Monsters

GP: 82 | W: 55 | L: 23 | OTL: 4 | P: 114
GF: 381 | GA: 278 | PP%: 23.58% | PK%: 77.09%
GM : Paul-André Desrochers | Morale : 50 | Team Overall : 47
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1David DesharnaisXX100.00473588735367806486676163536154050630
2Scottie UpshallXX100.00704379756961795542525874487466050630
3Patrick EavesXX100.00484387626971486740587550537264050610
4Linden VeyXX100.00503590726158375660565561514439050560
5Matt MartinX100.00916569627754544858484857484744050550
6Tanner GlassXX100.00675667677455374250404460486759050530
7Lucas LessioX100.00533586657349334435404762524036050510
8Cal O'ReillyX100.00463595716052353750383558564742050480
9Jordan GreenwayXX100.00523595608153353735383556483532050470
10Jordan Kyrou (R)XX100.00454545455445454545454545453230050450
11Jesse Gabrielle (R)X100.00404040407140404040404040403230050420
12Ryan Kujawinski (R)X100.00394343437137373943393943413230050420
13Steven KampferX100.00745075616268384035384174484842050570
14Adam PardyX100.00563573597858404235453968475649050560
15Adam ClendeningX100.00563583666365364535474366484136050550
16Ethan Bear (R)X100.00493582686856364635464558483532050530
17Dominik Masin (R)X100.00414545456139394145414145433230050440
18Caleb Jones (R)X100.00404040406740404040404040403230050420
Scratches
1Carter Verhaeghe (R)X100.00394343435637373943393943413230050410
2Linus Lindstrom (R)X100.00404040404940404040404040403230050410
3Matt Buckles (R)X100.00364040407135353640363640383230050400
4Nick Moutrey (R)XX100.00364040407235353640363640383230050400
5Dmytro Timashov (R)X100.00333737376133333337333337353230050370
6Connor Hall (R)X100.00434343436343434343434343433230050440
7Niklas Hansson (R)X100.00394343435337373943393943413230050420
8Mason Geertsen (R)X100.00364040406635353640363640383230050410
9Connor Hobbs (R)X100.00373737376437373737373737373230050400
10Ziyat Paigin (R)X100.00373737377037373737373737373230050400
11Anton Cederholm (R)X100.00333737376733333337333337353230050390
12Teemu Kivihalme (R)X100.00333737374533333337333337353230050370
TEAM AVERAGE100.0047415952654741424342425044403705047
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Reto Berra100.0046456184434646414565704540050510
2Tyler Parsons (R)100.0045454567454545454545453230050460
Scratches
1Joacim Eriksson100.0040454169393737383737363532050420
2Calvin Petersen (R)100.0035373567343333333333333230050380
TEAM AVERAGE100.004243467240404039404546363305044
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Ian Laperriere65707264687068QUE441500,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Patrick EavesMonsters (Col)LW/RW7860651257927539893377822617.80%3137017.57161632802500000329251.92%10400061.82170101259
2Linden VeyMonsters (Col)C/RW82477412161160472102496819118.88%23156619.10724313826730392004358.37%178700011.5526000697
3Scottie UpshallMonsters (Col)LW/RW6853631166085151861223018922517.61%26139920.5812132560232112142468545.83%12000111.663400111104
4Colin WhiteColoradoC/RW572244662622064771675614213.17%393916.4841115301770112665236.05%23300001.4100000444
5Adam ClendeningMonsters (Col)D829566531500957512139817.44%81180622.0461521652490222265210.00%000000.7211000123
6Slater KoekkoekColoradoD69125163383807468110316910.91%66146721.2741317432200000129200.00%000000.8600000312
7Ivan BarbashevColoradoC/LW4327356238100261171734710315.61%1092421.49411153713612341735159.47%97200001.3401000354
8Jakub VranaColoradoLW/RW3229225120201636145438520.00%350515.8084122994000013254.35%4600012.0202000532
9Adam PardyMonsters (Col)D8294049315201157310049719.00%102171420.91391239265000123801100.00%100000.5700000004
10Ethan BearMonsters (Col)D829334248560815869244413.04%51139116.97371025940000123110.00%000000.6011000213
11Tanner GlassMonsters (Col)LW/RW82192342159420113711284010614.84%14114713.992571310410171671058.95%9500000.7323103144
12Steven KampferMonsters (Col)D71928374114301817011525807.83%85148920.984711341100114222110.00%000000.5000105202
13Matt MartinMonsters (Col)LW73627339140201774211433805.26%693712.841341670000070166.23%7700000.7000301012
14Lucas LessioMonsters (Col)LW82191130114034701463810513.01%1391111.1121355100061153138.33%6000000.6604000200
15Cal O'ReillyMonsters (Col)C8282129126071098319759.64%7107713.141456900001620052.74%111300000.5402000120
16Carl DahlstromColoradoD609182726260544482195410.98%75117419.57448301650220167100.00%000000.4600000020
17Jordan GreenwayMonsters (Col)LW/RW7151924910035285523379.09%973110.300225950000661150.85%5900000.6611000002
18David DesharnaisMonsters (Col)C/LW208152380094665184612.31%640520.2913420660003740067.22%47900001.1304000211
19Anthony DuclairColoradoLW/RW5448700792441316.67%09819.60011314000081044.44%900001.6300000101
20Jordan KyrouMonsters (Col)C/RW82448-1449568337013535.71%085310.41000030000021047.14%28000000.1900100000
21Dominik MasinMonsters (Col)D272571149543892822.22%2044516.52000119000035100.00%000000.3100010000
22Jesse GabrielleMonsters (Col)LW76257-141606611241188.33%27349.670000310000330047.95%7300000.1900000000
23Ryan KujawinskiMonsters (Col)C55347-1514034302321513.04%44778.6900000000000043.86%44000000.2900000000
24Carter VerhaegheMonsters (Col)C19044095101210130.00%01759.2200000000020047.31%18600000.4600100000
25Caleb JonesMonsters (Col)D13000101402241000.00%1019815.240000200005000.00%000000.0000000000
26Dmytro TimashovMonsters (Col)LW6000-300400020.00%0579.5200001000000050.00%200000.0000000000
27Nick MoutreyMonsters (Col)C/LW9000-420911010.00%0859.4400002000020055.56%900000.0000000000
Team Total or Average15083756711046494915105161615132722762193313.78%6192408615.978215323557928466915532450492254.79%614500190.8711367210565054
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Tyler ParsonsMonsters (Col)40231030.8913.1821712211510530000.588173052030
2Jonas GustavssonColorado3119700.8623.33153403856180110.833123011010
3Reto BerraMonsters (Col)2313610.8643.51124800735370300.75082219000
Team Total or Average94552340.8763.3149542527322080410.703378282040


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract StatusType Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Link
Adam ClendeningMonsters (Col)D241992-10-26No196 Lbs6 ft0NoNoNo1RFAPro & Farm818,000$81,800$0$NoLink
Adam PardyMonsters (Col)D331984-03-29No227 Lbs6 ft4NoNoNo5UFAPro & Farm1,000,000$100,000$0$NoLink
Anton CederholmMonsters (Col)D221995-02-21Yes204 Lbs6 ft1NoNoNo2RFAPro & Farm615,000$61,500$0$NoLink
Cal O'ReillyMonsters (Col)C311986-09-30No188 Lbs6 ft0NoNoNo1UFAPro & Farm700,000$70,000$0$NoLink
Caleb JonesMonsters (Col)D201997-06-06Yes205 Lbs6 ft1NoNoNo4ELCPro & Farm655,000$65,500$0$NoLink
Calvin PetersenMonsters (Col)G221994-10-19Yes183 Lbs6 ft2NoNoNo2RFAPro & Farm525,000$52,500$0$NoLink
Carter VerhaegheMonsters (Col)C221995-08-14Yes181 Lbs6 ft1NoNoNo2RFAPro & Farm743,000$74,300$0$NoLink
Connor HallMonsters (Col)D191998-02-21Yes192 Lbs6 ft4NoNoNo4ELCPro & Farm700,000$70,000$0$NoLink
Connor HobbsMonsters (Col)D201997-01-04Yes197 Lbs6 ft1NoNoNo4ELCPro & Farm730,000$73,000$0$NoLink
David DesharnaisMonsters (Col)C/LW311986-09-14No180 Lbs5 ft7YesNoNo6UFAPro & Farm2,200,000$220,000$0$NoLink
Dmytro TimashovMonsters (Col)LW211996-10-01Yes192 Lbs5 ft9NoNoNo2ELCPro & Farm925,000$92,500$0$NoLink
Dominik MasinMonsters (Col)D211996-02-01Yes189 Lbs6 ft2NoNoNo2ELCPro & Farm667,000$66,700$0$NoLink
Ethan BearMonsters (Col)D201997-06-26Yes209 Lbs5 ft11NoNoNo4ELCPro & Farm655,000$65,500$0$NoLink
Jesse GabrielleMonsters (Col)LW201997-06-17Yes205 Lbs6 ft0NoNoNo4ELCPro & Farm742,500$74,250$0$NoLink
Joacim ErikssonMonsters (Col)G271990-04-09No189 Lbs6 ft1NoNoNo4RFAPro & Farm750,000$75,000$0$NoLink
Jordan GreenwayMonsters (Col)LW/RW201997-02-16No226 Lbs6 ft6NoNoNo3ELCPro & Farm825,000$82,500$0$NoLink
Jordan KyrouMonsters (Col)C/RW191998-05-05Yes177 Lbs6 ft0NoNoNo4ELCPro & Farm742,500$74,250$0$NoLink
Linden VeyMonsters (Col)C/RW261991-07-17No189 Lbs6 ft0YesNoNo2RFAPro & Farm479,150$47,915$0$NoLink
Linus LindstromMonsters (Col)C191998-01-08Yes168 Lbs5 ft11NoNoNo4ELCPro & Farm650,000$65,000$0$NoLink
Lucas LessioMonsters (Col)LW241993-01-23No212 Lbs6 ft1NoNoNo3RFAPro & Farm600,000$60,000$0$NoLink
Mason GeertsenMonsters (Col)D221995-04-19Yes199 Lbs6 ft3NoNoNo2RFAPro & Farm650,000$65,000$0$NoLink
Matt BucklesMonsters (Col)C221995-05-05Yes205 Lbs6 ft1NoNoNo2RFAPro & Farm650,000$65,000$0$NoLink
Matt MartinMonsters (Col)LW281989-05-08No220 Lbs6 ft3YesNoNo6UFAPro & Farm850,000$85,000$0$NoLink
Nick MoutreyMonsters (Col)C/LW221995-06-24Yes208 Lbs6 ft2NoNoNo2RFAPro & Farm925,000$92,500$0$NoLink
Niklas HanssonMonsters (Col)D221995-01-08Yes175 Lbs6 ft0NoNoNo2RFAPro & Farm700,000$70,000$0$NoLink
Patrick EavesMonsters (Col)LW/RW331984-05-01No202 Lbs5 ft10YesNoNo6UFAPro & Farm1,850,000$185,000$0$NoLink
Reto BerraMonsters (Col)G301987-01-03No218 Lbs6 ft4YesNoNo4UFAPro & Farm700,000$70,000$0$NoLink
Ryan KujawinskiMonsters (Col)C221995-03-30Yes204 Lbs6 ft1NoNoNo2RFAPro & Farm667,000$66,700$0$NoLink
Scottie UpshallMonsters (Col)LW/RW331983-10-07No200 Lbs6 ft0NoNoNo3UFAPro & Farm1,650,000$165,000$0$NoLink
Steven KampferMonsters (Col)D291988-09-24No195 Lbs5 ft11YesNoNo6UFAPro & Farm750,000$75,000$0$NoLink
Tanner GlassMonsters (Col)LW/RW331983-11-29No213 Lbs6 ft1NoNoNo1UFAPro & Farm600,000$60,000$0$NoLink
Teemu KivihalmeMonsters (Col)D221995-06-14Yes161 Lbs5 ft11NoNoNo2RFAPro & Farm525,000$52,500$0$NoLink
Tyler ParsonsMonsters (Col)G201997-09-18Yes185 Lbs6 ft1NoNoNo4ELCPro & Farm742,500$74,250$0$NoLink
Ziyat PaiginMonsters (Col)D221995-02-08Yes209 Lbs6 ft6NoNoNo4RFAPro & Farm792,500$79,250$0$NoLink
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
3424.15197 Lbs6 ft13.21816,887$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Jordan GreenwayLinden VeyPatrick Eaves40122
2Matt MartinDavid DesharnaisScottie Upshall30122
3Lucas LessioCal O'ReillyTanner Glass20122
4Jesse GabrielleRyan KujawinskiJordan Kyrou10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Steven KampferAdam Pardy40122
2Ethan BearAdam Clendening30122
3Caleb JonesDominik Masin20122
4Steven KampferAdam Pardy10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Scottie UpshallLinden VeyPatrick Eaves60122
2Lucas LessioDavid DesharnaisJordan Greenway40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Steven KampferEthan Bear60122
2Adam PardyAdam Clendening40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1David DesharnaisScottie Upshall60122
2Linden VeyLucas Lessio40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Steven KampferEthan Bear60122
2Adam PardyAdam Clendening40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1David Desharnais60122Steven KampferAdam Pardy60122
2Cal O'Reilly40122Ethan BearAdam Clendening40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1David DesharnaisPatrick Eaves60122
2Linden VeyScottie Upshall40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Steven KampferAdam Pardy60122
2Ethan BearAdam Clendening40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Patrick EavesLinden VeyScottie UpshallSteven KampferEthan Bear
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Lucas LessioDavid DesharnaisScottie UpshallSteven KampferAdam Pardy
Extra Forwards
Normal PowerPlayPenalty Kill
Linden Vey, David Desharnais, Cal O'ReillyJordan Greenway, Tanner GlassLucas Lessio
Extra Defensemen
Normal PowerPlayPenalty Kill
Ethan Bear, Dominik Masin, Adam PardyEthan BearDominik Masin, Adam Pardy
Penalty Shots
David Desharnais, Patrick Eaves, Linden Vey, Tanner Glass, Lucas Lessio
Goalie
#1 : Reto Berra, #2 : Tyler Parsons


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals32100000151231010000034-122000000128440.6671526410015114085127685593191657942137529222.22%11372.73%01460261055.94%1288230955.78%791146753.92%2109144417556031095575
2Baby Hawks532000002218432100000141042110000088060.60022416301151140851215285593191657128384811121523.81%23769.57%01460261055.94%1288230955.78%791146753.92%2109144417556031095575
3Bears22000000853110000003211100000053241.000814220015114085126985593191657481418429333.33%9188.89%01460261055.94%1288230955.78%791146753.92%2109144417556031095575
4Bruins21100000761110000005231010000024-220.50071219001511408512628559319165733622367114.29%11281.82%01460261055.94%1288230955.78%791146753.92%2109144417556031095575
5Cabaret Lady Mary Ann21100000990110000005411010000045-120.5009162500151140851293855931916575213184510110.00%8537.50%01460261055.94%1288230955.78%791146753.92%2109144417556031095575
6Caroline220000001239110000005141100000072541.00012223400151140851294855931916574318233313323.08%9277.78%01460261055.94%1288230955.78%791146753.92%2109144417556031095575
7Chiefs413000001215-320200000511-62110000074320.2501219310015114085121018559319165712230577315533.33%21385.71%01460261055.94%1288230955.78%791146753.92%2109144417556031095575
8Chill43000001191092100000186222000000114770.875193352001511408512151855931916579124388915533.33%180100.00%11460261055.94%1288230955.78%791146753.92%2109144417556031095575
9Comets321000001587211000007701100000081740.66715304500151140851291855931916577830186314535.71%9277.78%01460261055.94%1288230955.78%791146753.92%2109144417556031095575
10Cougars202000001012-21010000056-11010000056-100.000101727001511408512438559319165782164034600.00%14750.00%01460261055.94%1288230955.78%791146753.92%2109144417556031095575
11Crunch21100000642110000004131010000023-120.50069150015114085126385593191657335452915426.67%100100.00%01460261055.94%1288230955.78%791146753.92%2109144417556031095575
12Heat32100000171431100000083521100000911-240.66717314800151140851210885593191657722527598225.00%11463.64%01460261055.94%1288230955.78%791146753.92%2109144417556031095575
13Jayhawks30200001816-81000000145-120200000411-710.167815230015114085128685593191657932164609111.11%17382.35%11460261055.94%1288230955.78%791146753.92%2109144417556031095575
14Las Vegas321000001183211000008621100000032140.66711203100151140851299855931916578416286211218.18%13376.92%11460261055.94%1288230955.78%791146753.92%2109144417556031095575
15Manchots220000001046110000006331100000041341.00010172700151140851265855931916573315214210110.00%8187.50%01460261055.94%1288230955.78%791146753.92%2109144417556031095575
16Marlies220000001266110000006331100000063341.00012223400151140851290855931916577724293613538.46%11281.82%01460261055.94%1288230955.78%791146753.92%2109144417556031095575
17Minnesota430000012218422000000853210000011413170.8752236580015114085121308559319165711027638116637.50%24962.50%01460261055.94%1288230955.78%791146753.92%2109144417556031095575
18Monarchs321000001715222000000161061010000015-440.66717314800151140851299855931916571122530537114.29%15473.33%11460261055.94%1288230955.78%791146753.92%2109144417556031095575
19Monsters2010100078-1100010005411010000024-220.500712191015114085126885593191657561216371119.09%8275.00%01460261055.94%1288230955.78%791146753.92%2109144417556031095575
20Oceanics52200010252322110000012102311000101313060.6002542670015114085121458559319165716456489624625.00%24962.50%11460261055.94%1288230955.78%791146753.92%2109144417556031095575
21Oil Kings3300000013211220000007251100000060661.000132538011511408512104855931916576813205417529.41%10280.00%01460261055.94%1288230955.78%791146753.92%2109144417556031095575
22Phantoms2200000014212110000007071100000072541.0001427410115114085128385593191657572121404375.00%80100.00%01460261055.94%1288230955.78%791146753.92%2109144417556031095575
23Rocket22000000615110000004131100000020241.0006111701151140851265855931916573310284511327.27%13192.31%01460261055.94%1288230955.78%791146753.92%2109144417556031095575
24Senators220000001367110000006511100000071641.000132538001511408512618559319165740926409111.11%11190.91%01460261055.94%1288230955.78%791146753.92%2109144417556031095575
25Sharks311000101614211000000532201000101111040.6671626420015114085121208559319165710934277021523.81%10280.00%01460261055.94%1288230955.78%791146753.92%2109144417556031095575
26Sound Tigers22000000954110000004131100000054141.0009142300151140851279855931916573818263513215.38%8275.00%11460261055.94%1288230955.78%791146753.92%2109144417556031095575
27Spiders20100001811-31000000156-11010000035-210.250816240015114085126285593191657671821356233.33%11463.64%01460261055.94%1288230955.78%791146753.92%2109144417556031095575
28Stars4300001017710220000009272100001085381.000172643011511408512122855931916576218266615213.33%8187.50%01460261055.94%1288230955.78%791146753.92%2109144417556031095575
29Thunder2010001068-2100000103211010000036-320.50061016001511408512528559319165760161441600.00%70100.00%01460261055.94%1288230955.78%791146753.92%2109144417556031095575
Total8250230104438127810341288010131961296741221500031185149361140.6953816721053151511408512272385593191657220961592116023528323.58%3718577.09%61460261055.94%1288230955.78%791146753.92%2109144417556031095575
31Wolf Pack220000001587110000009451100000064241.0001527420015114085129085593191657702222437114.29%11372.73%01460261055.94%1288230955.78%791146753.92%2109144417556031095575
_Since Last GM Reset8250230104438127810341288010131961296741221500031185149361140.6953816721053151511408512272385593191657220961592116023528323.58%3718577.09%61460261055.94%1288230955.78%791146753.92%2109144417556031095575
_Vs Conference422514000121801354522156000019364292010800011877116540.64318031849804151140851213518559319165710602805058151814424.31%1904974.21%21460261055.94%1288230955.78%791146753.92%2109144417556031095575
_Vs Division2682000101179126135100000564412133100010614714180.346117197314021511408512801855931916576771932805161062927.36%1182975.42%21460261055.94%1288230955.78%791146753.92%2109144417556031095575

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
82114W4381672105327232209615921160215
All Games
GPWLOTWOTL SOWSOLGFGA
8250231044381278
Home Games
GPWLOTWOTL SOWSOLGFGA
412881013196129
Visitor Games
GPWLOTWOTL SOWSOLGFGA
4122150031185149
Last 10 Games
WLOTWOTL SOWSOL
810001
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
3528323.58%3718577.09%6
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
855931916571511408512
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
1460261055.94%1288230955.78%791146753.92%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
2109144417556031095575


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
2 - 2018-10-0413Minnesota1Monsters2WBoxScore
4 - 2018-10-0627Phantoms0Monsters7WBoxScore
7 - 2018-10-0938Monsters2Monsters4LBoxScore
9 - 2018-10-1146Monsters2Crunch3LBoxScore
11 - 2018-10-1370Heat3Monsters8WBoxScore
14 - 2018-10-1679Monsters6Wolf Pack4WBoxScore
16 - 2018-10-1891Monsters3Spiders5LBoxScore
18 - 2018-10-20103Monsters7Caroline2WBoxScore
20 - 2018-10-22118Monsters7Phantoms2WBoxScore
22 - 2018-10-24132Thunder2Monsters3WXXBoxScore
24 - 2018-10-26147Senators5Monsters6WBoxScore
25 - 2018-10-27156Monsters7Minnesota8LXXBoxScore
30 - 2018-11-01187Monsters5Heat8LBoxScore
31 - 2018-11-02193Monsters8Comets1WBoxScore
36 - 2018-11-07225Chill2Monsters5WBoxScore
38 - 2018-11-09240Monsters6Oceanics5WXXBoxScore
40 - 2018-11-11259Monsters6Oil Kings0WBoxScore
43 - 2018-11-14275Bruins2Monsters5WBoxScore
45 - 2018-11-16289Bears2Monsters3WBoxScore
47 - 2018-11-18306Monsters6Admirals4WBoxScore
50 - 2018-11-21331Monsters1Monarchs5LBoxScore
52 - 2018-11-23343Monsters3Jayhawks6LBoxScore
53 - 2018-11-24355Stars0Monsters6WBoxScore
56 - 2018-11-27371Monsters6Chill1WBoxScore
57 - 2018-11-28381Manchots3Monsters6WBoxScore
59 - 2018-11-30393Chiefs5Monsters1LBoxScore
61 - 2018-12-02411Monsters5Cougars6LBoxScore
63 - 2018-12-04419Monsters4Manchots1WBoxScore
65 - 2018-12-06430Monsters4Cabaret Lady Mary Ann5LBoxScore
67 - 2018-12-08449Monsters3Thunder6LBoxScore
70 - 2018-12-11474Oil Kings1Monsters3WBoxScore
73 - 2018-12-14492Monsters1Chiefs3LBoxScore
74 - 2018-12-15503Stars2Monsters3WBoxScore
76 - 2018-12-17516Sound Tigers1Monsters4WBoxScore
78 - 2018-12-19529Rocket1Monsters4WBoxScore
80 - 2018-12-21544Baby Hawks6Monsters3LBoxScore
81 - 2018-12-22551Monsters1Jayhawks5LBoxScore
86 - 2018-12-27577Monsters3Las Vegas2WBoxScore
88 - 2018-12-29595Baby Hawks0Monsters5WBoxScore
90 - 2018-12-31607Monarchs5Monsters9WBoxScore
92 - 2019-01-02619Sharks3Monsters5WBoxScore
94 - 2019-01-04633Wolf Pack4Monsters9WBoxScore
98 - 2019-01-08665Monsters3Oceanics5LBoxScore
99 - 2019-01-09669Monsters4Heat3WBoxScore
102 - 2019-01-12691Monsters2Rocket0WBoxScore
104 - 2019-01-14706Monsters6Marlies3WBoxScore
106 - 2019-01-16721Monsters7Senators1WBoxScore
109 - 2019-01-19741Monarchs5Monsters7WBoxScore
111 - 2019-01-21756Chill4Monsters3LXXBoxScore
113 - 2019-01-23767Minnesota4Monsters6WBoxScore
123 - 2019-02-02800Comets4Monsters5WBoxScore
126 - 2019-02-05819Monsters4Monsters5WXBoxScore
128 - 2019-02-07827Monsters5Bears3WBoxScore
130 - 2019-02-09841Monsters5Sound Tigers4WBoxScore
131 - 2019-02-10854Monsters2Bruins4LBoxScore
133 - 2019-02-12873Marlies3Monsters6WBoxScore
135 - 2019-02-14882Monsters4Oceanics3WBoxScore
137 - 2019-02-16894Chiefs6Monsters4LBoxScore
139 - 2019-02-18913Las Vegas3Monsters6WBoxScore
141 - 2019-02-20926Oceanics6Monsters4LBoxScore
143 - 2019-02-22941Monsters2Baby Hawks3LBoxScore
144 - 2019-02-23951Monsters5Chill3WBoxScore
146 - 2019-02-25966Cabaret Lady Mary Ann4Monsters5WBoxScore
Trade Deadline --- Trades can’t be done after this day is simulated!
148 - 2019-02-27982Comets3Monsters2LBoxScore
150 - 2019-03-01998Monsters3Sharks4LBoxScore
152 - 2019-03-031012Monsters6Admirals4WBoxScore
154 - 2019-03-051026Cougars6Monsters5LBoxScore
156 - 2019-03-071039Monsters3Stars1WBoxScore
158 - 2019-03-091048Crunch1Monsters4WBoxScore
160 - 2019-03-111070Caroline1Monsters5WBoxScore
164 - 2019-03-151096Admirals4Monsters3LBoxScore
166 - 2019-03-171111Spiders6Monsters5LXXBoxScore
168 - 2019-03-191129Monsters7Minnesota5WBoxScore
170 - 2019-03-211143Monsters5Stars4WXXBoxScore
172 - 2019-03-231152Baby Hawks4Monsters6WBoxScore
173 - 2019-03-241167Monsters6Baby Hawks5WBoxScore
176 - 2019-03-271188Las Vegas3Monsters2LBoxScore
178 - 2019-03-291200Jayhawks5Monsters4LXXBoxScore
181 - 2019-04-011225Monsters6Chiefs1WBoxScore
182 - 2019-04-021236Oil Kings1Monsters4WBoxScore
184 - 2019-04-041251Oceanics4Monsters8WBoxScore
186 - 2019-04-061271Monsters8Sharks7WXXBoxScore



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance61,84330,360
Attendance PCT75.42%74.05%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
0 2249 - 74.96% 63,900$2,619,905$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
2,813,238$ 2,777,415$ 2,777,415$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
14,852$ 2,813,238$ 34 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 0 14,852$ 0$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
20188250230104438127810341288010131961296741221500031185149361143816721053151511408512272385593191657220961592116023528323.58%3718577.09%61460261055.94%1288230955.78%791146753.92%2109144417556031095575
Total Regular Season8250230104438127810341288010131961296741221500031185149361143816721053151511408512272385593191657220961592116023528323.58%3718577.09%61460261055.94%1288230955.78%791146753.92%2109144417556031095575