Please rotate your device to landscape mode for a better experience.
Login

Monarchs
GP: 31 | W: 8 | L: 21 | OTL: 2 | P: 18
GF: 108 | GA: 179 | PP%: 15.96% | PK%: 57.58%
GM : Thomas Belair-Ferland | Morale : 50 | Team Overall : 58
Next Games #518 vs Stars

Game Center
Monarchs
8-21-2, 18pts
2
FINAL
5 Firebirds
16-10-4, 36pts
Team Stats
L6StreakW3
2-11-1Home Record5-8-3
6-10-1Home Record11-2-1
0-9-1Last 10 Games7-3-0
3.48Goals Per Game4.10
5.77Goals Against Per Game3.57
15.96%Power Play Percentage37.23%
57.58%Penalty Kill Percentage70.27%
Heat
15-16-2, 32pts
9
FINAL
2 Monarchs
8-21-2, 18pts
Team Stats
W3StreakL6
7-6-1Home Record2-11-1
8-10-1Home Record6-10-1
5-4-1Last 10 Games0-9-1
5.45Goals Per Game3.48
5.52Goals Against Per Game5.77
49.38%Power Play Percentage15.96%
65.31%Penalty Kill Percentage57.58%
Monarchs
8-21-2, 18pts
2025-12-15
Stars
24-6-3, 51pts
Team Stats
L6StreakW1
2-11-1Home Record12-3-1
6-10-1Away Record12-3-2
0-9-1Last 10 Games9-0-1
3.48Goals Per Game5.09
5.77Goals Against Per Game5.09
15.96%Power Play Percentage68.09%
57.58%Penalty Kill Percentage75.29%
Monarchs
8-21-2, 18pts
2025-12-17
Cabaret Lady Mary Ann
10-20-1, 21pts
Team Stats
L6StreakL1
2-11-1Home Record4-13-1
6-10-1Away Record6-7-0
0-9-1Last 10 Games3-7-0
3.48Goals Per Game4.03
5.77Goals Against Per Game4.03
15.96%Power Play Percentage24.14%
57.58%Penalty Kill Percentage61.60%
Monarchs
8-21-2, 18pts
2025-12-18
Thunder
9-18-5, 23pts
Team Stats
L6StreakL4
2-11-1Home Record5-5-5
6-10-1Away Record4-13-0
0-9-1Last 10 Games2-7-1
3.48Goals Per Game4.00
5.77Goals Against Per Game4.00
15.96%Power Play Percentage22.37%
57.58%Penalty Kill Percentage51.35%
Team Leaders
Goals
Owen Sillinger
1
Assists
Jakub Lauko
1
Points
Jakub Lauko
1
Plus/Minus
Ilya Fedotov
1
Wins
Hugo Alnefelt
0
Save Percentage
Hugo Alnefelt
0.821

Team Stats
Goals For
108
3.48 GFG
Shots For
744
24.00 Avg
Power Play Percentage
16.0%
15 GF
Offensive Zone Start
31.6%
Goals Against
179
5.77 GAA
Shots Against
814
26.26 Avg
Penalty Kill Percentage
57.6%%
42 GA
Defensive Zone Start
29.2%
Team Info

General ManagerThomas Belair-Ferland
DivisionAtlantique
ConferenceEst
Captain
Assistant #1
Assistant #2


Arena Info

Capacity3,000
Attendance1,936
Season Tickets300


Roster Info

Pro Team26
Farm Team23
Contract Limit49 / 50
Prospects15


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPAgeContractSalary
1Oliver Wahlstrom (R)X100.006959727484827869476464676973630506802411,000,000$
2Chris TierneyX100.006244817377737766776359686684740506703021,425,000$
3Ivan Ivan (R)X100.00584177717374636653626260665150050630222845,000$
4Luke Toporowski (R)X100.00594467666165636343605758625250050590231560,000$
5Owen SillingerX100.00544568665768666245625654625550050590271825,000$
6Hunter Haight (R)X100.00554265626161606242586054615050050580201897,500$
7Justin Gill (R)XXX100.00554166596260585740545453575050050550213620,000$
8Topi Ronni (R)X100.00394543434538383943383843414545050420201825,000$
9Andreas EnglundX100.00758161738282826940646272688272050710283900,000$
10Tyler Kleven (R)X100.00745176728578727040646374695650050690221916,667$
11Nolan Allan (R)X100.00684177717576676640636070665250050660212825,000$
12Robert HäggX100.006044666667737064406057676278550506402921,000,000$
13Elias Petterssen (D) (R)X100.00634072697275626440616162655150050630203838,333$
14Brandon Scanlin (R)X100.00634468637067666340535962625450050610251925,000$
15Topias Vilen (R)X100.00634271656563616240635367605050050610212836,667$
16Ben Roger (R)X100.00434343434343434343434343434343050440213825,000$
Scratches
1Jakub LaukoXXX100.008269717580807670496665707059500506802421,300,000$
2Nick Henry (R)XHO6269796369373740473736573844440504802500$
3Ilya Fedotov (R)X100.00394543434538383943383843414545050420211925,000$
4Stiven Sardarian (R)X100.00333534343532323334323234343535050350211700,000$
5Jack Harvey (R)X100.00333735353731313335313135353737050350211620,000$
TEAM AVERAGE100.0058486461646259574454535857555105057
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPAgeContractSalary
1Eric Comrie100.0084817976817978787882748275050730292920,000$
2Calle Clang (R)100.0069626466676669656767585150050610221878,333$
Scratches
1Zach SawchenkoHO726464626666686467685955500506002600$
2Hugo Alnefelt100.0068616065656570646563555146050590231850,833$
3Kyle Keyser (R)HO645856636058605458595153460505402500$
TEAM AVERAGE100.007165656668676965676859585305061
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Jakub LaukoMonarchs (LA )C/LW/RW1011000232040%01414.3200000000000084.62%1310001.4000000001
2Owen SillingerMonarchs (LA )C11010001121250.00%01414.2800000000000090.00%1001001.4000000100
3Ivan IvanMonarchs (LA )C1011100111110%01414.32000000000000100.00%122001.4000000010
4Oliver WahlstromMonarchs (LA )RW1000000012410%02121.470000000000000%001000000000000
5Stiven SardarianMonarchs (LA )RW1000020000000%11313.930000000000000%00000000000000
6Ilya FedotovMonarchs (LA )LW1000100103110%01212.320000000000000%00000000000000
7Justin GillMonarchs (LA )C/LW/RW1000-140201020%02222.100000000000000%20100000000000
Team Total or Average712316076117119.09%111216.1000000000000080.77%26314000.5300000111
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Hugo AlnefeltMonarchs (LA )10100.8215.00600052817000010000
Team Total or Average10100.8215.0060005281700010000


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Country Rookie Weight Height No Trade Available For Trade Acquired By Last Trade Date Force Waivers Waiver Possible Contract Contract Signature Date Force UFA Emergency Recall Type Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10Salary Cap Year 2Salary Cap Year 3Salary Cap Year 4Salary Cap Year 5Salary Cap Year 6Salary Cap Year 7Salary Cap Year 8Salary Cap Year 9Salary Cap Year 10No Trade Year 2No Trade Year 3No Trade Year 4No Trade Year 5No Trade Year 6No Trade Year 7No Trade Year 8No Trade Year 9No Trade Year 10Link
Andreas Englund (1 Way Contract)Monarchs (LA )D281996-01-21SWENo200 Lbs6 ft4NoNoFree AgentYesYes32024-09-11FalseFalsePro & Farm900,000$0$0$No900,000$900,000$-------900,000$900,000$-------NoNo-------Link
Ben RogerMonarchs (LA )D212002-11-02CANYes201 Lbs5 ft4NoNoProspectNoNo32025-07-10FalseFalsePro & Farm825,000$0$0$No825,000$825,000$-------825,000$825,000$-------NoNo-------Link
Brandon ScanlinMonarchs (LA )D251999-06-02CANYes214 Lbs6 ft4NoNoN/AYesYes1FalseFalsePro & Farm925,000$0$0$No---------------------------Link
Calle ClangMonarchs (LA )G222002-05-20SWEYes194 Lbs6 ft2NoNoN/ANoNo1FalseFalsePro & Farm878,333$0$0$No---------------------------Link
Chris Tierney (1 Way Contract)Monarchs (LA )C301994-07-01CANNo191 Lbs6 ft1NoNoN/AYesYes2FalseFalsePro & Farm1,425,000$505,000$324,456$No1,425,000$--------1,425,000$--------No--------Link
Elias Petterssen (D)Monarchs (LA )D202004-02-16SWEYes185 Lbs6 ft2NoNoProspectNoNo32025-07-10FalseFalsePro & Farm838,333$0$0$No838,333$838,333$-------838,333$838,333$-------NoNo-------Link
Eric Comrie (1 Way Contract)Monarchs (LA )G291995-07-06CANNo190 Lbs6 ft1NoNoTrade2025-08-18YesYes22024-09-06FalseFalsePro & Farm920,000$0$0$No920,000$--------920,000$--------No--------Link
Hugo AlnefeltMonarchs (LA )G232001-06-04SWENo189 Lbs6 ft3NoNoN/ANoNo1FalseFalsePro & Farm850,833$0$0$No---------------------------Link
Hunter HaightMonarchs (LA )C202004-04-04CANYes181 Lbs5 ft11NoNoN/ANoNo1FalseFalsePro & Farm897,500$0$0$No---------------------------Link
Ilya FedotovMonarchs (LA )LW212003-03-19RUSYes182 Lbs6 ft1NoNoN/ANoNo1FalseFalsePro & Farm925,000$0$0$No---------------------------Link
Ivan IvanMonarchs (LA )C222002-08-20CZEYes190 Lbs6 ft0NoNoTrade2025-07-18NoNo22024-06-25FalseFalsePro & Farm845,000$0$0$No845,000$--------845,000$--------No--------Link
Jack HarveyMonarchs (LA )C212003-03-30MNYes175 Lbs5 ft10NoNoN/ANoNo1FalseFalsePro & Farm620,000$0$0$No---------------------------Link
Jakub Lauko (1 Way Contract)Monarchs (LA )C/LW/RW242000-03-28CZENo193 Lbs6 ft1NoNoFree Agent2025-07-18NoYes22025-08-28FalseFalsePro & Farm1,300,000$380,000$244,145$No1,300,000$--------1,300,000$--------No--------Link
Justin GillMonarchs (LA )C/LW/RW212003-01-27CANYes190 Lbs6 ft1NoNoDraftNoNo32025-07-10FalseFalsePro & Farm620,000$0$0$No620,000$620,000$-------620,000$620,000$-------NoNo-------Link
Kyle KeyserMonarchs (LA )G251999-03-08USAYes186 Lbs6 ft2NoNoTrade2025-03-06YesYes0FalseFalsePro & Farm0$0$No---------------------------Link
Luke ToporowskiMonarchs (LA )LW232001-04-12USAYes183 Lbs5 ft11NoNoTrade2025-07-18NoNo1FalseFalsePro & Farm560,000$0$0$No---------------------------Link
Nick Henry (1 Way Contract)Monarchs (LA )RW251999-07-04MANYes190 Lbs5 ft11NoNoFree AgentYesYes02024-09-11FalseFalsePro & Farm0$0$No---------------------------Link
Nolan AllanMonarchs (LA )D212003-04-28CANYes195 Lbs6 ft2NoNoProspectNoNo22024-06-25FalseFalsePro & Farm825,000$0$0$No825,000$--------825,000$--------No--------Link
Oliver WahlstromMonarchs (LA )RW242000-06-13USAYes205 Lbs6 ft2NoNoTrade2025-07-18NoYes12024-09-11FalseFalsePro & Farm1,000,000$0$0$No---------------------------Link
Owen SillingerMonarchs (LA )C271997-09-23CANNo170 Lbs5 ft10NoNoN/AYesYes1FalseFalsePro & Farm825,000$0$0$No---------------------------Link
Robert Hägg (1 Way Contract)Monarchs (LA )D291995-02-08SWENo205 Lbs6 ft2NoNoN/AYesYes2FalseFalsePro & Farm1,000,000$80,000$51,399$No1,000,000$--------1,000,000$--------No--------Link
Stiven SardarianMonarchs (LA )RW212003-02-07RUSYes156 Lbs6 ft1NoNoN/ANoNo1FalseFalsePro & Farm700,000$0$0$No---------------------------Link
Topi RonniMonarchs (LA )C202004-05-05FINYes179 Lbs6 ft2NoNoN/ANoNo1FalseFalsePro & Farm825,000$0$0$No---------------------------Link
Topias VilenMonarchs (LA )D212003-04-01FINYes194 Lbs6 ft1NoNoProspectNoNo22024-06-25FalseFalsePro & Farm836,667$0$0$No836,667$--------836,667$--------No--------Link
Tyler KlevenMonarchs (LA )D222002-01-10USAYes221 Lbs6 ft5NoNoN/ANoNo1FalseFalsePro & Farm916,667$0$0$No---------------------------Link
Zach SawchenkoMonarchs (LA )G261997-12-30CANNo185 Lbs6 ft1NoNoFree AgentYesYes02024-09-11FalseFalsePro & Farm0$0$No---------------------------Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2623.50190 Lbs6 ft11.46779,167$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
140122
230122
320122
410122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
140122
230122
320122
410122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
160122
240122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
160122
240122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
160122
240122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
160122
240122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
16012260122
24012240122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
160122
240122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
160122
240122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Extra Forwards
Normal PowerPlayPenalty Kill
, , ,
Extra Defensemen
Normal PowerPlayPenalty Kill
, , ,
Penalty Shots
, , , ,
Goalie
#1 : , #2 :


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals1010000046-2000000000001010000046-200.00048120030383732721924827163012129200.00%6350.00%020049440.49%19245742.01%25461341.44%753507604276509224
2Baby Hawks31200000718-1120200000315-121100000043120.33371320003038373602192482716903730378112.50%10550.00%020049440.49%19245742.01%25461341.44%753507604276509224
3Bears20200000616-1010100000110-91010000056-100.000611170030383735121924827167120155259444.44%10550.00%020049440.49%19245742.01%25461341.44%753507604276509224
4Bruins1010000034-11010000034-10000000000000.000369003038373292192482716125410200.00%220.00%020049440.49%19245742.01%25461341.44%753507604276509224
5Cabaret Lady Mary Ann1010000025-31010000025-30000000000000.000246003038373192192482716286614400.00%30100.00%120049440.49%19245742.01%25461341.44%753507604276509224
6Caroline11000000541110000005410000000000021.00059140030383731721924827161676146350.00%30100.00%020049440.49%19245742.01%25461341.44%753507604276509224
7Chiefs1010000067-1000000000001010000067-100.000612180030383732721924827163112412300.00%2150.00%020049440.49%19245742.01%25461341.44%753507604276509224
8Comets1000010034-11000010034-10000000000010.500369003038373312192482716301226400.00%110.00%020049440.49%19245742.01%25461341.44%753507604276509224
9Cougars10001000541100010005410000000000021.00051015003038373272192482716361021711100.00%10100.00%020049440.49%19245742.01%25461341.44%753507604276509224
10Firebirds1010000025-3000000000001010000025-300.0002460030383732721924827161864112150.00%20100.00%020049440.49%19245742.01%25461341.44%753507604276509224
11Heat1010000029-71010000029-70000000000000.0002350030383732521924827161671512500.00%5340.00%020049440.49%19245742.01%25461341.44%753507604276509224
12Jayhawks1010000024-2000000000001010000024-200.000246003038373192192482716184416400.00%20100.00%020049440.49%19245742.01%25461341.44%753507604276509224
13Las Vegas11000000431000000000001100000043121.0004812003038373282192482716128815300.00%4175.00%020049440.49%19245742.01%25461341.44%753507604276509224
14Manchots20200000614-81010000058-31010000016-500.00061218003038373572192482716511218209111.11%9455.56%020049440.49%19245742.01%25461341.44%753507604276509224
15Marlies1000010056-1000000000001000010056-110.500581300303837328219248271634121011200.00%5260.00%220049440.49%19245742.01%25461341.44%753507604276509224
16Minnesota11000000321000000000001100000032121.00035800303837392192482716204010000%000%020049440.49%19245742.01%25461341.44%753507604276509224
17Monsters1010000045-11010000045-10000000000000.00048120030383733021924827162668113133.33%4250.00%020049440.49%19245742.01%25461341.44%753507604276509224
18Oceanics2010100069-31010000037-41000100032120.50061117003038373472192482716641815221119.09%5180.00%020049440.49%19245742.01%25461341.44%753507604276509224
19Roadrunners1010000056-1000000000001010000056-100.00051015003038373242192482716329611100.00%3233.33%020049440.49%19245742.01%25461341.44%753507604276509224
20Rocket1010000047-3000000000001010000047-300.00046100030383732321924827161541015200.00%5340.00%020049440.49%19245742.01%25461341.44%753507604276509224
21Sags20101000913-40000000000020101000913-420.5009172600303837352219248271654208931300.00%7271.43%020049440.49%19245742.01%25461341.44%753507604276509224
22Senators2110000011921010000035-21100000084420.500112132003038373532192482716431222256233.33%6183.33%120049440.49%19245742.01%25461341.44%753507604276509224
23Spiders1010000037-41010000037-40000000000000.0003690030383732321924827163310626100.00%330.00%020049440.49%19245742.01%25461341.44%753507604276509224
24Stars10100000112-110000000000010100000112-1100.0001230030383731121924827163487217300.00%110.00%020049440.49%19245742.01%25461341.44%753507604276509224
Total3152103200108179-7114111011004287-4517410021006692-26180.2901082043120030383737442192482716814261508397941515.96%994257.58%420049440.49%19245742.01%25461341.44%753507604276509224
_Since Last GM Reset3152103200108179-7114111011004287-4517410021006692-26180.2901082043120030383737442192482716814261508397941515.96%994257.58%420049440.49%19245742.01%25461341.44%753507604276509224
_Vs Conference15111021005890-32606000001841-23915021004049-970.23358110168003038373391219248271642413033719046817.39%562555.36%320049440.49%19245742.01%25461341.44%753507604276509224
_Vs Division704021003035-5402000001318-5302021001717050.357305585003038373179219248271616849549217317.65%22863.64%420049440.49%19245742.01%25461341.44%753507604276509224

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
3118L610820431274481426150839700
All Games
GPWLOTWOTL SOWSOLGFGA
315213200108179
Home Games
GPWLOTWOTL SOWSOLGFGA
1411111004287
Visitor Games
GPWLOTWOTL SOWSOLGFGA
1741021006692
Last 10 Games
WLOTWOTL SOWSOL
090100
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
941515.96%994257.58%4
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
21924827163038373
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
20049440.49%19245742.01%25461341.44%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
753507604276509224


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
1 - 2025-10-073Monsters5Monarchs4LBoxScore
2 - 2025-10-087Monarchs4Las Vegas3WBoxScore
5 - 2025-10-1122Monarchs3Oceanics2WXBoxScore
7 - 2025-10-1347Monarchs3Minnesota2WBoxScore
10 - 2025-10-1671Manchots8Monarchs5LBoxScore
12 - 2025-10-1886Caroline4Monarchs5WBoxScore
15 - 2025-10-21104Monarchs6Chiefs7LBoxScore
17 - 2025-10-23119Monarchs1Stars12LBoxScore
19 - 2025-10-25137Monarchs2Jayhawks4LBoxScore
20 - 2025-10-26144Monarchs4Baby Hawks3WBoxScore
22 - 2025-10-28165Monarchs5Sags10LBoxScore
24 - 2025-10-30177Cougars4Monarchs5WXBoxScore
26 - 2025-11-01191Spiders7Monarchs3LBoxScore
29 - 2025-11-04212Oceanics7Monarchs3LBoxScore
31 - 2025-11-06226Cabaret Lady Mary Ann5Monarchs2LBoxScore
34 - 2025-11-09245Monarchs1Manchots6LBoxScore
36 - 2025-11-11257Monarchs4Rocket7LBoxScore
38 - 2025-11-13269Monarchs5Marlies6LXBoxScore
40 - 2025-11-15286Monarchs8Senators4WBoxScore
42 - 2025-11-17304Monarchs5Bears6LBoxScore
45 - 2025-11-20330Monarchs4Sags3WXBoxScore
46 - 2025-11-21334Bruins4Monarchs3LBoxScore
49 - 2025-11-24359Senators5Monarchs3LBoxScore
53 - 2025-11-28384Monarchs4Admirals6LBoxScore
54 - 2025-11-29401Comets4Monarchs3LXBoxScore
57 - 2025-12-02420Bears10Monarchs1LBoxScore
59 - 2025-12-04435Baby Hawks9Monarchs2LBoxScore
61 - 2025-12-06449Baby Hawks6Monarchs1LBoxScore
63 - 2025-12-08462Monarchs5Roadrunners6LBoxScore
65 - 2025-12-10479Monarchs2Firebirds5LBoxScore
68 - 2025-12-13507Heat9Monarchs2LBoxScore
70 - 2025-12-15518Monarchs-Stars-
72 - 2025-12-17529Monarchs-Cabaret Lady Mary Ann-
73 - 2025-12-18538Monarchs-Thunder-
77 - 2025-12-22574Monsters-Monarchs-
78 - 2025-12-23587Firebirds-Monarchs-
82 - 2025-12-27597Admirals-Monarchs-
84 - 2025-12-29611Monarchs-Monsters-
87 - 2026-01-01639Thunder-Monarchs-
89 - 2026-01-03655Minnesota-Monarchs-
91 - 2026-01-05666Minnesota-Monarchs-
93 - 2026-01-07681Sags-Monarchs-
95 - 2026-01-09695Monarchs-Oceanics-
96 - 2026-01-10709Monarchs-Oil Kings-
98 - 2026-01-12724Stars-Monarchs-
100 - 2026-01-14738Las Vegas-Monarchs-
102 - 2026-01-16753Admirals-Monarchs-
103 - 2026-01-17766Monarchs-Admirals-
106 - 2026-01-20787Wolf Pack-Monarchs-
110 - 2026-01-24816Monarchs-Chiefs-
112 - 2026-01-26828Monarchs-Monsters-
113 - 2026-01-27833Monarchs-Cougars-
115 - 2026-01-29844Monarchs-Crunch-
117 - 2026-01-31859Monarchs-Phantoms-
118 - 2026-02-01874Monarchs-Caroline-
121 - 2026-02-04902Firebirds-Monarchs-
122 - 2026-02-05909Monarchs-Las Vegas-
142 - 2026-02-25916Las Vegas-Monarchs-
143 - 2026-02-26929Oil Kings-Monarchs-
145 - 2026-02-28944Heat-Monarchs-
147 - 2026-03-02958Monsters-Monarchs-
150 - 2026-03-05982Sound Tigers-Monarchs-
152 - 2026-03-07997Rocket-Monarchs-
Trade Deadline --- Trades can’t be done after this day is simulated!
155 - 2026-03-101012Monarchs-Bruins-
158 - 2026-03-131041Monarchs-Sound Tigers-
159 - 2026-03-141050Monarchs-Spiders-
161 - 2026-03-161065Monarchs-Wolf Pack-
164 - 2026-03-191093Phantoms-Monarchs-
166 - 2026-03-211102Crunch-Monarchs-
167 - 2026-03-221118Monarchs-Roadrunners-
169 - 2026-03-241133Monarchs-Heat-
171 - 2026-03-261149Monarchs-Comets-
173 - 2026-03-281164Roadrunners-Monarchs-
177 - 2026-04-011189Chiefs-Monarchs-
178 - 2026-04-021204Jayhawks-Monarchs-
180 - 2026-04-041217Marlies-Monarchs-
182 - 2026-04-061232Jayhawks-Monarchs-
185 - 2026-04-091260Comets-Monarchs-
187 - 2026-04-111264Oil Kings-Monarchs-
189 - 2026-04-131291Monarchs-Firebirds-
190 - 2026-04-141300Monarchs-Comets-
192 - 2026-04-161310Monarchs-Heat-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Capacity20001000
Ticket Price5020
Attendance17,8709,232
Attendance PCT63.82%65.94%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueCapacityTeam Popularity
-11 1936 - 64.53% 91,023$1,274,328$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Salaries CapCoaches Salaries
545,040$ 1,471,333$ 1,471,333$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
7,623$ 545,040$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
2,457,633$ 124 7,623$ 945,252$




Monarchs Players Stat Leaders (Regular Season)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Monarchs Goalies Stat Leaders (Regular Season)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA

Monarchs Career Team Stats

OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT

Monarchs Players Stat Leaders (Play-Off)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Monarchs Goalies Stat Leaders (Play-Off)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA