Bears

GP: 82 | W: 53 | L: 24 | OTL: 5 | P: 111
GF: 357 | GA: 287 | PP%: 25.21% | PK%: 83.10%
GM : David Arseneault | Morale : 50 | Team Overall : 48
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Ryan CarpenterXX100.00634388756958465483466266484136050580
2Peter HollandX100.00545085737163485282525265644844050570
3Gemel Smith (R)XXX100.00514383696058555546486168483734050560
4Phillip Di GiuseppeXX100.00694386676961545335515463564336050560
5Drew MillerXX100.00583586675858514635414974476558050550
6Andreas MartinsenXX100.00644374648162394760435063484337050540
7Matthew Peca (R)X100.00453594795260364455424662483734050520
8Michael McCarronXX100.00666560608357404361444261484137050520
9Kevin PorterXXX100.00533594716254343735413364475145050500
10Filip Chytil (R)X100.00473584657055354137404258483532050490
11Emile PoirierXX100.00513581685856314136414054463532050480
12Tyler Biggs (R)X100.00455049497143434549454550473230050470
13Shea TheodoreX100.00513586786473595635605170564438050610
14Mikhail Sergachev (R)X100.00633583767157565635595365453734050600
15Joe MorrowX100.00623583716366484935494965484237050580
16Madison Bowey (R)X100.00603583656550454135503263483532050530
17Jakub Zboril (R)X100.00475049495946464749474750483230050470
Scratches
1Boris Katchouk (R)X100.00454545457345454545454545453230050460
2Nathan Bastian (R)X100.00454545457745454545454545453230050460
3Ryan Gropp (R)X100.00434545457242424345434345443230050450
4Steven Shipley (R)X100.00364040407135353640363640383230050400
5Kelsey TessierX100.00364040404835353640363640383230050390
6Jeremy Gregoire (R)X100.00333737376133333337333337353230050370
7Greg NemiszXX100.00308931356929353135313133453734050360
8Phillipe Myers (R)X100.00454545456845454545454545453230050460
9Sean Day (R)X100.00434343437543434343434343433230050450
10Mathieu Brisebois (R)X100.00414545455539394145414145433230050430
11Brycen Martin (R)X100.00394343436337373943393943413230050420
12Joey Leach (R)X100.00394343436137373943393943413230050420
13Adam Janosik (R)X100.00394343435037373943393943413230050410
14Justin Weller (R)X100.00364040406835353640363640383230050410
15Loic Leduc (R)X100.00364040406435353640363640383230050400
16Joshua Brown (R)X100.00333737377133333337333337353230050390
17Mike McKee (R)X100.00333737377833333337333337353230050390
18Teigan ZahnX100.00333737377233333337333337353230050390
TEAM AVERAGE100.0047436054664741434442435145373305047
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Malcolm Subban (R)100.0048459075464646454565944036050510
2Harri Sateri (R)100.0046457776454647454565453532050500
3Alex Lyon (R)100.0047456575444647424565873532050490
Scratches
1Troy Grosenick100.0046455067454441434656553532050470
TEAM AVERAGE100.004745717345464544456370363305049
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Larry Robinson54516260999270CAN671500,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Peter HollandBears (Was)C8042831253756206320930810424113.64%31164220.53731386125901183056366.43%193900001.5236022584
2Phillip Di GiuseppeBears (Was)LW/RW744955104374601691212928021416.78%14149120.161216287525310162016748.89%13500031.391600011310
3Joe MorrowBears (Was)D82227597226601541032037811210.84%115192523.481226381102810004268200.00%000001.0100000638
4Drew MillerBears (Was)LW/RW7132518316335671162778322211.55%37133918.8615142965220202141538135.44%7900021.2424000587
5Andreas MartinsenBears (Was)LW/RW71322961934082782276014214.10%8110715.6091322502180000206161.04%7700001.1012000451
6Madison BoweyBears (Was)D8294655738094639629749.38%95159819.495914502200110238110.00%000000.6900000211
7Matthew PecaBears (Was)C752429536135251551975413412.18%1797012.942248530000392056.38%105000001.0900001132
8Michael McCarronBears (Was)C/RW711128391088201369413755968.03%9107315.124131727214000030158.41%91600000.7300211003
9Emile PoirierBears (Was)LW/RW82172138-132074721273910113.39%10101112.341239460001603046.05%7600000.7500000133
10Mikhail SergachevBears (Was)D421324376340595694245113.83%4394522.526713441250002130120.00%000000.7800000211
11Kevin PorterBears (Was)C/LW/RW71112536-822049102934010311.83%2091812.9410142800011022040.10%39900000.7800000020
12Filip ChytilBears (Was)C8252732-10340619510349734.85%53106513.000002110000180045.26%47500000.6001000012
13Ryan CarpenterBears (Was)C/RW1616163215140215479235420.25%333520.9625712411014563067.57%40700011.9100000222
14Matt StajanWashingtonC19724311614032468232628.54%536018.972791968011091172.48%40700001.7204000310
15Jakub ZborilBears (Was)D826212757951032833152518.18%73156219.065712182180110216000.00%000000.3500010002
16Tyler BiggsBears (Was)RW71121022-104759334103267111.65%116098.5900000000002037.93%2900000.7200000210
17Boris KatchoukBears (Was)LW46125170215342447132225.53%44269.2600001000001057.58%3300000.8000001110
18Nathan BastianBears (Was)RW464111511604314506238.00%24229.1700008000071051.79%5600000.7100000101
19Phillipe MyersBears (Was)D55410141675105222951613.79%4590416.45112848000053010.00%000000.3100010001
20Sean DayBears (Was)D35088212058612250.00%3057616.47011216000055000.00%000000.2800000002
21Gemel SmithBears (Was)C/LW/RW423514021318101411.11%16315.9700037000000066.67%300001.5700000010
22Ryan GroppBears (Was)LW81011001120150.00%0212.6400006000050075.00%400000.9500000000
23Alexei EmelinWashingtonD1000100220020.00%22424.770000200004000.00%000000.0000000000
Team Total or Average126633160193216477070152715082609827185812.69%6282039616.11841542385672354448401952451859.16%608500060.91723255464450
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Malcolm SubbanBears (Was)40241320.8793.5022600113210920310.8005400200
2Harri SateriBears (Was)3621720.8883.151946821029090400.692133140311
Team Total or Average76452040.8833.3442068323420010710.722187140511


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract StatusType Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Link
Adam JanosikBears (Was)D251992-09-07Yes170 Lbs5 ft11NoNoNo2RFAPro & Farm700,000$70,000$0$NoLink
Alex LyonBears (Was)G241992-12-09Yes201 Lbs6 ft1NoNoNo4RFAPro & Farm874,125$87,412$0$NoLink
Andreas MartinsenBears (Was)LW/RW271990-06-13No229 Lbs6 ft3NoNoNo2RFAPro & Farm743,000$74,300$0$NoLink
Boris KatchoukBears (Was)LW191998-06-18Yes210 Lbs6 ft2NoNoNo4ELCPro & Farm742,500$74,250$0$NoLink
Brycen MartinBears (Was)D211996-05-09Yes195 Lbs6 ft1NoNoNo2ELCPro & Farm700,000$70,000$0$NoLink
Drew MillerBears (Was)LW/RW331984-02-17No183 Lbs6 ft2NoNoNo3UFAPro & Farm830,000$83,000$0$NoLink
Emile PoirierBears (Was)LW/RW221994-12-14No185 Lbs6 ft1NoNoNo1RFAPro & Farm925,000$92,500$0$NoLink
Filip ChytilBears (Was)C181999-09-05Yes202 Lbs6 ft2NoNoNo4ELCPro & Farm925,000$92,500$0$NoLink
Gemel SmithBears (Was)C/LW/RW231994-04-16Yes190 Lbs5 ft10NoNoNo2RFAPro & Farm645,000$645,000$0$NoLink
Greg NemiszBears (Was)C/RW271990-06-05No197 Lbs6 ft3NoNoNo1RFAPro & Farm500,000$50,000$0$NoLink
Harri SateriBears (Was)G271989-12-29Yes205 Lbs6 ft1NoNoNo2RFAPro & Farm650,000$65,000$0$NoLink
Jakub ZborilBears (Was)D201997-02-21Yes185 Lbs6 ft2NoNoNo3ELCPro & Farm895,000$89,500$0$NoLink
Jeremy GregoireBears (Was)C221995-09-05Yes190 Lbs5 ft11NoNoNo2RFAPro & Farm620,000$62,000$0$NoLink
Joe MorrowBears (Was)D241992-12-09No196 Lbs6 ft0NoNoNo1RFAPro & Farm833,000$83,300$0$NoLink
Joey LeachBears (Was)D251992-01-29Yes187 Lbs6 ft3NoNoNo2RFAPro & Farm700,000$70,000$0$NoLink
Joshua BrownBears (Was)D231994-01-21Yes213 Lbs6 ft5NoNoNo2RFAPro & Farm630,000$63,000$0$NoLink
Justin WellerBears (Was)D261991-07-26Yes205 Lbs6 ft2NoNoNo2RFAPro & Farm650,000$65,000$0$NoLink
Kelsey TessierBears (Was)C271990-01-16No169 Lbs5 ft9NoNoNo2RFAPro & Farm650,000$65,000$0$NoLink
Kevin PorterBears (Was)C/LW/RW311986-03-12No191 Lbs5 ft11NoNoNo2UFAPro & Farm750,000$75,000$0$NoLink
Loic LeducBears (Was)D231994-06-14Yes194 Lbs6 ft5NoNoNo2RFAPro & Farm615,000$61,500$0$NoLink
Madison BoweyBears (Was)D221995-04-22Yes198 Lbs6 ft2NoNoNo2RFAPro & Farm642,000$64,200$0$NoLink
Malcolm SubbanBears (Was)G231993-12-21Yes200 Lbs6 ft2NoNoNo1RFAPro & Farm925,000$92,500$0$NoLink
Mathieu BriseboisBears (Was)D251992-04-17Yes180 Lbs5 ft11NoNoNo2RFAPro & Farm655,000$65,500$0$NoLink
Matthew PecaBears (Was)C241993-04-27Yes178 Lbs5 ft8NoNoNo2RFAPro & Farm667,000$66,700$0$NoLink
Michael McCarronBears (Was)C/RW221995-03-07No230 Lbs6 ft6NoNoNo2RFAPro & Farm925,000$92,500$0$NoLink
Mike McKeeBears (Was)D241993-08-17Yes229 Lbs6 ft4NoNoNo2RFAPro & Farm525,000$52,500$0$NoLink
Mikhail SergachevBears (Was)D191998-06-25Yes215 Lbs6 ft3NoNoNo3ELCPro & Farm925,000$92,500$0$NoLink
Nathan BastianBears (Was)RW191997-12-06Yes219 Lbs6 ft4NoNoNo4ELCPro & Farm742,500$74,250$0$NoLink
Peter HollandBears (Was)C261991-01-14No205 Lbs6 ft2NoNoNo1RFAPro & Farm824,000$82,400$0$NoLink
Phillip Di GiuseppeBears (Was)LW/RW231993-10-09No200 Lbs6 ft0NoNoNo2RFAPro & Farm818,000$81,800$0$NoLink
Phillipe MyersBears (Was)D201997-01-25Yes202 Lbs6 ft5NoNoNo4ELCPro & Farm825,000$82,500$0$NoLink
Ryan CarpenterBears (Was)C/RW261991-01-18No200 Lbs6 ft0NoNoNo3RFAPro & Farm1,250,000$125,000$0$NoLink
Ryan GroppBears (Was)LW211996-09-16Yes205 Lbs6 ft3NoNoNo3ELCPro & Farm825,000$82,500$0$NoLink
Sean DayBears (Was)D191998-01-09Yes224 Lbs6 ft2NoNoNo4ELCPro & Farm742,500$74,250$0$NoLink
Shea TheodoreBears (Was)D221995-08-03No195 Lbs6 ft2NoNoNo2RFAPro & Farm925,000$925,000$0$NoLink
Steven ShipleyBears (Was)C251992-04-22Yes205 Lbs6 ft2NoNoNo2RFAPro & Farm650,000$65,000$0$NoLink
Teigan ZahnBears (Was)D271990-01-04No218 Lbs6 ft1NoNoNo2RFAPro & Farm525,000$52,500$0$NoLink
Troy GrosenickBears (Was)G281989-08-27No185 Lbs6 ft1NoNoNo1UFAPro & Farm650,000$65,000$0$NoLink
Tyler BiggsBears (Was)RW241993-04-30Yes205 Lbs6 ft2NoNoNo2RFAPro & Farm833,000$83,300$0$NoLink
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
3923.74200 Lbs6 ft22.28755,170$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Phillip Di GiuseppePeter Holland40122
2Drew MillerMichael McCarronAndreas Martinsen30122
3Kevin PorterMatthew PecaEmile Poirier20122
4Filip ChytilTyler Biggs10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Joe Morrow40122
2Madison BoweyJakub Zboril30122
3Filip Chytil20122
4Joe Morrow10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Phillip Di GiuseppePeter Holland60122
2Drew MillerMichael McCarronAndreas Martinsen40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Joe Morrow60122
2Madison BoweyJakub Zboril40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Peter HollandPhillip Di Giuseppe60122
2Drew Miller40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Joe Morrow60122
2Madison BoweyJakub Zboril40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Peter Holland60122Joe Morrow60122
2Phillip Di Giuseppe40122Madison BoweyJakub Zboril40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Peter HollandPhillip Di Giuseppe60122
2Drew Miller40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Joe Morrow60122
2Madison BoweyJakub Zboril40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Phillip Di GiuseppePeter HollandJoe Morrow
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Phillip Di GiuseppePeter HollandJoe Morrow
Extra Forwards
Normal PowerPlayPenalty Kill
, Matthew Peca, Kevin Porter, Matthew PecaKevin Porter
Extra Defensemen
Normal PowerPlayPenalty Kill
, Madison Bowey, Jakub ZborilMadison Bowey, Jakub Zboril
Penalty Shots
Peter Holland, Phillip Di Giuseppe, , Drew Miller, Andreas Martinsen
Goalie
#1 : , #2 :


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals22000000844110000004131100000043141.000815230014811290118887987993043388333117211.76%9188.89%01468263355.75%1244240151.81%802143755.81%2090144217926091079553
2Baby Hawks220000001055110000005231100000053241.0001017270014811290114987987993043481316333133.33%70100.00%01468263355.75%1244240151.81%802143755.81%2090144217926091079553
3Bruins3300000013852200000011831100000020261.00013233601148112901184879879930436420305014321.43%15473.33%01468263355.75%1244240151.81%802143755.81%2090144217926091079553
4Cabaret Lady Mary Ann3300000016882200000011561100000053261.00016314700148112901113487987993043882033611400.00%14192.86%01468263355.75%1244240151.81%802143755.81%2090144217926091079553
5Caroline41100020201642100001012752010001089-160.7502031511014811290111698798799304311838457716743.75%20290.00%01468263355.75%1244240151.81%802143755.81%2090144217926091079553
6Chiefs2000010179-21000000145-11000010034-120.500713200014811290116187987993043811414338112.50%7185.71%01468263355.75%1244240151.81%802143755.81%2090144217926091079553
7Chill220000001138110000004131100000072541.00011172800148112901164879879930435610245613430.77%12191.67%11468263355.75%1244240151.81%802143755.81%2090144217926091079553
8Comets211000009721010000045-11100000052320.500917260014811290117787987993043511914358337.50%7185.71%01468263355.75%1244240151.81%802143755.81%2090144217926091079553
9Cougars30300000610-42020000058-31010000012-100.00061218001481129011738798799304310126306211436.36%15193.33%01468263355.75%1244240151.81%802143755.81%2090144217926091079553
10Crunch33000000181082200000014861100000042261.000183149001481129011131879879930436017145616318.75%7271.43%01468263355.75%1244240151.81%802143755.81%2090144217926091079553
11Heat21100000330110000002021010000013-220.500369011481129011438798799304349113145500.00%13192.31%01468263355.75%1244240151.81%802143755.81%2090144217926091079553
12Jayhawks20200000510-51010000026-41010000034-100.00058130014811290116187987993043871516379111.11%8275.00%01468263355.75%1244240151.81%802143755.81%2090144217926091079553
13Las Vegas21100000770110000004221010000035-220.500714210014811290116287987993043541614379222.22%7271.43%01468263355.75%1244240151.81%802143755.81%2090144217926091079553
14Manchots421000101697220000009182010001078-160.7501625410114811290111078798799304310321307020315.00%14378.57%01468263355.75%1244240151.81%802143755.81%2090144217926091079553
15Marlies302000011118-71010000059-42010000169-310.167111627001481129011848798799304312027405410330.00%17476.47%01468263355.75%1244240151.81%802143755.81%2090144217926091079553
16Minnesota22000000963110000005411100000042241.0009172600148112901165879879930435016173212541.67%7357.14%01468263355.75%1244240151.81%802143755.81%2090144217926091079553
17Monarchs21000100101001000010045-11100000065130.7501015250014811290116387987993043691918426233.33%9188.89%01468263355.75%1244240151.81%802143755.81%2090144217926091079553
18Monsters42200000191902110000089-1211000001110140.5001935540014811290111338798799304314042477424625.00%21290.48%01468263355.75%1244240151.81%802143755.81%2090144217926091079553
19Monsters2020000058-31010000035-21010000023-100.00058130014811290114887987993043692418469111.11%9366.67%01468263355.75%1244240151.81%802143755.81%2090144217926091079553
20Oceanics2020000069-31010000024-21010000045-100.000610160014811290114187987993043732418487114.29%9277.78%01468263355.75%1244240151.81%802143755.81%2090144217926091079553
21Oil Kings210000101064100000103211100000074341.000101727001481129011838798799304335512509111.11%6183.33%01468263355.75%1244240151.81%802143755.81%2090144217926091079553
22Phantoms4310000013112220000006422110000077060.7501322350014811290111228798799304310021456415533.33%21385.71%01468263355.75%1244240151.81%802143755.81%2090144217926091079553
23Rocket310011001612411000000624200011001010050.83316244000148112901197879879930436318215918527.78%8362.50%01468263355.75%1244240151.81%802143755.81%2090144217926091079553
24Senators320010001183110000003212100100086261.00011182900148112901110687987993043722618581218.33%9277.78%01468263355.75%1244240151.81%802143755.81%2090144217926091079553
25Sharks2010100078-1100010002111010000057-220.500713200014811290118387987993043892918498225.00%9188.89%01468263355.75%1244240151.81%802143755.81%2090144217926091079553
26Sound Tigers4310000015132211000008802200000075260.750152843001481129011113879879930439834497715533.33%18477.78%01468263355.75%1244240151.81%802143755.81%2090144217926091079553
27Spiders422000002022-222000000118320200000914-540.5002039590014811290111158798799304311142537119631.58%24483.33%01468263355.75%1244240151.81%802143755.81%2090144217926091079553
28Stars2200000016511110000007251100000093641.00016264200148112901176879879930435010124316637.50%6183.33%11468263355.75%1244240151.81%802143755.81%2090144217926091079553
29Thunder3210000012120110000005412110000078-140.66712233500148112901180879879930439735565911545.45%18477.78%01468263355.75%1244240151.81%802143755.81%2090144217926091079553
Total824624033423572877041279011211831335041191502221174154201110.677357617974131481129011270887987993043237266781616013619125.21%3616183.10%41468263355.75%1244240151.81%802143755.81%2090144217926091079553
31Wolf Pack4400000028111722000000145922000000146881.000284674001481129011196879879930431384730927342.86%15193.33%21468263355.75%1244240151.81%802143755.81%2090144217926091079553
_Since Last GM Reset824624033423572877041279011211831335041191502221174154201110.677357617974131481129011270887987993043237266781616013619125.21%3616183.10%41468263355.75%1244240151.81%802143755.81%2090144217926091079553
_Vs Conference462813021112001653522164011009670262412901011104959640.69620034554502148112901114798798799304313684055098951985125.76%2203783.18%31468263355.75%1244240151.81%802143755.81%2090144217926091079553

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
82111L135761797427082372667816160113
All Games
GPWLOTWOTL SOWSOLGFGA
8246243342357287
Home Games
GPWLOTWOTL SOWSOLGFGA
412791121183133
Visitor Games
GPWLOTWOTL SOWSOLGFGA
4119152221174154
Last 10 Games
WLOTWOTL SOWSOL
730000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
3619125.21%3616183.10%4
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
879879930431481129011
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
1468263355.75%1244240151.81%802143755.81%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
2090144217926091079553


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
1 - 2018-10-032Bruins5Bears7WBoxScore
2 - 2018-10-047Bears1Manchots3LBoxScore
8 - 2018-10-1043Las Vegas2Bears4WBoxScore
9 - 2018-10-1148Bears4Spiders7LBoxScore
11 - 2018-10-1365Marlies9Bears5LBoxScore
15 - 2018-10-1787Wolf Pack3Bears6WBoxScore
17 - 2018-10-1999Cabaret Lady Mary Ann2Bears5WBoxScore
20 - 2018-10-22121Bears5Comets2WBoxScore
23 - 2018-10-25142Bears7Oil Kings4WBoxScore
25 - 2018-10-27151Bears1Heat3LBoxScore
30 - 2018-11-01182Bears5Rocket6LXBoxScore
32 - 2018-11-03200Stars2Bears7WBoxScore
34 - 2018-11-05213Oil Kings2Bears3WXXBoxScore
36 - 2018-11-07224Manchots0Bears2WBoxScore
38 - 2018-11-09237Monsters5Bears3LBoxScore
40 - 2018-11-11255Jayhawks6Bears2LBoxScore
42 - 2018-11-13269Bears4Minnesota2WBoxScore
43 - 2018-11-14274Bears4Oceanics5LBoxScore
45 - 2018-11-16289Bears2Monsters3LBoxScore
48 - 2018-11-19311Bears5Rocket4WXBoxScore
50 - 2018-11-21322Baby Hawks2Bears5WBoxScore
52 - 2018-11-23337Cougars4Bears2LBoxScore
53 - 2018-11-24347Bears6Wolf Pack4WBoxScore
55 - 2018-11-26364Bears3Sound Tigers2WBoxScore
59 - 2018-11-30391Spiders3Bears5WBoxScore
61 - 2018-12-02407Admirals1Bears4WBoxScore
63 - 2018-12-04424Bears3Las Vegas5LBoxScore
65 - 2018-12-06436Bears3Jayhawks4LBoxScore
67 - 2018-12-08451Bears5Monsters6LBoxScore
70 - 2018-12-11467Cougars4Bears3LBoxScore
73 - 2018-12-14491Bears3Caroline5LBoxScore
74 - 2018-12-15500Crunch4Bears7WBoxScore
78 - 2018-12-19528Manchots1Bears7WBoxScore
80 - 2018-12-21543Crunch4Bears7WBoxScore
81 - 2018-12-22554Bears4Senators3WBoxScore
86 - 2018-12-27570Caroline2Bears6WBoxScore
88 - 2018-12-29589Bears4Senators3WXBoxScore
90 - 2018-12-31599Chill1Bears4WBoxScore
93 - 2019-01-03627Bears3Chiefs4LXBoxScore
94 - 2019-01-04632Bears9Stars3WBoxScore
96 - 2019-01-06649Bears1Cougars2LBoxScore
98 - 2019-01-08661Phantoms2Bears3WBoxScore
100 - 2019-01-10671Bears2Bruins0WBoxScore
102 - 2019-01-12692Monsters4Bears5WBoxScore
104 - 2019-01-14709Chiefs5Bears4LXXBoxScore
105 - 2019-01-15716Bears7Chill2WBoxScore
108 - 2019-01-18735Sound Tigers2Bears5WBoxScore
110 - 2019-01-20751Bears5Baby Hawks3WBoxScore
112 - 2019-01-22760Sharks1Bears2WXBoxScore
113 - 2019-01-23765Bears3Marlies4LXXBoxScore
122 - 2019-02-01785Heat0Bears2WBoxScore
124 - 2019-02-03802Bruins3Bears4WBoxScore
126 - 2019-02-05814Comets5Bears4LBoxScore
128 - 2019-02-07827Monsters5Bears3LBoxScore
130 - 2019-02-09849Cabaret Lady Mary Ann3Bears6WBoxScore
132 - 2019-02-11861Monarchs5Bears4LXBoxScore
133 - 2019-02-12866Bears6Monsters4WBoxScore
135 - 2019-02-14887Bears5Sharks7LBoxScore
138 - 2019-02-17909Bears4Admirals3WBoxScore
139 - 2019-02-18914Bears6Monarchs5WBoxScore
142 - 2019-02-21929Bears3Marlies5LBoxScore
144 - 2019-02-23945Bears4Crunch2WBoxScore
145 - 2019-02-24956Wolf Pack2Bears8WBoxScore
147 - 2019-02-26971Senators2Bears3WBoxScore
Trade Deadline --- Trades can’t be done after this day is simulated!
150 - 2019-03-01993Bears4Sound Tigers3WBoxScore
152 - 2019-03-031009Bears8Wolf Pack2WBoxScore
155 - 2019-03-061029Bears1Phantoms4LBoxScore
157 - 2019-03-081045Spiders5Bears6WBoxScore
159 - 2019-03-101061Oceanics4Bears2LBoxScore
161 - 2019-03-121073Bears6Manchots5WXXBoxScore
163 - 2019-03-141085Bears6Phantoms3WBoxScore
165 - 2019-03-161106Bears4Thunder3WBoxScore
168 - 2019-03-191122Bears5Spiders7LBoxScore
169 - 2019-03-201133Thunder4Bears5WBoxScore
171 - 2019-03-221148Minnesota4Bears5WBoxScore
173 - 2019-03-241164Phantoms2Bears3WBoxScore
175 - 2019-03-261178Caroline5Bears6WXXBoxScore
177 - 2019-03-281190Bears5Caroline4WXXBoxScore
179 - 2019-03-301207Bears3Thunder5LBoxScore
181 - 2019-04-011221Bears5Cabaret Lady Mary Ann3WBoxScore
184 - 2019-04-041246Rocket2Bears6WBoxScore
186 - 2019-04-061265Sound Tigers6Bears3LBoxScore



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price4020
Attendance61,27731,024
Attendance PCT74.73%75.67%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
0 2251 - 75.04% 74,916$3,071,560$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
3,291,826$ 4,358,162$ 4,358,162$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
23,306$ 3,291,826$ 39 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 0 23,306$ 0$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
201882462403342357287704127901121183133504119150222117415420111357617974131481129011270887987993043237266781616013619125.21%3616183.10%41468263355.75%1244240151.81%802143755.81%2090144217926091079553
Total Regular Season82462403342357287704127901121183133504119150222117415420111357617974131481129011270887987993043237266781616013619125.21%3616183.10%41468263355.75%1244240151.81%802143755.81%2090144217926091079553