Phantoms

GP: 82 | W: 35 | L: 40 | OTL: 7 | P: 77
GF: 277 | GA: 306 | PP%: 23.25% | PK%: 73.72%
GM : Richard Duguay | Morale : 50 | Team Overall : 47
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Dwight KingX100.00574388658263765135465770545755050590
2Nail YakupovXX100.0059358468666372603555645856504205059X0
3Oskar SundqvistX100.0059358669736146457645446848413905054X0
4Marko DanoXX100.00583588617357425135465650484236050520
5Michael Amadio (R)X100.00493589657151415060455456483532050520
6Michael MerschX100.00473593667544324335424465463532050500
7Nicholas MerkleyXX100.00473555686455353535353557483532050460
8Tyler Benson (R)X100.00454545456245454545454545453230050450
9Roope Hintz (R) (C)X100.00434545456042424345434345443230050440
10Haydn Fleury (R)X100.00673589617454493735413277483532050560
11Jyrki JokipakkaX100.0059358662716052463547436744373405056X0
12Matt Grzelcyk (R)X100.00523585745159484535474369483734050560
13Sebastien Aho (R)X100.00464387724955374766464761483734050530
14Michael PaliottaX100.0045354160694231383546306646353205050X0
15Alexandre CarrierX100.00473594745243333035293168473532050500
16Dillon Simpson (R)X100.00483578626344333035293166473532050490
Scratches
1Emerson EtemXX100.00584387637356385035465562544943050540
2Brandon KozunX100.0043358471474031434939466145353205048X0
3Brian FerlinX100.0045359263734029363542315645353205046X0
4Sebastian Collberg (R) (A)XX100.0041454545553939414541414543323005043X0
5Dennis Yan (R)X100.00414343437040404143414143423230050430
6Connor Bunnaman (R)X100.00404040407540404040404040403230050420
7Martins Dzierkals (R)X100.00414343435140404143414143423230050420
8Austin Poganski (R)X100.00364040406835353640363640383230050400
9Christoffer Ehn (R)X100.00364040405735353640363640383230050390
10Jake Evans (R)XX100.00373737376037373737373737373230050390
11Jordy Stallard (R)X100.00373737375837373737373737373230050390
12Sergei Boikov (R)X100.00373737376637373737373737373230050400
13Maxim ChudinovX100.00333737375833333337333337353230050380
TEAM AVERAGE100.0047386556644641424141425445363305048
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Brandon Halverson (R)100.0035454580354545354565453532050460
2Philippe Desrosiers (R)100.0043454366424141414141403230050430
Scratches
1Fredrik Bergvik (R)100.0038403869373636363636353230050400
TEAM AVERAGE100.003943427238414137414740333105043
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Nail YakupovPhantoms (Phi)LW/RW673952913260791332418118716.18%15152122.711319325522511272064342.56%58500011.2027000763
2Dwight KingPhantoms (Phi)LW68474390132757213028910721216.26%14145521.411515306822211242343250.61%40700041.2414001947
3Michael AmadioPhantoms (Phi)C7929568520195391442035816714.29%10151719.21819273725000051376358.34%166100001.1213010375
4Matt GrzelcykPhantoms (Phi)D77195473-422054891706011611.18%90170422.13142135109248000321021100.00%200000.8600000244
5Haydn FleuryPhantoms (Phi)D80155065-474013990122399412.30%115170321.3081624612560222178110.00%200000.7600000425
6Sebastien AhoPhantoms (Phi)D82163955-224105196144509411.11%84169320.6671320842520223209110.00%000000.6512011114
7Michael MerschPhantoms (Phi)LW82172744-1613535140202611338.42%15142617.406511281460003983144.19%12900000.6202001211
8Marko DanoPhantoms (Phi)LW/RW82241842424095511655911014.55%10160819.624592827301141583144.24%16500000.5226000117
9Oskar SundqvistPhantoms (Phi)C40191938-125565109113309216.81%1385621.403811261381013892061.56%92600000.8915100312
10Nicholas MerkleyPhantoms (Phi)C/RW82142438248101489788286615.91%11144617.644913172580000282042.59%84300010.5300200132
11Emerson EtemPhantoms (Phi)LW/RW2520163615135353492276821.74%652220.88381118822025631040.77%13000011.3813001402
12Alexandre CarrierPhantoms (Phi)D8252328-1724049857328476.85%84144917.681232914101101110150.00%200000.3900000012
13Tyler BensonPhantoms (Phi)LW8210919-3297251246377276912.99%18124215.161015200000333151.18%42200000.3100013101
14Jyrki JokipakkaPhantoms (Phi)D3741317328037326222316.45%3173119.78268391260001100100.00%000000.4600000112
15Dillon SimpsonPhantoms (Phi)D7031114-1330064544623396.52%6792213.1821313460000780012.50%800000.3000000010
16Michael PaliottaPhantoms (Phi)D4121113-751574392110129.52%4065916.080115300000452025.00%400000.3900000011
17Roope HintzPhantoms (Phi)LW825712-18520742534163214.71%1396011.711013370000451050.00%7400000.2500000000
18Sebastian CollbergPhantoms (Phi)LW/RW43459-1723535183282912.50%355312.880114570000140045.16%3100000.3200001011
19Nick JensenPhiladelphieD1134739518122771611.11%824021.882242140000020100.00%000000.5800010000
20Connor BunnamanPhantoms (Phi)C43066-172005844173150.00%358513.620113270000140045.52%58000000.2000000001
21Christoffer EhnPhantoms (Phi)C43134-31602938133107.69%34039.3800015000060042.21%39800000.2000000000
22Brandon KozunPhantoms (Phi)RW12314-640318325189.38%021217.732133280000100136.84%1900000.3811000000
23Brian FerlinPhantoms (Phi)RW14134-600321282123.57%321815.63011311000060080.00%500000.3701000000
24Ben ChiarotPhiladelphieD8123-316016151913195.26%718322.971121430000018000.00%000000.3300000000
25Sergei BoikovPhantoms (Phi)D27033-11803411040.00%1436513.54000114000033000.00%000000.1600000000
26Dennis YanPhantoms (Phi)LW34112-42012390211.11%21614.750111220001320138.46%3900000.2500000000
27Martins DzierkalsPhantoms (Phi)RW21011-1060101216580.00%32029.64000215000020050.00%1800000.1000000000
28Jake EvansPhantoms (Phi)C/RW26000-111602034120.00%134513.3000006000000025.00%3200000.0000000000
Team Total or Average1440302501803-12972785147215962340773170412.91%6832489717.299715625367830185813412191361750.65%648200070.651034348393550
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Brandon HalversonPhantoms (Phi)76323650.8673.6841406225419040500.54224757221
2Philippe DesrosiersPhantoms (Phi)213420.9003.3482600464620100.72711775000
Team Total or Average97354070.8733.6349666230023660600.600358282221


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract StatusType Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Link
Alexandre CarrierPhantoms (Phi)D201996-10-08No174 Lbs5 ft11NoNoNo3ELCPro & Farm640,000$64,000$0$NoLink
Austin PoganskiPhantoms (Phi)RW211996-02-16Yes198 Lbs6 ft1NoNoNo2ELCPro & Farm650,000$65,000$0$NoLink
Brandon HalversonPhantoms (Phi)G211996-05-29Yes209 Lbs6 ft4NoNoNo2ELCPro & Farm743,000$74,300$0$NoLink
Brandon KozunPhantoms (Phi)RW271990-03-08No167 Lbs5 ft8NoYesNo1RFAPro & Farm550,000$55,000$0$NoLink
Brian FerlinPhantoms (Phi)RW251992-06-03No209 Lbs6 ft2NoYesNo1RFAPro & Farm825,000$82,500$0$NoLink
Christoffer EhnPhantoms (Phi)C211996-04-05Yes181 Lbs6 ft3NoNoNo2ELCPro & Farm650,000$65,000$0$NoLink
Connor BunnamanPhantoms (Phi)C191998-04-16Yes214 Lbs6 ft3NoNoNo4ELCPro & Farm730,000$73,000$0$NoLink
Dennis YanPhantoms (Phi)LW201997-04-14Yes202 Lbs6 ft1NoNoNo3ELCPro & Farm700,000$70,000$0$NoLink
Dillon SimpsonPhantoms (Phi)D241993-02-10Yes194 Lbs6 ft2NoNoNo2RFAPro & Farm843,000$84,300$0$NoLink
Dwight KingPhantoms (Phi)LW281989-07-05No229 Lbs6 ft4NoNoNo1UFAPro & Farm500,000$50,000$0$NoLink
Emerson EtemPhantoms (Phi)LW/RW251992-06-16No212 Lbs6 ft1NoNoNo4RFAPro & Farm550,000$55,000$0$NoLink
Fredrik BergvikPhantoms (Phi)G221995-02-14Yes189 Lbs6 ft1NoNoNo2RFAPro & Farm650,000$65,000$0$NoLink
Haydn FleuryPhantoms (Phi)D211996-07-08Yes221 Lbs6 ft3NoNoNo2ELCPro & Farm925,000$92,500$0$NoLink
Jake EvansPhantoms (Phi)C/RW211996-06-02Yes188 Lbs6 ft0NoNoNo4ELCPro & Farm525,000$52,500$0$NoLink
Jordy StallardPhantoms (Phi)C201997-09-18Yes185 Lbs6 ft1NoNoNo4ELCPro & Farm525,000$52,500$0$NoLink
Jyrki JokipakkaPhantoms (Phi)D261991-08-20No215 Lbs6 ft3NoYesNo1RFAPro & Farm728,000$72,800$0$NoLink
Marko DanoPhantoms (Phi)LW/RW221994-11-30No212 Lbs5 ft11NoNoNo1RFAPro & Farm925,000$92,500$0$NoLink
Martins DzierkalsPhantoms (Phi)RW201997-04-04Yes173 Lbs5 ft11NoNoNo3ELCPro & Farm700,000$70,000$0$NoLink
Matt GrzelcykPhantoms (Phi)D231994-01-05Yes174 Lbs5 ft9NoNoNo2RFAPro & Farm700,000$70,000$0$NoLink
Maxim ChudinovPhantoms (Phi)D271990-03-25No187 Lbs5 ft11NoNoNo2RFAPro & Farm525,000$52,500$0$NoLink
Michael AmadioPhantoms (Phi)C211996-05-13Yes204 Lbs6 ft1NoNoNo2ELCPro & Farm700,000$70,000$0$NoLink
Michael MerschPhantoms (Phi)LW251992-10-02No218 Lbs6 ft2NoNoNo2RFAPro & Farm792,000$79,200$0$NoLink
Michael PaliottaPhantoms (Phi)D241993-04-06No207 Lbs6 ft3NoYesNo1RFAPro & Farm925,000$92,500$0$NoLink
Nail YakupovPhantoms (Phi)LW/RW231993-10-06No195 Lbs5 ft11NoYesNo2RFAPro & Farm1,400,000$140,000$0$NoLink
Nicholas MerkleyPhantoms (Phi)C/RW201997-05-23No194 Lbs5 ft10NoNoNo3ELCPro & Farm895,000$89,500$0$NoLink
Oskar SundqvistPhantoms (Phi)C231994-03-23No209 Lbs6 ft3NoYesNo2RFAPro & Farm667,000$66,700$0$NoLink
Philippe DesrosiersPhantoms (Phi)G221995-08-15Yes182 Lbs6 ft1NoNoNo2RFAPro & Farm642,000$64,200$0$NoLink
Roope HintzPhantoms (Phi)LW201996-11-17Yes185 Lbs6 ft3NoNoNo3ELCPro & Farm825,000$82,500$0$NoLink
Sebastian CollbergPhantoms (Phi)LW/RW231994-02-23Yes180 Lbs5 ft11NoYesNo2RFAPro & Farm925,000$92,500$0$NoLink
Sebastien AhoPhantoms (Phi)D211996-02-17Yes170 Lbs5 ft10NoNoNo2ELCPro & Farm825,000$82,500$0$NoLink
Sergei BoikovPhantoms (Phi)D211996-01-24Yes200 Lbs6 ft2NoNoNo4ELCPro & Farm705,000$70,500$0$NoLink
Tyler BensonPhantoms (Phi)LW191998-03-15Yes190 Lbs6 ft0NoNoNo4ELCPro & Farm792,500$79,250$0$NoLink
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
3222.34196 Lbs6 ft12.34739,922$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Nail YakupovOskar SundqvistMarko Dano40122
2Dwight KingMichael AmadioNicholas Merkley30122
3Michael MerschTyler BensonRoope Hintz20122
4Tyler BensonNail YakupovDwight King10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Matt GrzelcykJyrki Jokipakka40122
2Haydn FleurySebastien Aho30122
3Alexandre CarrierMichael Paliotta20122
4Dillon SimpsonMatt Grzelcyk10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Nail YakupovOskar SundqvistMarko Dano60122
2Dwight KingMichael AmadioNicholas Merkley40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Matt GrzelcykJyrki Jokipakka60122
2Haydn FleurySebastien Aho40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Nail YakupovDwight King60122
2Oskar SundqvistMarko Dano40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Matt GrzelcykJyrki Jokipakka60122
2Haydn FleurySebastien Aho40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Nail Yakupov60122Matt GrzelcykJyrki Jokipakka60122
2Dwight King40122Haydn FleurySebastien Aho40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Nail YakupovDwight King60122
2Oskar SundqvistMarko Dano40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Matt GrzelcykJyrki Jokipakka60122
2Haydn FleurySebastien Aho40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Nail YakupovOskar SundqvistMarko DanoMatt GrzelcykJyrki Jokipakka
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Nail YakupovOskar SundqvistMarko DanoMatt GrzelcykJyrki Jokipakka
Extra Forwards
Normal PowerPlayPenalty Kill
Michael Mersch, Roope Hintz, Michael AmadioMichael Mersch, Roope HintzMichael Amadio
Extra Defensemen
Normal PowerPlayPenalty Kill
Alexandre Carrier, Michael Paliotta, Dillon SimpsonAlexandre CarrierMichael Paliotta, Dillon Simpson
Penalty Shots
Nail Yakupov, Dwight King, Oskar Sundqvist, Marko Dano, Michael Amadio
Goalie
#1 : Brandon Halverson, #2 : Philippe Desrosiers


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals220000001192110000006511100000054141.0001119300011978751155736681697666319122911436.36%6266.67%01222236851.60%1194240249.71%693138650.00%1963130118896301119574
2Baby Hawks21100000651110000005231010000013-220.50061117001197875114573668169766511640286233.33%16381.25%01222236851.60%1194240249.71%693138650.00%1963130118896301119574
3Bears413000001113-2211000007702020000046-220.250112031001197875111007366816976612233307021314.29%15566.67%01222236851.60%1194240249.71%693138650.00%1963130118896301119574
4Bruins3100100110821000000112-12100100096350.83310192900119787511567366816976662201845800.00%9188.89%01222236851.60%1194240249.71%693138650.00%1963130118896301119574
5Cabaret Lady Mary Ann31200000710-32020000048-41100000032120.33371320001197875111147366816976612039437317317.65%18477.78%01222236851.60%1194240249.71%693138650.00%1963130118896301119574
6Caroline42100001181442100000110912110000085350.62518325000119787511151736681697668729287426726.92%13469.23%01222236851.60%1194240249.71%693138650.00%1963130118896301119574
7Chiefs220000001183110000006511100000053241.000111829001197875115073668169766551316319333.33%8275.00%01222236851.60%1194240249.71%693138650.00%1963130118896301119574
8Chill2020000069-31010000034-11010000035-200.0006111700119787511547366816976649920368225.00%10280.00%01222236851.60%1194240249.71%693138650.00%1963130118896301119574
9Comets22000000844110000005231100000032141.000813210011978751154736681697665219203210110.00%10190.00%01222236851.60%1194240249.71%693138650.00%1963130118896301119574
10Cougars31100001111102010000168-21100000053230.5001119300011978751192736681697669730244517529.41%11281.82%01222236851.60%1194240249.71%693138650.00%1963130118896301119574
11Crunch321000001174110000006242110000055040.6671120310011978751194736681697666823105512650.00%5340.00%01222236851.60%1194240249.71%693138650.00%1963130118896301119574
12Heat21100000945110000006061010000034-120.50091625011197875116273668169766461317345240.00%6183.33%21222236851.60%1194240249.71%693138650.00%1963130118896301119574
13Jayhawks20200000711-41010000046-21010000035-200.00071118001197875113973668169766751818395240.00%9455.56%11222236851.60%1194240249.71%693138650.00%1963130118896301119574
14Las Vegas2020000049-51010000025-31010000024-200.000481200119787511357366816976658818369333.33%9544.44%01222236851.60%1194240249.71%693138650.00%1963130118896301119574
15Manchots4210000110100210000015412110000056-150.6251017270111978751177736681697668228316715320.00%11281.82%01222236851.60%1194240249.71%693138650.00%1963130118896301119574
16Marlies30300000815-71010000045-120200000410-600.0008142200119787511577366816976610330265911654.55%13469.23%01222236851.60%1194240249.71%693138650.00%1963130118896301119574
17Minnesota2110000078-11010000024-21100000054120.50071219001197875114673668169766351010236233.33%5260.00%01222236851.60%1194240249.71%693138650.00%1963130118896301119574
18Monarchs20200000710-31010000034-11010000046-200.00071118001197875115373668169766772315307342.86%5180.00%01222236851.60%1194240249.71%693138650.00%1963130118896301119574
19Monsters404000001219-72020000069-320200000610-400.00012203200119787511677366816976612927347019210.53%17758.82%01222236851.60%1194240249.71%693138650.00%1963130118896301119574
20Monsters20200000214-121010000027-51010000007-700.00024600119787511577366816976683201336800.00%4325.00%01222236851.60%1194240249.71%693138650.00%1963130118896301119574
21Oceanics20200000611-51010000056-11010000015-400.00061016001197875115473668169766761918366116.67%9633.33%01222236851.60%1194240249.71%693138650.00%1963130118896301119574
22Oil Kings22000000945110000005141100000043141.00091423001197875114373668169766531839379111.11%11281.82%01222236851.60%1194240249.71%693138650.00%1963130118896301119574
23Rocket320001001192110000005322100010066050.8331120310011978751177736681697666326264220630.00%130100.00%01222236851.60%1194240249.71%693138650.00%1963130118896301119574
24Senators320010001275210010007341100000054161.000121931001197875117773668169766712120519111.11%9188.89%01222236851.60%1194240249.71%693138650.00%1963130118896301119574
25Sharks20100010710-31010000037-41000001043120.500710170011978751179736681697667629213914214.29%8275.00%01222236851.60%1194240249.71%693138650.00%1963130118896301119574
26Sound Tigers421000101293211000005502100001074360.750122032001197875119173668169766893433821516.67%9188.89%01222236851.60%1194240249.71%693138650.00%1963130118896301119574
27Spiders403000101218-620100010810-22020000048-420.250121729001197875111017366816976615632428017423.53%20575.00%01222236851.60%1194240249.71%693138650.00%1963130118896301119574
28Stars210000018711000000145-11100000042230.7508152300119787511617366816976641816269444.44%7271.43%01222236851.60%1194240249.71%693138650.00%1963130118896301119574
29Thunder31200000612-6211000006511010000007-720.3336101600119787511587366816976698273758900.00%16287.50%11222236851.60%1194240249.71%693138650.00%1963130118896301119574
Total82304002136277306-2941151901015149152-341152101121128154-26770.47027747675302119787511214673668169766236667273214433578323.25%3128273.72%41222236851.60%1194240249.71%693138650.00%1963130118896301119574
31Wolf Pack412000011821-32110000089-1201000011012-230.375183351001197875111477366816976612931378019421.05%10370.00%01222236851.60%1194240249.71%693138650.00%1963130118896301119574
_Since Last GM Reset82304002136277306-2941151901015149152-341152101121128154-26770.47027747675302119787511214673668169766236667273214433578323.25%3128273.72%41222236851.60%1194240249.71%693138650.00%1963130118896301119574
_Vs Conference46122602033148181-3323712010127785-823514010217196-25370.4021482503980111978751111267366816976613823823948321893619.05%1674473.65%11222236851.60%1194240249.71%693138650.00%1963130118896301119574
_Vs Division283100002193104-111425000104953-41415000114451-7110.1969315925201119787511734736681697667942142355231322418.18%952771.58%01222236851.60%1194240249.71%693138650.00%1963130118896301119574

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
8277SOL127747675321462366672732144302
All Games
GPWLOTWOTL SOWSOLGFGA
8230402136277306
Home Games
GPWLOTWOTL SOWSOLGFGA
4115191015149152
Visitor Games
GPWLOTWOTL SOWSOLGFGA
4115211121128154
Last 10 Games
WLOTWOTL SOWSOL
450001
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
3578323.25%3128273.72%4
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
73668169766119787511
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
1222236851.60%1194240249.71%693138650.00%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
1963130118896301119574


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
2 - 2018-10-0414Phantoms2Las Vegas4LBoxScore
4 - 2018-10-0627Phantoms0Monsters7LBoxScore
7 - 2018-10-0936Sharks7Phantoms3LBoxScore
8 - 2018-10-1042Phantoms5Senators4WBoxScore
11 - 2018-10-1358Las Vegas5Phantoms2LBoxScore
14 - 2018-10-1680Cabaret Lady Mary Ann6Phantoms3LBoxScore
16 - 2018-10-1892Phantoms2Monsters5LBoxScore
18 - 2018-10-20102Spiders5Phantoms2LBoxScore
20 - 2018-10-22118Monsters7Phantoms2LBoxScore
23 - 2018-10-25134Phantoms5Bruins4WXBoxScore
25 - 2018-10-27149Sound Tigers3Phantoms2LBoxScore
28 - 2018-10-30176Phantoms5Admirals4WBoxScore
30 - 2018-11-01190Phantoms4Monarchs6LBoxScore
32 - 2018-11-03206Phantoms4Sharks3WXXBoxScore
34 - 2018-11-05214Phantoms3Jayhawks5LBoxScore
37 - 2018-11-08229Jayhawks6Phantoms4LBoxScore
39 - 2018-11-10243Baby Hawks2Phantoms5WBoxScore
42 - 2018-11-13267Cabaret Lady Mary Ann2Phantoms1LBoxScore
44 - 2018-11-15278Spiders5Phantoms6WXXBoxScore
46 - 2018-11-17293Thunder4Phantoms2LBoxScore
50 - 2018-11-21318Phantoms3Crunch2WBoxScore
52 - 2018-11-23332Wolf Pack4Phantoms5WBoxScore
53 - 2018-11-24349Phantoms3Marlies4LBoxScore
56 - 2018-11-27368Senators2Phantoms3WXBoxScore
60 - 2018-12-01403Phantoms4Manchots2WBoxScore
65 - 2018-12-06431Monsters4Phantoms2LBoxScore
67 - 2018-12-08444Phantoms2Crunch3LBoxScore
68 - 2018-12-09455Phantoms1Oceanics5LBoxScore
71 - 2018-12-12477Phantoms3Heat4LBoxScore
73 - 2018-12-14494Phantoms4Oil Kings3WBoxScore
74 - 2018-12-15504Phantoms3Comets2WBoxScore
77 - 2018-12-18520Cougars4Phantoms3LXXBoxScore
79 - 2018-12-20532Chill4Phantoms3LBoxScore
81 - 2018-12-22546Monsters5Phantoms4LBoxScore
82 - 2018-12-23562Phantoms5Wolf Pack6LXXBoxScore
86 - 2018-12-27571Phantoms0Thunder7LBoxScore
88 - 2018-12-29591Phantoms3Cabaret Lady Mary Ann2WBoxScore
90 - 2018-12-31603Phantoms7Caroline3WBoxScore
91 - 2019-01-01613Phantoms3Chill5LBoxScore
93 - 2019-01-03625Caroline3Phantoms5WBoxScore
95 - 2019-01-05636Heat0Phantoms6WBoxScore
97 - 2019-01-07653Chiefs5Phantoms6WBoxScore
98 - 2019-01-08661Phantoms2Bears3LBoxScore
100 - 2019-01-10674Stars5Phantoms4LXXBoxScore
102 - 2019-01-12687Phantoms2Spiders5LBoxScore
104 - 2019-01-14708Minnesota4Phantoms2LBoxScore
106 - 2019-01-16722Bruins2Phantoms1LXXBoxScore
109 - 2019-01-19745Phantoms3Rocket4LXBoxScore
118 - 2019-01-28771Oceanics6Phantoms5LBoxScore
119 - 2019-01-29774Phantoms5Wolf Pack6LBoxScore
121 - 2019-01-31778Phantoms4Bruins2WBoxScore
123 - 2019-02-02789Oil Kings1Phantoms5WBoxScore
125 - 2019-02-04807Comets2Phantoms5WBoxScore
128 - 2019-02-07826Monarchs4Phantoms3LBoxScore
130 - 2019-02-09842Admirals5Phantoms6WBoxScore
132 - 2019-02-11860Manchots4Phantoms3LXXBoxScore
133 - 2019-02-12871Phantoms5Minnesota4WBoxScore
137 - 2019-02-16892Cougars4Phantoms3LBoxScore
138 - 2019-02-17907Phantoms5Cougars3WBoxScore
140 - 2019-02-19918Thunder1Phantoms4WBoxScore
142 - 2019-02-21934Phantoms3Rocket2WBoxScore
144 - 2019-02-23953Manchots0Phantoms2WBoxScore
147 - 2019-02-26970Crunch2Phantoms6WBoxScore
Trade Deadline --- Trades can’t be done after this day is simulated!
149 - 2019-02-28986Phantoms4Monsters5LBoxScore
150 - 2019-03-01992Phantoms2Spiders3LBoxScore
152 - 2019-03-031010Phantoms3Sound Tigers1WBoxScore
155 - 2019-03-061029Bears1Phantoms4WBoxScore
158 - 2019-03-091053Phantoms4Sound Tigers3WXXBoxScore
160 - 2019-03-111067Senators1Phantoms4WBoxScore
163 - 2019-03-141085Bears6Phantoms3LBoxScore
164 - 2019-03-151093Phantoms1Marlies6LBoxScore
166 - 2019-03-171115Phantoms1Manchots4LBoxScore
168 - 2019-03-191125Rocket3Phantoms5WBoxScore
170 - 2019-03-211142Phantoms1Baby Hawks3LBoxScore
172 - 2019-03-231151Sound Tigers2Phantoms3WBoxScore
173 - 2019-03-241164Phantoms2Bears3LBoxScore
176 - 2019-03-271185Marlies5Phantoms4LBoxScore
179 - 2019-03-301203Phantoms1Caroline2LBoxScore
180 - 2019-03-311215Wolf Pack5Phantoms3LBoxScore
182 - 2019-04-021235Phantoms4Stars2WBoxScore
184 - 2019-04-041248Phantoms5Chiefs3WBoxScore
186 - 2019-04-061263Caroline6Phantoms5LXXBoxScore



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance61,04431,217
Attendance PCT74.44%76.14%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
0 2250 - 75.01% 63,532$2,604,795$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
2,218,880$ 2,367,750$ 2,367,750$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
12,662$ 2,218,880$ 32 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 0 12,662$ 0$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
201882304002136277306-2941151901015149152-341152101121128154-267727747675302119787511214673668169766236667273214433578323.25%3128273.72%41222236851.60%1194240249.71%693138650.00%1963130118896301119574
Total Regular Season82304002136277306-2941151901015149152-341152101121128154-267727747675302119787511214673668169766236667273214433578323.25%3128273.72%41222236851.60%1194240249.71%693138650.00%1963130118896301119574