Markus Niemelainen (R)X100.00434343436743434343434343433230050440
16Matthew Cairns (R)X100.00434343436843434343434343433230050440
17Chris Martenet (R)X100.00384040407237373840383840393230050420
Scratches
1Thomas Novak (R)X100.00414343435540404143414143423230050420
2Yan Pavel Laplante (R)X100.00394343435437373943393943413230050410
3Filip Ahl (R)XX100.00384040408037373840383840393230050410
4Todd Burgess (R)XX100.00404040405540404040404040403230050410
5Dmitry Sokolov (R)XX100.00373737377237373737373737373230050400
6Nikita Korostelev (R)X100.00353737376935353537353537363230050390
7Nolan Stevens (R)X100.00373737375837373737373737373230050390
8Pavel Jenys (R)X100.00333737376633333337333337353230050380
9Adam Marsh (R)X100.00353737374535353537353537363230050380
10Blaine Byron (R)X100.00333737374633333337333337353230050370
11Brian Pinho (R)XX100.00333737375233333337333337353230050370
12Grant Besse (R)X100.00333737375233333337333337353230050370
13Henri Ikonen (R)X100.00333737375733333337333337353230050370
14Victor Crus Rydberg (R)X100.00333737376133333337333337353230050370
15Tom Nilsson (R)X100.00364040405335353640363640383230050400
16Jordan Sambrook (R)X100.00353737373735353537353537363230050370
TEAM AVERAGE100.0042405348624238394139384741343105043
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Thomas McCollum100.0048454277473939453956553532050460
2Pheonix Copley100.0027456274304343334362603734050450
Scratches
1Kent Simpson100.0040454274393737383737363532050420
2Kristian Oldham (R)100.0036373670363535353535353230050390
TEAM AVERAGE100.003843467438393938394847353205043
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Filip ChlapikChill (Nas)C7931508113140651752436317712.76%27158220.03109195923922461813257.28%162700011.0237000665
2Joel VerminChill (Nas)LW/RW82273663-12220691592124013512.74%26147017.945914452470001922048.51%10100000.8604000413
3Cody GoloubefChill (Nas)D821644600420121101127429612.60%114179521.9061218762420221200330.00%000000.6700000234
4Michael LattaChill (Nas)C/RW74232750176201431271954613611.79%20129117.4666124221702241057164.94%57900000.7736211167
5A.J. GreerChill (Nas)LW8218325077820201116199391409.05%34127415.54257141320002542141.33%15000000.7812004533
6Drake CaggiulaChill (Nas)C/LW/RW2719193861557885116428216.38%1758821.793101314772025663241.15%64400211.2902001514
7Justin AugerChill (Nas)RW82151934-22356469100388115.00%24122614.96257111410000300250.62%8100000.5503000011
8T.J. TynanChill (Nas)C82112031-614039152103338110.68%13121414.8122491250001443138.09%122600000.5111000122
9Tobias LindbergChill (Nas)LW/RW5612162801203474110306210.91%2092316.48235141080000353252.54%5900000.6100000112
10Adam GaudetteChill (Nas)C78131326-9401811192236314.13%14100912.94000030000292046.24%81100000.5211000012
11Neal PionkNashvilleD24322251220026364113327.32%3550621.1128102377000135000.00%000000.9900000110
12Joshua MahuraChill (Nas)D824913-9840130183071413.33%52131816.0801158300011170144.44%2700000.2001000020
13Luke GreenChill (Nas)D8221113-8800881618111911.11%41142217.35123716100001110050.00%200000.1800000001
14Matthew CairnsChill (Nas)D8221113346010920237118.70%65133816.3202229300001000038.46%1300000.1900000010
15Keegan KolesarChill (Nas)RW82426-12355711634113611.76%67469.10011138000030048.94%4700100.1600010001
16Markus NiemelainenChill (Nas)D23134-521536263516.67%1544519.38011463000049000.00%000000.1800001000
17Samuel KurkerChill (Nas)RW23011-11159212390.00%31386.00011319000090042.86%3500000.1400001000
18Chris MartenetChill (Nas)D23011-71402522250.00%434915.19000118000034000.00%000000.0600000000
Team Total or Average1145201336537-2961165132612811663453118412.09%5301864216.28417711833020944610221304281549.13%540200320.58927228262935
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Thomas McCollumChill (Nas)62292530.8753.5733122019715760510.743356030100
2Pheonix CopleyChill (Nas)51100.9172.332320091080000.0000123000
Team Total or Average67302630.8783.4935452020616840510.743356153100


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract StatusType Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Link
A.J. GreerChill (Nas)LW201996-12-14Yes204 Lbs6 ft3NoNoNo3ELCPro & Farm725,000$72,500$0$NoLink
Adam GaudetteChill (Nas)C211996-10-03No170 Lbs6 ft1NoNoNo3ELCPro & Farm525,000$52,500$0$NoLink
Adam MarshChill (Nas)LW201997-08-22Yes160 Lbs6 ft0NoNoNo3ELCPro & Farm525,000$52,500$0$NoLink
Blaine ByronChill (Nas)C221995-02-21Yes163 Lbs5 ft11NoNoNo2RFAPro & Farm525,000$52,500$0$NoLink
Brian PinhoChill (Nas)C/RW221995-05-11Yes173 Lbs6 ft0NoNoNo2RFAPro & Farm525,000$52,500$0$NoLink
Chris MartenetChill (Nas)D211996-09-25Yes212 Lbs6 ft7NoNoNo3ELCPro & Farm650,000$65,000$0$NoLink
Cody GoloubefChill (Nas)D271989-11-30No200 Lbs6 ft1NoNoNo1RFAPro & Farm900,000$90,000$0$NoLink
Dmitry SokolovChill (Nas)LW/RW191998-04-14Yes208 Lbs6 ft0NoNoNo4ELCPro & Farm525,000$52,500$0$NoLink
Drake CaggiulaChill (Nas)C/LW/RW231994-06-20No185 Lbs5 ft10NoNoNo3RFAPro & Farm925,000$925,000$0$NoLink
Filip AhlChill (Nas)LW/RW201997-06-12Yes225 Lbs6 ft4NoNoNo3ELCPro & Farm650,000$65,000$0$NoLink
Filip ChlapikChill (Nas)C201997-06-03No196 Lbs6 ft1NoNoNo3ELCPro & Farm825,000$82,500$0$NoLink
Grant BesseChill (Nas)RW231994-07-14Yes177 Lbs5 ft9NoNoNo2RFAPro & Farm525,000$52,500$0$NoLink
Henri IkonenChill (Nas)LW231994-04-17Yes184 Lbs5 ft11NoNoNo2RFAPro & Farm625,000$62,500$0$NoLink
Joel VerminChill (Nas)LW/RW251992-02-05No192 Lbs5 ft11NoNoNo2RFAPro & Farm635,000$63,500$0$NoLink
Jordan SambrookChill (Nas)D191998-04-11Yes193 Lbs6 ft2NoNoNo3ELCPro & Farm525,000$52,500$0$NoLink
Joshua MahuraChill (Nas)D191998-05-05Yes185 Lbs6 ft1NoNoNo4ELCPro & Farm700,000$70,000$0$NoLink
Justin AugerChill (Nas)RW231994-05-14Yes232 Lbs6 ft6NoNoNo2RFAPro & Farm625,000$62,500$0$NoLink
Keegan KolesarChill (Nas)RW201997-04-08Yes223 Lbs6 ft2NoNoNo3ELCPro & Farm700,000$70,000$0$NoLink
Kent SimpsonChill (Nas)G251992-03-26No198 Lbs6 ft2NoNoNo3RFAPro & Farm550,000$55,000$0$NoLink
Kristian OldhamChill (Nas)G201997-06-25Yes190 Lbs6 ft4NoNoNo3ELCPro & Farm525,000$52,500$0$NoLink
Luke GreenChill (Nas)D191998-01-12Yes190 Lbs6 ft1NoNoNo4ELCPro & Farm690,000$69,000$0$NoLink
Markus NiemelainenChill (Nas)D191998-06-08Yes200 Lbs6 ft5NoNoNo4ELCPro & Farm700,000$70,000$0$NoLink
Matthew CairnsChill (Nas)D191998-04-27Yes205 Lbs6 ft3NoNoNo4ELCPro & Farm700,000$70,000$0$NoLink
Michael LattaChill (Nas)C/RW261991-05-25No207 Lbs6 ft0YesNoNo2RFAPro & Farm570,000$57,000$0$NoLink
Nikita KorostelevChill (Nas)RW201997-02-08Yes201 Lbs6 ft1NoNoNo3ELCPro & Farm525,000$52,500$0$NoLink
Nolan StevensChill (Nas)C211996-07-22Yes183 Lbs6 ft3NoNoNo4ELCPro & Farm842,500$84,250$0$NoLink
Pavel JenysChill (Nas)C211996-04-22Yes192 Lbs6 ft2NoNoNo2ELCPro & Farm655,000$65,500$0$NoLink
Pheonix CopleyChill (Nas)G251992-01-18No196 Lbs6 ft4NoNoNo2RFAPro & Farm767,000$76,700$0$NoLink
Samuel KurkerChill (Nas)RW231994-04-08Yes201 Lbs6 ft2NoNoNo2RFAPro & Farm825,000$82,500$0$NoLink
T.J. TynanChill (Nas)C251992-02-25Yes165 Lbs5 ft8NoNoNo2RFAPro & Farm700,000$70,000$0$NoLink
Thomas McCollumChill (Nas)G271989-12-07No205 Lbs6 ft2NoNoNo1RFAPro & Farm450,000$45,000$0$NoLink
Thomas NovakChill (Nas)C201997-04-28Yes179 Lbs6 ft1NoNoNo3ELCPro & Farm700,000$70,000$0$NoLink
Tobias LindbergChill (Nas)LW/RW221995-07-22No217 Lbs6 ft3NoNoNo2RFAPro & Farm660,000$66,000$0$NoLink
Todd BurgessChill (Nas)C/RW211996-04-03Yes178 Lbs6 ft2NoNoNo4ELCPro & Farm650,000$65,000$0$NoLink
Tom NilssonChill (Nas)D241993-08-19Yes176 Lbs6 ft0NoNoNo2RFAPro & Farm825,000$82,500$0$NoLink
Victor Crus RydbergChill (Nas)C221995-03-21Yes190 Lbs5 ft11NoNoNo2RFAPro & Farm525,000$52,500$0$NoLink
Yan Pavel LaplanteChill (Nas)C221995-04-23Yes178 Lbs6 ft0NoNoNo2RFAPro & Farm700,000$70,000$0$NoLink
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
3721.84193 Lbs6 ft12.68653,905$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Joel VerminDrake CaggiulaMichael Latta40122
2A.J. GreerFilip ChlapikTobias Lindberg30122
3Adam GaudetteT.J. TynanJustin Auger20122
4Drake CaggiulaAdam GaudetteKeegan Kolesar10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Cody GoloubefJoshua Mahura40122
2Matthew CairnsMarkus Niemelainen30122
3Luke GreenChris Martenet20122
4Cody GoloubefJoshua Mahura10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Joel VerminDrake CaggiulaMichael Latta60122
2A.J. GreerFilip ChlapikTobias Lindberg40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Cody GoloubefJoshua Mahura60122
2Matthew CairnsMarkus Niemelainen40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Drake CaggiulaFilip Chlapik60122
2Michael LattaJoel Vermin40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Cody GoloubefJoshua Mahura60122
2Matthew CairnsMarkus Niemelainen40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Drake Caggiula60122Cody GoloubefJoshua Mahura60122
2Filip Chlapik40122Matthew CairnsMarkus Niemelainen40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Drake CaggiulaFilip Chlapik60122
2Michael LattaJoel Vermin40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Cody GoloubefJoshua Mahura60122
2Matthew CairnsMarkus Niemelainen40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Joel VerminDrake CaggiulaMichael LattaCody GoloubefJoshua Mahura
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Joel VerminDrake CaggiulaMichael LattaCody GoloubefJoshua Mahura
Extra Forwards
Normal PowerPlayPenalty Kill
Samuel Kurker, Justin Auger, T.J. TynanSamuel Kurker, Justin AugerT.J. Tynan
Extra Defensemen
Normal PowerPlayPenalty Kill
Luke Green, Chris Martenet, Matthew CairnsLuke GreenChris Martenet, Matthew Cairns
Penalty Shots
Drake Caggiula, Filip Chlapik, Michael Latta, Joel Vermin, A.J. Greer
Goalie
#1 : Thomas McCollum, #2 : Pheonix Copley


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals30300000514-91010000025-32020000039-600.00056110011178701355715716753658930335410110.00%14471.43%01128235447.92%1192244148.83%683134250.89%1985134818896251091549
2Baby Hawks402000111214-22020000057-22000001177030.375121830001117870131007157167536511333388715320.00%19289.47%01128235447.92%1192244148.83%683134250.89%1985134818896251091549
3Bears20200000311-81010000027-51010000014-300.000347001117870135671571675365642026471218.33%13469.23%01128235447.92%1192244148.83%683134250.89%1985134818896251091549
4Bruins21000001770110000003211000000145-130.75071118001117870134671571675365561326405240.00%13284.62%01128235447.92%1192244148.83%683134250.89%1985134818896251091549
5Cabaret Lady Mary Ann22000000853110000004311100000042241.00081220001117870139871571675365508304413215.38%4175.00%01128235447.92%1192244148.83%683134250.89%1985134818896251091549
6Caroline22000000844110000004311100000041341.00081523001117870137071571675365621510499333.33%5180.00%01128235447.92%1192244148.83%683134250.89%1985134818896251091549
7Chiefs51400000916-72020000047-33120000059-420.2009152400111787013102715716753651354145981317.69%20670.00%01128235447.92%1192244148.83%683134250.89%1985134818896251091549
8Comets3110100013103211000008621000100054140.6671320330011178701383715716753656518247010110.00%12375.00%01128235447.92%1192244148.83%683134250.89%1985134818896251091549
9Cougars2110000078-11010000026-41100000052320.50071219001117870134471571675365762118365120.00%9188.89%01128235447.92%1192244148.83%683134250.89%1985134818896251091549
10Crunch21001000954110000004131000100054141.000914230011178701362715716753654722123511218.18%6266.67%01128235447.92%1192244148.83%683134250.89%1985134818896251091549
11Heat330000001468110000006152200000085361.0001424380011178701398715716753655919264520420.00%120100.00%11128235447.92%1192244148.83%683134250.89%1985134818896251091549
12Jayhawks30300000617-1120200000511-61010000016-500.000691500111787013657157167536594182737400.00%11372.73%01128235447.92%1192244148.83%683134250.89%1985134818896251091549
13Las Vegas311000011113-21000000123-121100000910-130.50011182900111787013857157167536510136285911218.18%13284.62%11128235447.92%1192244148.83%683134250.89%1985134818896251091549
14Manchots211000006601010000035-21100000031220.500691500111787013357157167536534910429222.22%5180.00%01128235447.92%1192244148.83%683134250.89%1985134818896251091549
15Marlies2110000034-11010000013-21100000021120.50035800111787013317157167536556192444700.00%70100.00%01128235447.92%1192244148.83%683134250.89%1985134818896251091549
16Minnesota41100020171252100001010552010001077060.750172744001117870131237157167536515442388313215.38%18288.89%01128235447.92%1192244148.83%683134250.89%1985134818896251091549
17Monarchs32100000972211000005411100000043140.667915240011178701379715716753657828185411436.36%90100.00%01128235447.92%1192244148.83%683134250.89%1985134818896251091549
18Monsters21001000752110000002111000100054141.000711180011178701359715716753654019123710110.00%6183.33%01128235447.92%1192244148.83%683134250.89%1985134818896251091549
19Monsters403000101019-920200000411-72010001068-220.2501016260011178701391715716753651514732761800.00%15566.67%01128235447.92%1192244148.83%683134250.89%1985134818896251091549
20Oceanics403000011521-620100001811-320200000710-310.125152338001117870131037157167536514444247516425.00%12558.33%01128235447.92%1192244148.83%683134250.89%1985134818896251091549
21Oil Kings32100000963211000005411100000042240.667915240011178701371715716753655823294910110.00%80100.00%11128235447.92%1192244148.83%683134250.89%1985134818896251091549
22Phantoms22000000963110000005321100000043141.000914230011178701349715716753655416163610220.00%8275.00%01128235447.92%1192244148.83%683134250.89%1985134818896251091549
23Rocket22000000725110000003121100000041341.00071219001117870136771571675365295173812433.33%5260.00%01128235447.92%1192244148.83%683134250.89%1985134818896251091549
24Senators2110000010911010000057-21100000052320.500101828101117870135271571675365752012357228.57%6350.00%01128235447.92%1192244148.83%683134250.89%1985134818896251091549
25Sharks321000001115-41100000054121100000611-540.667111829001117870131017157167536511444246320210.00%120100.00%01128235447.92%1192244148.83%683134250.89%1985134818896251091549
26Sound Tigers22000000734110000005321100000020241.000713200111178701372715716753653412133311218.18%40100.00%01128235447.92%1192244148.83%683134250.89%1985134818896251091549
27Spiders2110000057-21010000006-61100000051420.500581300111787013637157167536566222734500.00%10370.00%01128235447.92%1192244148.83%683134250.89%1985134818896251091549
28Stars52300000131123210000012752020000014-340.400132134001117870131487157167536511432398730310.00%17382.35%01128235447.92%1192244148.83%683134250.89%1985134818896251091549
29Thunder2020000059-41010000035-21010000024-200.0005914001117870133571571675365481320388225.00%10460.00%01128235447.92%1192244148.83%683134250.89%1985134818896251091549
Total82353603044266276-1041172100012133146-13411815030321331303880.53726643069612111787013221171571675365232270572215713405516.18%3146280.25%41128235447.92%1192244148.83%683134250.89%1985134818896251091549
31Wolf Pack220000001147110000006421100000050541.000111829011117870136871571675365621624465120.00%110100.00%11128235447.92%1192244148.83%683134250.89%1985134818896251091549
_Since Last GM Reset82353603044266276-1041172100012133146-13411815030321331303880.53726643069612111787013221171571675365232270572215713405516.18%3146280.25%41128235447.92%1192244148.83%683134250.89%1985134818896251091549
_Vs Conference35161601002113128-151779000015570-1518970100158580360.514113182295121117870139047157167536510143253096781462617.81%1402979.29%11128235447.92%1192244148.83%683134250.89%1985134818896251091549
_Vs Division16660000256497833000012528-383300001312110140.43856931491011178701343571571675365437121159310681522.06%601575.00%01128235447.92%1192244148.83%683134250.89%1985134818896251091549

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
8288L126643069622112322705722157112
All Games
GPWLOTWOTL SOWSOLGFGA
8235363044266276
Home Games
GPWLOTWOTL SOWSOLGFGA
4117210012133146
Visitor Games
GPWLOTWOTL SOWSOLGFGA
4118153032133130
Last 10 Games
WLOTWOTL SOWSOL
460000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
3405516.18%3146280.25%4
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
71571675365111787013
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
1128235447.92%1192244148.83%683134250.89%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
1985134818896251091549


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
2 - 2018-10-046Chill5Wolf Pack0WBoxScore
4 - 2018-10-0622Chill2Sound Tigers0WBoxScore
7 - 2018-10-0939Heat1Chill6WBoxScore
9 - 2018-10-1155Oceanics6Chill4LBoxScore
11 - 2018-10-1366Sound Tigers3Chill5WBoxScore
13 - 2018-10-1577Minnesota1Chill5WBoxScore
17 - 2018-10-19101Chill3Heat2WBoxScore
18 - 2018-10-20113Chill4Oil Kings2WBoxScore
21 - 2018-10-23126Sharks4Chill5WBoxScore
23 - 2018-10-25136Chill5Spiders1WBoxScore
25 - 2018-10-27150Oil Kings2Chill5WBoxScore
28 - 2018-10-30173Las Vegas3Chill2LXXBoxScore
30 - 2018-11-01185Chill2Thunder4LBoxScore
32 - 2018-11-03202Bruins2Chill3WBoxScore
36 - 2018-11-07225Chill2Monsters5LBoxScore
39 - 2018-11-10244Chill0Stars1LBoxScore
41 - 2018-11-12263Chill0Admirals4LBoxScore
42 - 2018-11-13272Chill5Sharks2WBoxScore
44 - 2018-11-15284Chill1Jayhawks6LBoxScore
46 - 2018-11-17300Monarchs1Chill4WBoxScore
48 - 2018-11-19314Thunder5Chill3LBoxScore
50 - 2018-11-21326Chiefs3Chill2LBoxScore
52 - 2018-11-23344Chill2Chiefs4LBoxScore
54 - 2018-11-25360Admirals5Chill2LBoxScore
56 - 2018-11-27371Monsters6Chill1LBoxScore
58 - 2018-11-29386Jayhawks6Chill2LBoxScore
60 - 2018-12-01405Baby Hawks2Chill1LBoxScore
62 - 2018-12-03414Crunch1Chill4WBoxScore
65 - 2018-12-06437Chill5Comets4WXBoxScore
67 - 2018-12-08453Chill5Heat3WBoxScore
70 - 2018-12-11471Senators7Chill5LBoxScore
72 - 2018-12-13483Comets5Chill4LBoxScore
74 - 2018-12-15502Spiders6Chill0LBoxScore
76 - 2018-12-17515Chill5Senators2WBoxScore
77 - 2018-12-18522Chill4Baby Hawks3WXXBoxScore
79 - 2018-12-20532Chill4Phantoms3WBoxScore
81 - 2018-12-22545Chill4Bruins5LXXBoxScore
86 - 2018-12-27573Stars2Chill6WBoxScore
88 - 2018-12-29593Wolf Pack4Chill6WBoxScore
90 - 2018-12-31599Chill1Bears4LBoxScore
91 - 2019-01-01613Phantoms3Chill5WBoxScore
94 - 2019-01-04630Chill5Cougars2WBoxScore
95 - 2019-01-05640Chill4Rocket1WBoxScore
97 - 2019-01-07652Chill2Marlies1WBoxScore
99 - 2019-01-09668Chill3Baby Hawks4LXXBoxScore
100 - 2019-01-10675Chill5Monsters4WXBoxScore
103 - 2019-01-13699Chill4Caroline1WBoxScore
105 - 2019-01-15716Bears7Chill2LBoxScore
107 - 2019-01-17730Oceanics5Chill4LXXBoxScore
109 - 2019-01-19747Cabaret Lady Mary Ann3Chill4WBoxScore
111 - 2019-01-21756Chill4Monsters3WXXBoxScore
113 - 2019-01-23768Chill5Las Vegas7LBoxScore
122 - 2019-02-01782Chill4Cabaret Lady Mary Ann2WBoxScore
123 - 2019-02-02798Stars3Chill2LBoxScore
126 - 2019-02-05817Jayhawks5Chill3LBoxScore
128 - 2019-02-07832Stars2Chill4WBoxScore
130 - 2019-02-09843Chill0Chiefs4LBoxScore
131 - 2019-02-10852Chiefs4Chill2LBoxScore
133 - 2019-02-12870Cougars6Chill2LBoxScore
135 - 2019-02-14881Rocket1Chill3WBoxScore
137 - 2019-02-16901Chill4Las Vegas3WBoxScore
140 - 2019-02-19923Chill1Stars3LBoxScore
142 - 2019-02-21936Monarchs3Chill1LBoxScore
144 - 2019-02-23951Monsters5Chill3LBoxScore
146 - 2019-02-25965Oil Kings2Chill0LBoxScore
147 - 2019-02-26975Chill3Chiefs1WBoxScore
Trade Deadline --- Trades can’t be done after this day is simulated!
150 - 2019-03-01996Chill4Oceanics5LBoxScore
152 - 2019-03-031015Chill3Minnesota2WXXBoxScore
154 - 2019-03-051024Minnesota4Chill5WXXBoxScore
158 - 2019-03-091057Caroline3Chill4WBoxScore
161 - 2019-03-121079Chill3Admirals5LBoxScore
163 - 2019-03-141091Chill4Monarchs3WBoxScore
165 - 2019-03-161110Chill1Sharks9LBoxScore
168 - 2019-03-191128Marlies3Chill1LBoxScore
170 - 2019-03-211141Manchots5Chill3LBoxScore
172 - 2019-03-231154Chill3Oceanics5LBoxScore
174 - 2019-03-251174Chill4Minnesota5LBoxScore
178 - 2019-03-291198Chill3Manchots1WBoxScore
179 - 2019-03-301210Monsters1Chill2WBoxScore
182 - 2019-04-021229Chill5Crunch4WXBoxScore
184 - 2019-04-041249Comets1Chill4WBoxScore
186 - 2019-04-061266Baby Hawks5Chill4LBoxScore



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3818
Attendance61,50330,554
Attendance PCT75.00%74.52%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
0 2245 - 74.84% 70,417$2,887,086$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
3,042,235$ 3,251,950$ 3,251,950$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
17,390$ 3,042,235$ 37 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 0 17,390$ 0$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
201882353603044266276-1041172100012133146-134118150303213313038826643069612111787013221171571675365232270572215713405516.18%3146280.25%41128235447.92%1192244148.83%683134250.89%1985134818896251091549
Total Regular Season82353603044266276-1041172100012133146-134118150303213313038826643069612111787013221171571675365232270572215713405516.18%3146280.25%41128235447.92%1192244148.83%683134250.89%1985134818896251091549