Marlies

GP: 82 | W: 66 | L: 11 | OTL: 5 | P: 137
GF: 409 | GA: 245 | PP%: 26.40% | PK%: 76.67%
GM : Patrick Pellegrino | Morale : 50 | Team Overall : 52
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Zack KassianXX100.00686567747359735535545668485245050600
2Alexander BurmistrovXXX100.00543585725663455679565665484840050570
3Matt ReadXX100.00493591745763535535486162565546050570
4Adam CracknellXX100.00533590717557395178445865485247050560
5Kyle CliffordXX100.00725671647357585135455656486055050560
6Beau BennettXX100.00503588666759405535515855485047050550
7Austin Czarnik (R)XX100.00453590794460385346565059453734050540
8Bobby FarnhamXX100.00616649716052354935396063473734050530
9Jordan SchroederXXX100.00463591714955404974455253484843050520
10Cole SchneiderXX100.00503594706949334335513365473734050510
11Vadim ShipachyovX100.00463579625952353958354254483532050470
12Vitaly Abramov (R)XX100.00434343434943434343434343433230050430
13Alexey MarchenkoX100.00544387606967604735514382474439050600
14Jared CowenX100.00755079588261544235424179465044050600
15Jason GarrisonX100.00503587647274474335454169486355050590
16Jon MerrillX100.00593581606862474235414372484840050570
17Matt IrwinX100.00673588636856524335434363485246050560
18Lucas Johansen (R)X100.00505050505750505050505050503230050490
Scratches
1Nikita Gusev (R)X100.00333737374533333337333337353230050370
2Joonas RaskXX100.00308733354929363135313133453532050350
3Chad RuhwedelX100.00643586656161474335414563484645050560
TEAM AVERAGE100.0053447562625546464445476047454005053
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Anthony Stolarz (R)100.0048457281485050475062603532050520
2Alexandar Georgiev100.0042457065434646454565453532050480
Scratches
1Jeremy Smith100.0038458264374649364362603532050470
2Maxime Lagace (R)100.0037459269364646354565873532050470
TEAM AVERAGE100.004145797041474841466463353205049
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Alexander BurmistrovMarlies (Tor)C/LW/RW8251811325436012221436110425314.13%26180922.0714284262290415102347266.46%161600011.46370009145
2Matt ReadMarlies (Tor)LW/RW8258389635180591163817726715.22%8143317.481717341002921014999346.97%19800121.3426000978
3Adam CracknellMarlies (Tor)C/RW8234609443140312092977521511.45%20152518.608172558249000412910366.00%170900001.2302000743
4Alexey MarchenkoMarlies (Tor)D8224709448315461091854713812.97%115179321.871423371152860220255520.00%000001.0500100434
5Beau BennettMarlies (Tor)LW/RW823645814718022812748316813.14%8129515.805111648176000024445.98%8700001.2500000445
6Austin CzarnikMarlies (Tor)C/RW822651774295251942186516311.93%12120014.6426815461014502347.34%124000001.2800001363
7Jason GarrisonMarlies (Tor)D82185977434608471163619911.04%97167120.39142135952780221266000.00%000000.9200000223
8Zack KassianMarlies (Tor)LW/RW4129366537531513664166328217.47%1487721.41711183214101141362345.24%25200021.4805003855
9Kyle CliffordMarlies (Tor)LW/RW82183755461441024654193581609.33%5130915.9711112261770001273144.90%9800000.8422200215
10Jordan SchroederMarlies (Tor)C/LW/RW82262349346027881594110616.35%8113313.820112800081195363.66%32200000.8600000213
11Bobby FarnhamMarlies (Tor)LW/RW682422462611030176681414912717.02%1482212.101236200000214045.65%4600001.1200231352
12Jared CowenMarlies (Tor)D739324141127151877212138797.44%75155421.295611642520111190210.00%000000.5300011014
13Jon MerrillMarlies (Tor)D555263139480713244173211.36%5677814.15011416000348000.00%000000.8000000011
14Erik C. GustafssonTorontoD284212516240323940143310.00%2854819.59156227801116500100.00%100000.9100000003
15Matt IrwinMarlies (Tor)D5552025252805514348514.71%3261211.1401105000150300.00%000000.8200000022
16Tobias EnstromTorontoD26520251140423339122812.82%2551119.68212141875011185000.00%000000.9800000210
17Tom KuhnhacklTorontoLW/RW229152412180633151184617.65%739017.7624613780110371037.74%5300001.2302000420
18Cole SchneiderMarlies (Tor)LW/RW827152213135156265185910.77%54825.8900000000001052.38%2100000.9100001011
19Lucas JohansenMarlies (Tor)D305172263010662734132314.71%2560820.291341690101184000.00%000000.7200002203
20Chad RuhwedelMarlies (Tor)D521111271204020135107.69%173326.400000000000000.00%000000.7200000000
21Connor BrownTorontoRW322420009103920.00%03612.311013100000000.00%000002.1701000001
22Vitaly AbramovMarlies (Tor)LW/RW110006001032040.00%018917.26000037000030025.00%2800000.0001000000
Team Total or Average1284396701109763378995155516102991838210613.24%5972091916.2995180275699260471017441910582558.98%567100151.05726549616061
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Anthony StolarzMarlies (Tor)71521050.8813.0640592420717360110.83324710011
2Alexandar GeorgievMarlies (Tor)1814100.9122.3489800353960101.00041171100
Team Total or Average89661150.8862.9349582424221320210.857288271111


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract StatusType Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Link
Adam CracknellMarlies (Tor)C/RW321985-07-15No218 Lbs6 ft2YesNoNo3UFAPro & Farm750,000$75,000$0$NoLink
Alexandar GeorgievMarlies (Tor)G211996-02-10No180 Lbs6 ft1NoNoNo3ELCPro & Farm792,500$79,250$0$NoLink
Alexander BurmistrovMarlies (Tor)C/LW/RW251991-10-21No180 Lbs6 ft1NoNoNo2RFAPro & Farm1,000,000$100,000$0$NoLink
Alexey MarchenkoMarlies (Tor)D251992-01-02No210 Lbs6 ft3NoNoNo5RFAPro & Farm700,000$70,000$0$NoLink
Anthony StolarzMarlies (Tor)G231994-01-20Yes210 Lbs6 ft6NoNoNo2RFAPro & Farm792,000$79,200$0$NoLink
Austin CzarnikMarlies (Tor)C/RW241992-12-12Yes160 Lbs5 ft9NoNoNo2RFAPro & Farm792,000$79,200$0$NoLink
Beau BennettMarlies (Tor)LW/RW251991-11-27No195 Lbs6 ft2NoNoNo2RFAPro & Farm600,000$60,000$0$NoLink
Bobby FarnhamMarlies (Tor)LW/RW281989-01-21No190 Lbs5 ft10NoNoNo3UFAPro & Farm450,000$45,000$0$NoLink
Chad RuhwedelMarlies (Tor)D271990-05-07No191 Lbs5 ft11NoNoNo3RFAPro & Farm1,425,000$142,500$0$NoLink
Cole SchneiderMarlies (Tor)LW/RW271990-08-26No200 Lbs6 ft1NoNoNo2RFAPro & Farm700,000$70,000$0$NoLink
Jared CowenMarlies (Tor)D261991-01-25No238 Lbs6 ft5NoNoNo1RFAPro & Farm825,000$82,500$0$NoLink
Jason GarrisonMarlies (Tor)D321984-11-13No218 Lbs6 ft1NoNoNo3UFAPro & Farm4,000,001$400,000$0$NoLink
Jeremy SmithMarlies (Tor)G281989-04-13No177 Lbs6 ft0NoNoNo2UFAPro & Farm600,000$60,000$0$NoLink
Jon MerrillMarlies (Tor)D251992-02-03No205 Lbs6 ft3NoNoNo3RFAPro & Farm1,500,000$150,000$0$NoLink
Joonas RaskMarlies (Tor)C/LW271990-03-24No168 Lbs5 ft11NoNoNo4RFAPro & Farm800,000$80,000$0$NoLink
Jordan SchroederMarlies (Tor)C/LW/RW271990-09-29No170 Lbs5 ft9NoNoNo3RFAPro & Farm700,000$70,000$0$NoLink
Kyle CliffordMarlies (Tor)LW/RW261991-01-13No211 Lbs6 ft2NoNoNo2RFAPro & Farm850,000$85,000$0$NoLink
Lucas JohansenMarlies (Tor)D191997-11-16Yes182 Lbs6 ft2NoNoNo4ELCPro & Farm925,000$92,500$0$NoLink
Matt IrwinMarlies (Tor)D291987-11-29No207 Lbs6 ft1NoNoNo3UFAPro & Farm1,325,000$132,500$0$NoLink
Matt ReadMarlies (Tor)LW/RW311986-06-14No185 Lbs5 ft10NoNoNo3UFAPro & Farm3,500,000$350,000$0$NoLink
Maxime LagaceMarlies (Tor)G241993-01-12Yes190 Lbs6 ft2YesNoNo6RFAPro & Farm950,000$95,000$0$NoLink
Nikita GusevMarlies (Tor)LW251992-07-08Yes163 Lbs5 ft9NoNoNo2RFAPro & Farm525,000$52,500$0$NoLink
Vadim ShipachyovMarlies (Tor)C301987-03-12No187 Lbs6 ft0NoNoNo3UFAPro & Farm5,000,000$500,000$0$NoLink
Vitaly AbramovMarlies (Tor)LW/RW191998-05-08Yes170 Lbs5 ft9NoNoNo4ELCPro & Farm742,500$74,250$0$NoLink
Zack KassianMarlies (Tor)LW/RW261991-01-24No209 Lbs6 ft3NoNoNo1RFAPro & Farm925,000$92,500$0$NoLink
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2526.04193 Lbs6 ft12.841,246,760$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Alexander BurmistrovMatt Read40122
2Kyle CliffordAdam CracknellBeau Bennett30122
3Austin CzarnikJordan Schroeder20122
4Cole SchneiderAlexander Burmistrov10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Alexey Marchenko40122
2Jason Garrison30122
320122
410122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Alexander BurmistrovMatt Read60122
2Kyle CliffordAdam CracknellBeau Bennett40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Alexey Marchenko60122
2Jason Garrison40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Alexander Burmistrov60122
2Matt ReadAdam Cracknell40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Alexey Marchenko60122
2Jason Garrison40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
160122Alexey Marchenko60122
2Alexander Burmistrov40122Jason Garrison40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Alexander Burmistrov60122
2Matt ReadAdam Cracknell40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Alexey Marchenko60122
2Jason Garrison40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Alexander BurmistrovMatt ReadAlexey Marchenko
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Alexander BurmistrovMatt ReadAlexey Marchenko
Extra Forwards
Normal PowerPlayPenalty Kill
Austin Czarnik, , Jordan SchroederAustin Czarnik, Jordan Schroeder
Extra Defensemen
Normal PowerPlayPenalty Kill
, , ,
Penalty Shots
, Alexander Burmistrov, Matt Read, Adam Cracknell, Kyle Clifford
Goalie
#1 : Anthony Stolarz, #2 : Alexandar Georgiev


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals2100010010821000010045-11100000063330.750101525001541231268799769991072394414333712325.00%9277.78%01604277157.89%1218226953.68%830143857.72%2228157716675801066570
2Baby Hawks22000000936110000006151100000032141.00091625001541231268849769991072393111183117529.41%90100.00%11604277157.89%1218226953.68%830143857.72%2228157716675801066570
3Bears3200001018117210000109631100000095461.0001829470015412312681209769991072398431244217423.53%10370.00%11604277157.89%1218226953.68%830143857.72%2228157716675801066570
4Bruins44000000222202200000010010220000001221081.0002241630215412312681299769991072396615347722731.82%16193.75%21604277157.89%1218226953.68%830143857.72%2228157716675801066570
5Cabaret Lady Mary Ann43000001251114210000011091220000001521370.875254469001541231268189976999107239122333110311327.27%13284.62%01604277157.89%1218226953.68%830143857.72%2228157716675801066570
6Caroline33000000177101100000071622000000106461.0001731480015412312681199769991072399027427512650.00%20385.00%01604277157.89%1218226953.68%830143857.72%2228157716675801066570
7Chiefs2110000079-2110000005411010000025-320.5007101700154123126857976999107239592222406116.67%11463.64%01604277157.89%1218226953.68%830143857.72%2228157716675801066570
8Chill211000004311010000012-11100000031220.50047110015412312685697699910723931112445700.00%70100.00%01604277157.89%1218226953.68%830143857.72%2228157716675801066570
9Comets2100000111101110000007521000000145-130.75011182900154123126890976999107239682022429222.22%11463.64%01604277157.89%1218226953.68%830143857.72%2228157716675801066570
10Cougars431000001915422000000743211000001211160.75019315000154123126810697699910723913134447614214.29%17288.24%11604277157.89%1218226953.68%830143857.72%2228157716675801066570
11Crunch43000100191272100010076122000000126670.87519375600154123126815397699910723910333796119631.58%26869.23%01604277157.89%1218226953.68%830143857.72%2228157716675801066570
12Heat210000101284100000106511100000063341.00012223400154123126878976999107239531918316233.33%9188.89%01604277157.89%1218226953.68%830143857.72%2228157716675801066570
13Jayhawks220000001174110000006511100000052341.00011193000154123126869976999107239581716448337.50%8275.00%01604277157.89%1218226953.68%830143857.72%2228157716675801066570
14Las Vegas21000100880110000004311000010045-130.75081624001541231268709769991072395115274212216.67%11372.73%01604277157.89%1218226953.68%830143857.72%2228157716675801066570
15Manchots3200001014862200000010551000001043161.0001424380015412312681129769991072396216377216212.50%16381.25%01604277157.89%1218226953.68%830143857.72%2228157716675801066570
16Minnesota210000101183110000006421000001054141.000111728001541231268799769991072394013244012433.33%11463.64%01604277157.89%1218226953.68%830143857.72%2228157716675801066570
17Monarchs220000001358110000006241100000073441.000132336001541231268829769991072394719144010440.00%7185.71%01604277157.89%1218226953.68%830143857.72%2228157716675801066570
18Monsters32000010131031100000032121000010108261.000132235001541231268959769991072397723435510220.00%18572.22%01604277157.89%1218226953.68%830143857.72%2228157716675801066570
19Monsters20200000612-61010000036-31010000036-300.00061218001541231268779769991072399014334711218.18%13561.54%01604277157.89%1218226953.68%830143857.72%2228157716675801066570
20Oceanics210010001064100010005411100000052341.0001017270015412312686997699910723963912448337.50%6433.33%01604277157.89%1218226953.68%830143857.72%2228157716675801066570
21Oil Kings220000001147110000008261100000032141.00011193000154123126893976999107239581331528225.00%80100.00%01604277157.89%1218226953.68%830143857.72%2228157716675801066570
22Phantoms3300000015872200000010461100000054161.0001529440015412312681039769991072395722225513430.77%11645.45%01604277157.89%1218226953.68%830143857.72%2228157716675801066570
23Rocket43100000271314220000001641221100000119260.7502749760115412312681469769991072399435328918738.89%16475.00%01604277157.89%1218226953.68%830143857.72%2228157716675801066570
24Senators43100000181352110000086222000000107360.7501831490015412312681649769991072399115386920630.00%19573.68%01604277157.89%1218226953.68%830143857.72%2228157716675801066570
25Sharks220000001459110000006331100000082641.00014243800154123126880976999107239742529549111.11%11281.82%11604277157.89%1218226953.68%830143857.72%2228157716675801066570
26Sound Tigers33000000186121100000071622000000115661.0001832500015412312681229769991072396618256021733.33%9277.78%01604277157.89%1218226953.68%830143857.72%2228157716675801066570
27Spiders3210000011101110000003122110000089-140.667112132001541231268889769991072398925146813323.08%7442.86%01604277157.89%1218226953.68%830143857.72%2228157716675801066570
28Stars220000001129110000006241100000050541.000111930011541231268829769991072394717124211218.18%50100.00%01604277157.89%1218226953.68%830143857.72%2228157716675801066570
29Thunder422000001192220000008352020000036-340.5001120310015412312681209769991072398939346115213.33%14192.86%01604277157.89%1218226953.68%830143857.72%2228157716675801066570
Total826011013524092451644132301221204111934128800131205134711370.83540972011291415412312683058976999107239213363385816533759926.40%3608476.67%61604277157.89%1218226953.68%830143857.72%2228157716675801066570
31Wolf Pack32100000141222200000010641010000046-240.667142539101541231268147976999107239982824598225.00%12375.00%01604277157.89%1218226953.68%830143857.72%2228157716675801066570
_Since Last GM Reset826011013524092451644132301221204111934128800131205134711370.83540972011291415412312683058976999107239213363385816533759926.40%3608476.67%61604277157.89%1218226953.68%830143857.72%2228157716675801066570
_Vs Conference4332601130205116892217201110100505021154000201056639730.849205360565121541231268156697699910723910383104078382015024.88%1724275.58%41604277157.89%1218226953.68%830143857.72%2228157716675801066570
_Vs Division28101010001417566144101000663234146000000754332220.39314125339403154123126810079769991072396962042925361193327.73%1212380.99%31604277157.89%1218226953.68%830143857.72%2228157716675801066570

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
82137L1409720112930582133633858165314
All Games
GPWLOTWOTL SOWSOLGFGA
8260111352409245
Home Games
GPWLOTWOTL SOWSOLGFGA
413231221204111
Visitor Games
GPWLOTWOTL SOWSOLGFGA
412880131205134
Last 10 Games
WLOTWOTL SOWSOL
910000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
3759926.40%3608476.67%6
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
9769991072391541231268
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
1604277157.89%1218226953.68%830143857.72%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
2228157716675801066570


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
1 - 2018-10-031Rocket0Marlies8WBoxScore
4 - 2018-10-0620Senators2Marlies5WBoxScore
5 - 2018-10-0730Marlies3Baby Hawks2WBoxScore
7 - 2018-10-0941Marlies5Stars0WBoxScore
9 - 2018-10-1152Marlies5Cougars6LBoxScore
11 - 2018-10-1365Marlies9Bears5WBoxScore
13 - 2018-10-1574Monarchs2Marlies6WBoxScore
16 - 2018-10-1890Manchots2Marlies4WBoxScore
18 - 2018-10-20106Chiefs4Marlies5WBoxScore
22 - 2018-10-24130Marlies5Oceanics2WBoxScore
25 - 2018-10-27153Oceanics4Marlies5WXBoxScore
27 - 2018-10-29165Heat5Marlies6WXXBoxScore
30 - 2018-11-01180Stars2Marlies6WBoxScore
32 - 2018-11-03199Marlies4Manchots3WXXBoxScore
35 - 2018-11-06215Las Vegas3Marlies4WBoxScore
38 - 2018-11-09236Spiders1Marlies3WBoxScore
39 - 2018-11-10245Marlies4Bruins1WBoxScore
42 - 2018-11-13271Marlies7Monarchs3WBoxScore
44 - 2018-11-15285Marlies8Sharks2WBoxScore
45 - 2018-11-16291Marlies6Admirals3WBoxScore
48 - 2018-11-19308Monsters2Marlies3WBoxScore
50 - 2018-11-21323Marlies5Caroline3WBoxScore
52 - 2018-11-23339Marlies5Monsters4WBoxScore
53 - 2018-11-24349Phantoms3Marlies4WBoxScore
55 - 2018-11-26362Bruins0Marlies7WBoxScore
57 - 2018-11-28379Sharks3Marlies6WBoxScore
60 - 2018-12-01397Marlies5Minnesota4WXXBoxScore
63 - 2018-12-04416Marlies5Crunch2WBoxScore
65 - 2018-12-06429Cougars2Marlies3WBoxScore
67 - 2018-12-08446Marlies8Bruins1WBoxScore
70 - 2018-12-11468Marlies5Caroline3WBoxScore
72 - 2018-12-13482Marlies1Thunder2LBoxScore
74 - 2018-12-15497Marlies6Cabaret Lady Mary Ann1WBoxScore
77 - 2018-12-18518Marlies6Spiders4WBoxScore
79 - 2018-12-20531Cabaret Lady Mary Ann5Marlies4LXXBoxScore
81 - 2018-12-22553Wolf Pack3Marlies5WBoxScore
82 - 2018-12-23563Cougars2Marlies4WBoxScore
87 - 2018-12-28582Marlies5Monsters4WXXBoxScore
88 - 2018-12-29588Sound Tigers1Marlies7WBoxScore
93 - 2019-01-03621Minnesota4Marlies6WBoxScore
95 - 2019-01-05639Comets5Marlies7WBoxScore
97 - 2019-01-07652Chill2Marlies1LBoxScore
100 - 2019-01-10672Marlies2Spiders5LBoxScore
102 - 2019-01-12690Bruins0Marlies3WBoxScore
104 - 2019-01-14706Monsters6Marlies3LBoxScore
107 - 2019-01-17729Marlies2Thunder4LBoxScore
108 - 2019-01-18733Marlies9Cabaret Lady Mary Ann1WBoxScore
110 - 2019-01-20754Jayhawks5Marlies6WBoxScore
113 - 2019-01-23765Bears3Marlies4WXXBoxScore
122 - 2019-02-01786Marlies7Cougars5WBoxScore
123 - 2019-02-02792Manchots3Marlies6WBoxScore
125 - 2019-02-04805Admirals5Marlies4LXBoxScore
127 - 2019-02-06821Senators4Marlies3LBoxScore
130 - 2019-02-09847Marlies8Rocket5WBoxScore
131 - 2019-02-10859Marlies4Wolf Pack6LBoxScore
133 - 2019-02-12873Marlies3Monsters6LBoxScore
135 - 2019-02-14885Marlies4Las Vegas5LXBoxScore
137 - 2019-02-16895Marlies5Jayhawks2WBoxScore
140 - 2019-02-19921Marlies2Chiefs5LBoxScore
142 - 2019-02-21929Bears3Marlies5WBoxScore
144 - 2019-02-23952Rocket4Marlies8WBoxScore
146 - 2019-02-25962Crunch2Marlies4WBoxScore
Trade Deadline --- Trades can’t be done after this day is simulated!
148 - 2019-02-27979Oil Kings2Marlies8WBoxScore
149 - 2019-02-28985Marlies4Sound Tigers2WBoxScore
151 - 2019-03-021002Crunch4Marlies3LXBoxScore
153 - 2019-03-041018Marlies6Heat3WBoxScore
155 - 2019-03-061030Marlies4Comets5LXXBoxScore
158 - 2019-03-091050Marlies3Oil Kings2WBoxScore
160 - 2019-03-111065Thunder2Marlies3WBoxScore
162 - 2019-03-131080Baby Hawks1Marlies6WBoxScore
164 - 2019-03-151093Phantoms1Marlies6WBoxScore
165 - 2019-03-161105Marlies5Senators4WBoxScore
168 - 2019-03-191128Marlies3Chill1WBoxScore
169 - 2019-03-201132Marlies7Crunch4WBoxScore
172 - 2019-03-231155Wolf Pack3Marlies5WBoxScore
174 - 2019-03-251169Cabaret Lady Mary Ann4Marlies6WBoxScore
176 - 2019-03-271185Marlies5Phantoms4WBoxScore
179 - 2019-03-301206Marlies5Senators3WBoxScore
181 - 2019-04-011223Marlies7Sound Tigers3WBoxScore
182 - 2019-04-021231Caroline1Marlies7WBoxScore
184 - 2019-04-041243Thunder1Marlies5WBoxScore
186 - 2019-04-061259Marlies3Rocket4LBoxScore



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity40002000
Ticket Price3515
Attendance123,11559,990
Attendance PCT75.07%73.16%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
0 4466 - 74.43% 127,046$5,208,875$6000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
3,338,499$ 3,116,900$ 3,116,900$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
16,668$ 3,338,499$ 25 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 0 16,668$ 0$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
20188260110135240924516441323012212041119341288001312051347113740972011291415412312683058976999107239213363385816533759926.40%3608476.67%61604277157.89%1218226953.68%830143857.72%2228157716675801066570
Total Regular Season8260110135240924516441323012212041119341288001312051347113740972011291415412312683058976999107239213363385816533759926.40%3608476.67%61604277157.89%1218226953.68%830143857.72%2228157716675801066570