Please rotate your device to landscape mode for a better experience.
Connexion

Sags
GP: 10 | W: 7 | L: 3 | OTL: 0 | P: 14
GF: 53 | GA: 44 | PP%: 33.33% | PK%: 65.22%
DG: Nick Gagnon | Morale : 50 | Moyenne d’équipe : 56
Prochains matchs #176 vs Spiders

Centre de jeu
Sags
7-3-0, 14pts
4
FINAL
3 Minnesota
1-8-2, 4pts
Team Stats
W2SéquenceL1
4-1-0Fiche domicile0-3-2
3-2-0Fiche domicile1-5-0
7-3-0Derniers 10 matchs1-7-2
5.30Buts par match 3.45
4.40Buts contre par match 5.91
33.33%Pourcentage en avantage numérique11.76%
65.22%Pourcentage en désavantage numérique74.29%
Monarchs
5-6-0, 10pts
5
FINAL
10 Sags
7-3-0, 14pts
Team Stats
L1SéquenceW2
1-2-0Fiche domicile4-1-0
4-4-0Fiche domicile3-2-0
5-5-0Derniers 10 matchs7-3-0
3.82Buts par match 5.30
5.45Buts contre par match 4.40
10.53%Pourcentage en avantage numérique33.33%
66.67%Pourcentage en désavantage numérique65.22%
Spiders
7-1-2, 16pts
2025-10-30
Sags
7-3-0, 14pts
Statistiques d’équipe
W4SéquenceW2
4-0-1Fiche domicile4-1-0
3-1-1Fiche visiteur3-2-0
7-1-210 derniers matchs7-3-0
5.60Buts par match 5.30
4.50Buts contre par match 5.30
15.79%Pourcentage en avantage numérique33.33%
72.22%Pourcentage en désavantage numérique65.22%
Monsters
6-3-2, 14pts
2025-11-01
Sags
7-3-0, 14pts
Statistiques d’équipe
SOL1SéquenceW2
2-1-2Fiche domicile4-1-0
4-2-0Fiche visiteur3-2-0
5-3-210 derniers matchs7-3-0
5.00Buts par match 5.30
3.64Buts contre par match 5.30
48.48%Pourcentage en avantage numérique33.33%
82.76%Pourcentage en désavantage numérique65.22%
Cougars
2-5-3, 7pts
2025-11-02
Sags
7-3-0, 14pts
Statistiques d’équipe
OTL2SéquenceW2
1-3-2Fiche domicile4-1-0
1-2-1Fiche visiteur3-2-0
2-5-310 derniers matchs7-3-0
4.80Buts par match 5.30
6.10Buts contre par match 5.30
36.11%Pourcentage en avantage numérique33.33%
84.21%Pourcentage en désavantage numérique65.22%
Meneurs d'équipe
Buts
Matthew Phillips
12
Passes
Rory Kerins
13
Points
Rory Kerins
19
Plus/Moins
Philippe Daoust
6
Victoires
Aleksei Kolosov
6
Pourcentage d’arrêts
Aleksei Kolosov
0.877

Statistiques d’équipe
Buts pour
53
5.30 GFG
Tirs pour
250
25.00 Avg
Pourcentage en avantage numérique
33.3%
7 GF
Début de zone offensive
31.2%
Buts contre
44
4.40 GAA
Tirs contre
287
28.70 Avg
Pourcentage en désavantage numérique
65.2%%
8 GA
Début de la zone défensive
35.2%
Informations de l'équipe

Directeur généralNick Gagnon
DivisionAtlantique
ConférenceEst
Capitaine
Assistant #1
Assistant #2


Informations de l’aréna

Capacité3,000
Assistance1,932
Billets de saison300


Informations de la formation

Équipe Pro23
Équipe Mineure20
Limite contact 43 / 50
Espoirs12


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPÂgeContratSalaire
1Matthew PhillipsX100.00574077755672696744656167686452050640262660,000$
2Rory Kerins (R)X100.00614173706364626462626260655150050610221846,667$
3Zayde Wisdom (R)X100.00634368646464626057575558605150050580221797,500$
4Ty Tullio (R)X100.00594367656263626042575355595150050570221833,333$
5Michal Teply (R)X100.00554273636560595942565252595150050560232620,000$
6Tucker Robertson (R)X100.00604171636361585741525354585050050560212870,000$
7Philippe Daoust (R)X100.00564166586059575654565253555150050550223600,000$
8Carter Savoie (R)X100.00564170656258565640525156585050050550221925,000$
9Cameron Berg (R)X100.00404040404040404040404040404040050410223620,000$
10Oliver KylingtonX100.0057427674738376684064636768847305068N0273635,000$
11Jack Thompson (R)X100.00574078747476666940656469695550050660221828,333$
12Jack Matier (R)X100.00654170636760575640535264575050050590212801,667$
13Jack Peart (R)X100.00604264626261605840545461585050050580213925,000$
14Anttoni Honka (R)X100.00504068676052535638534863585050050570241700,000$
15Calle Odelius (R)X100.00554167616161605940575453585050050570203815,000$
16Dyllan Gill (R)X100.00594067626159575740545559585050050570203870,000$
17Oscar Plandowski (R)X100.00373737373737373737373737373737050380213620,000$
Rayé
1Ben Meyers (R)XX100.00624175686973676662636261656050050630251912,500$
2James Stefan (R)X100.00554068625961595740535453575050050550213870,000$
3Jett Woo (R)X100.00655656676565646440615568625250050620241700,000$
MOYENNE D’ÉQUIPE100.0056426763616159584456545858525005057
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPÂgeContratSalaire
1Aleksei Kolosov (R)100.0072676672706864646969655250050620222925,000$
2Chase Clark (R)100.0037373737373737373737373737050350213620,000$
Rayé
1Dryden McKay100.0059555356555252505255535550050500261560,000$
MOYENNE D’ÉQUIPE100.005653525554525150535452484605049
Nom de l’entraîneur PH DF OF PD EX LD PO CNT Âge Contrat Salaire


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du joueur Nom de l’équipePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Rory KerinsSags (San)C8613194409143082420.00%018823.61134190002101051.89%1851110002.0100000030
2Matthew PhillipsSags (San)RW81251730011738161931.58%419324.21314490000131058.06%3177021.7600000401
3Michal TeplySags (San)LW83710675117112427.27%116620.7800019000030136.36%1115001.2000001100
4Ty TullioSags (San)RW853827598202625.00%612515.6600011000130033.33%354001.2800001010
5Oliver KylingtonSags (San)D81675121041413667.69%1219524.41101114000114000%088000.7200011010
6Carter SavoieSags (San)LW842639583175723.53%214317.9311218000040250.00%612000.8400100100
7Jack ThompsonSags (San)D8066420414168100%1120225.33022114000013000%0413000.5900000001
8Zayde WisdomSags (San)RW8336175138237513.04%715118.9500017000041033.33%1236000.7900010001
9Tucker RobertsonSags (San)C8336255128108230.00%314017.5800008000002049.50%10144000.8500001010
10Philippe DaoustSags (San)C841562089143328.57%113316.6500002000010147.27%5554100.7500000101
11Jack PeartSags (San)D8055555374510%214317.990000500016000%0012000.7000100000
12Cameron BergSags (San)C8134195131121150.00%412715.9200000000000055.26%3826000.6300001000
13Jack MatierSags (San)D80334207135040%714418.110000500005000%017000.4100000002
14Anttoni HonkaSags (San)D81122005530033.33%311214.090000100000100%006000.3500000001
15Dyllan GillSags (San)D8011-300340110%2729.030000100002000%114000.2800000000
16Calle OdeliusSags (San)D8000440520100%29411.780000000001000%00700000000000
17Oscar PlandowskiSags (San)D8000-400000000%0516.450000000000000%00100000000000
Statistiques d’équipe totales ou en moyenne1364362105457545125134206739320.87%67238717.566713111000005866450.34%44353106120.8800225767
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du gardien Nom de l’équipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Aleksei KolosovSags (San)86100.8773.584530027219108000080000
2Chase ClarkSags (San)10100.5839.6831005127100008000
Statistiques d’équipe totales ou en moyenne96200.8613.96485003223111510088000


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du joueur Nom de l’équipePOS Âge Date de naissance Pays Recrue Poids Taille Non-échange Disponible pour échange Acquis Par Date de la Dernière Transaction Ballotage forcé Waiver Possible Contrat Date du Signature du Contrat Forcer UFA Rappel d'urgence Type Salaire actuel Plafond salarial Plafond salarial restant Exclus du plafond salarial Salaire année 2Salaire année 3Salaire année 4Salaire année 5Salaire année 6Salaire année 7Salaire année 8Salaire année 9Salaire année 10Plafond salarial année 2Plafond salarial année 3Plafond salarial année 4Plafond salarial année 5Plafond salarial année 6Plafond salarial année 7Plafond salarial année 8Plafond salarial année 9Plafond salarial année 10Non-échange année 2Non-échange année 3Non-échange année 4Non-échange année 5Non-échange année 6Non-échange année 7Non-échange année 8Non-échange année 9Non-échange année 10Lien
Aleksei KolosovSags (San)G222002-01-04BLRYes185 Lbs6 ft1NoNoTrade2025-07-16NoNo22024-06-25FalseFalsePro & Farm925,000$0$0$No925,000$--------925,000$--------No--------Lien
Anttoni HonkaSags (San)D242000-10-05FINYes179 Lbs5 ft10NoNoN/ANoYes1FalseFalsePro & Farm700,000$0$0$No---------------------------Lien
Ben MeyersSags (San)C/LW251998-11-15USAYes194 Lbs5 ft11NoNoTrade2024-01-20YesYes1FalseFalsePro & Farm912,500$0$0$No---------------------------Lien
Calle OdeliusSags (San)D202004-05-30SWEYes183 Lbs6 ft0NoNoProspectNoNo32025-07-10FalseFalsePro & Farm815,000$0$0$No815,000$815,000$-------815,000$815,000$-------NoNo-------Lien
Cameron BergSags (San)C222002-01-29USAYes205 Lbs6 ft0NoNoProspectNoNo32025-07-10FalseFalsePro & Farm620,000$0$0$No620,000$620,000$-------620,000$620,000$-------NoNo-------Lien
Carter SavoieSags (San)LW222002-01-23CANYes185 Lbs5 ft10NoNoN/ANoNo1FalseFalsePro & Farm925,000$0$0$No---------------------------Lien
Chase ClarkSags (San)G212003-05-18USAYes200 Lbs6 ft6NoNoProspectNoNo32025-07-10FalseFalsePro & Farm620,000$0$0$No620,000$620,000$-------620,000$620,000$-------NoNo-------Lien
Dryden McKaySags (San)G261997-11-25USANo183 Lbs6 ft0NoNoN/AYesYes1FalseFalsePro & Farm560,000$0$0$No---------------------------Lien
Dyllan GillSags (San)D202004-06-07CANYes179 Lbs6 ft2NoNoDraftNoNo32025-07-10FalseFalsePro & Farm870,000$0$0$No870,000$870,000$-------870,000$870,000$-------NoNo-------Lien
Jack MatierSags (San)D212003-04-08CANYes196 Lbs6 ft5NoNoProspectNoNo22024-06-25FalseFalsePro & Farm801,667$0$0$No801,667$--------801,667$--------No--------Lien
Jack PeartSags (San)D212003-05-15USAYes194 Lbs6 ft0NoNoProspectNoNo32025-07-10FalseFalsePro & Farm925,000$0$0$No925,000$925,000$-------925,000$925,000$-------NoNo-------Lien
Jack ThompsonSags (San)D222002-03-19CANYes189 Lbs6 ft1NoNoN/ANoNo1FalseFalsePro & Farm828,333$0$0$No---------------------------Lien
James StefanSags (San)RW212003-08-09USAYes174 Lbs6 ft0NoNoDraftNoNo32025-07-10FalseFalsePro & Farm870,000$0$0$No870,000$870,000$-------870,000$870,000$-------NoNo-------Lien
Jett WooSags (San)D242000-07-27CANYes205 Lbs6 ft0NoNoFree AgentNoYes12024-09-28FalseFalsePro & Farm700,000$0$0$No---------------------------Lien
Matthew Phillips (contrat à 1 volet)Sags (San)RW261998-04-06CANNo161 Lbs5 ft8NoNoFree AgentYesYes22025-08-28FalseFalsePro & Farm660,000$0$0$No660,000$--------660,000$--------No--------Lien
Michal TeplySags (San)LW232001-05-27CZEYes187 Lbs6 ft3NoNoFree AgentNoNo22024-09-11FalseFalsePro & Farm620,000$0$0$No620,000$--------620,000$--------No--------Lien
Oliver Kylington (contrat à 1 volet)Sags (San)D271997-05-19SWENo183 Lbs6 ft0YesNoFree AgentYesYes32025-09-28FalseFalsePro & Farm635,000$0$0$No635,000$635,000$-------635,000$635,000$-------NoNo-------Lien
Oscar PlandowskiSags (San)D212003-05-18CANYes200 Lbs6 ft0NoNoProspectNoNo32025-07-10FalseFalsePro & Farm620,000$0$0$No620,000$620,000$-------620,000$620,000$-------NoNo-------Lien
Philippe DaoustSags (San)C222001-11-05CANYes194 Lbs6 ft1NoNoTrade2024-01-20NoNo3FalseFalsePro & Farm600,000$0$0$No600,000$600,000$-------600,000$600,000$-------NoNo-------Lien
Rory KerinsSags (San)C222002-04-12CANYes185 Lbs6 ft0NoNoN/ANoNo1FalseFalsePro & Farm846,667$0$0$No---------------------------Lien
Tucker RobertsonSags (San)C212003-06-22CANYes185 Lbs5 ft11NoNoProspectNoNo22024-06-25FalseFalsePro & Farm870,000$0$0$No870,000$--------870,000$--------No--------Lien
Ty TullioSags (San)RW222002-04-05CANYes185 Lbs6 ft0NoNoN/ANoNo1FalseFalsePro & Farm833,333$0$0$No---------------------------Lien
Zayde WisdomSags (San)RW222002-05-20CANYes194 Lbs5 ft11NoNoN/ANoNo1FalseFalsePro & Farm797,500$0$0$No---------------------------Lien
Nombre de joueursÂge moyenPoids moyenTaille moyenneContrat moyenSalaire moyen 1e année
2322.48188 Lbs6 ft02.00763,261$



Attaque à 5 contre 5
Ligne #Ailier gaucheCentreAilier droit% tempsPHYDFOF
1Michal TeplyRory KerinsMatthew Phillips40122
2Carter SavoieTucker RobertsonZayde Wisdom30122
3Cameron BergPhilippe DaoustTy Tullio20122
4Matthew PhillipsCameron BergRory Kerins10122
Défense à 5 contre 5
Ligne #DéfenseDéfense% tempsPHYDFOF
1Oliver KylingtonJack Thompson40122
2Jack MatierJack Peart30122
3Anttoni HonkaCalle Odelius20122
4Dyllan GillOscar Plandowski10122
Attaque en avantage numérique
Ligne #Ailier gaucheCentreAilier droit% tempsPHYDFOF
1Michal TeplyRory KerinsMatthew Phillips60122
2Carter SavoieTucker RobertsonZayde Wisdom40122
Défense en avantage numérique
Ligne #DéfenseDéfense% tempsPHYDFOF
1Oliver KylingtonJack Thompson60122
2Jack MatierJack Peart40122
Attaque à 4 en désavantage numérique
Ligne #CentreAilier% tempsPHYDFOF
1Matthew PhillipsRory Kerins60122
2Zayde WisdomTy Tullio40122
Défense à 4 en désavantage numérique
Ligne #DéfenseDéfense% tempsPHYDFOF
1Oliver KylingtonJack Thompson60122
2Jack MatierJack Peart40122
3 joueurs en désavantage numérique
Ligne #Ailier% tempsPHYDFOFDéfenseDéfense% tempsPHYDFOF
1Matthew Phillips60122Oliver KylingtonJack Thompson60122
2Rory Kerins40122Jack MatierJack Peart40122
Attaque à 4 contre 4
Ligne #CentreAilier% tempsPHYDFOF
1Matthew PhillipsRory Kerins60122
2Zayde WisdomTy Tullio40122
Défense à 4 contre 4
Ligne #DéfenseDéfense% tempsPHYDFOF
1Oliver KylingtonJack Thompson60122
2Jack MatierJack Peart40122
Attaque dernière minute
Ailier gaucheCentreAilier droitDéfenseDéfense
Michal TeplyRory KerinsMatthew PhillipsOliver KylingtonJack Thompson
Défense dernière minute
Ailier gaucheCentreAilier droitDéfenseDéfense
Michal TeplyRory KerinsMatthew PhillipsOliver KylingtonJack Thompson
Attaquants supplémentaires
Normal Avantage numériqueDésavantage numérique
Philippe Daoust, Tucker Robertson, Michal TeplyPhilippe Daoust, Tucker RobertsonMichal Teply
Défenseurs supplémentaires
Normal Avantage numériqueDésavantage numérique
Anttoni Honka, Calle Odelius, Dyllan GillAnttoni HonkaCalle Odelius, Dyllan Gill
Tirs de pénalité
Matthew Phillips, Rory Kerins, Zayde Wisdom, Ty Tullio, Tucker Robertson
Gardien
#1 : Aleksei Kolosov, #2 : Chase Clark


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
TotalDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals1010000048-41010000048-40000000000000.000481200822212245010095536106010000%5420.00%08817151.46%9319348.19%9318450.54%191992288618597
2Caroline11000000835110000008350000000000021.000812200082221227501009552427162150.00%110.00%08817151.46%9319348.19%9318450.54%191992288618597
3Las Vegas11000000642110000006420000000000021.000611170082221220501009552056114125.00%30100.00%18817151.46%9319348.19%9318450.54%191992288618597
4Manchots11000000532110000005320000000000021.000561100822212145010095534861711100.00%3166.67%08817151.46%9319348.19%9318450.54%191992288618597
5Minnesota10001000431000000000001000100043121.000461000822212175010095529929300.00%10100.00%08817151.46%9319348.19%9318450.54%191992288618597
6Monarchs1100000010551100000010550000000000021.000101424008222122750100955271331214125.00%30100.00%08817151.46%9319348.19%9318450.54%191992288618597
7Roadrunners1010000069-3000000000001010000069-300.0006814008222122750100955236121233100.00%10100.00%08817151.46%9319348.19%9318450.54%191992288618597
8Sound Tigers10001000541000000000001000100054121.000591400822212405010095532121119100.00%3166.67%08817151.46%9319348.19%9318450.54%191992288618597
9Spiders1010000013-2000000000001010000013-200.000112008222122450100955317414200.00%20100.00%08817151.46%9319348.19%9318450.54%191992288618597
10Wolf Pack11000000422000000000001100000042221.00046100082221230501009553110219100.00%110.00%08817151.46%9319348.19%9318450.54%191992288618597
Total1053020005344954100000332310512020002021-1140.700538113400822212250501009552878214114821733.33%23865.22%18817151.46%9319348.19%9318450.54%191992288618597
_Since Last GM Reset1053020005344954100000332310512020002021-1140.700538113400822212250501009552878214114821733.33%23865.22%18817151.46%9319348.19%9318450.54%191992288618597
_Vs Conference73301000353413210000019163412010001618-280.57135528700822212186501009552146612611212541.67%18761.11%08817151.46%9319348.19%9318450.54%191992288618597

Total pour les joueurs
Matchs jouésPointsSéquenceButsPassesPointsTirs pourTirs contreTirs bloquésMinutes de pénalitésMises en échecButs en filet désertBlanchissages
1014W253811342502878214114800
Tous les matchs
GPWLOTWOTL SOWSOLGFGA
105320005344
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
54100003323
Matchs extérieurs
GPWLOTWOTL SOWSOLGFGA
51220002021
Derniers 10 matchs
WLOTWOTL SOWSOL
730000
Tentatives en avantage numériqueButs en avantage numérique% en avantage numériqueTentatives en désavantage numériqueButs contre en désavantage numérique% en désavantage numériqueButs pour en désavantage numérique
21733.33%23865.22%1
Tirs en 1e périodeTirs en 2e périodeTirs en 3e périodeTirs en 4e périodeButs en 1e périodeButs en 2e périodeButs en 3e périodeButs en 4e période
50100955822212
Mises en jeu
Gagnées en zone offensiveTotal en zone offensive% gagnées en zone offensive Gagnées en zone défensiveTotal en zone défensive% gagnées en zone défensiveGagnées en zone neutreTotal en zone neutre% gagnées en zone neutre
8817151.46%9319348.19%9318450.54%
Temps avec la rondelle
En zone offensiveContrôle en zone offensiveEn zone défensiveContrôle en zone défensiveEn zone neutreContrôle en zone neutre
191992288618597


Derniers matchs joués
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe visiteuse Score Équipe locale Score ST OT SO RI Lien
3 - 2025-10-0920Las Vegas4Sags6WSommaire du match
5 - 2025-10-1136Admirals8Sags4LSommaire du match
8 - 2025-10-1455Caroline3Sags8WSommaire du match
11 - 2025-10-1775Sags6Roadrunners9LSommaire du match
12 - 2025-10-1888Manchots3Sags5WSommaire du match
15 - 2025-10-21100Sags5Sound Tigers4WXSommaire du match
17 - 2025-10-23116Sags4Wolf Pack2WSommaire du match
18 - 2025-10-24124Sags1Spiders3LSommaire du match
20 - 2025-10-26142Sags4Minnesota3WXSommaire du match
22 - 2025-10-28165Monarchs5Sags10WSommaire du match
24 - 2025-10-30176Spiders-Sags-
26 - 2025-11-01184Monsters-Sags-
27 - 2025-11-02198Cougars-Sags-
30 - 2025-11-05217Sags-Firebirds-
32 - 2025-11-07230Oceanics-Sags-
33 - 2025-11-08243Cabaret Lady Mary Ann-Sags-
36 - 2025-11-11261Sags-Minnesota-
38 - 2025-11-13276Sags-Heat-
40 - 2025-11-15295Sags-Firebirds-
43 - 2025-11-18314Roadrunners-Sags-
45 - 2025-11-20330Monarchs-Sags-
47 - 2025-11-22342Senators-Sags-
48 - 2025-11-23351Bruins-Sags-
51 - 2025-11-26371Sags-Monsters-
53 - 2025-11-28385Comets-Sags-
54 - 2025-11-29400Sags-Las Vegas-
56 - 2025-12-01410Roadrunners-Sags-
58 - 2025-12-03425Bears-Sags-
60 - 2025-12-05438Sags-Stars-
62 - 2025-12-07455Sags-Caroline-
64 - 2025-12-09469Sags-Phantoms-
66 - 2025-12-11480Sags-Marlies-
68 - 2025-12-13497Sags-Manchots-
71 - 2025-12-16527Heat-Sags-
73 - 2025-12-18543Stars-Sags-
75 - 2025-12-20561Firebirds-Sags-
78 - 2025-12-23586Sags-Las Vegas-
82 - 2025-12-27599Sags-Comets-
84 - 2025-12-29615Sags-Admirals-
86 - 2025-12-31625Minnesota-Sags-
89 - 2026-01-03649Thunder-Sags-
92 - 2026-01-06675Monsters-Sags-
93 - 2026-01-07681Sags-Monarchs-
96 - 2026-01-10700Stars-Sags-
97 - 2026-01-11715Las Vegas-Sags-
101 - 2026-01-15742Sags-Bears-
102 - 2026-01-16749Sags-Cougars-
105 - 2026-01-19773Sags-Cabaret Lady Mary Ann-
106 - 2026-01-20781Sags-Thunder-
109 - 2026-01-23808Wolf Pack-Sags-
113 - 2026-01-27838Sags-Comets-
115 - 2026-01-29854Sags-Oil Kings-
117 - 2026-01-31863Sags-Heat-
119 - 2026-02-02881Sags-Baby Hawks-
121 - 2026-02-04897Sags-Monsters-
143 - 2026-02-26928Heat-Sags-
145 - 2026-02-28936Oil Kings-Sags-
146 - 2026-03-01950Oceanics-Sags-
148 - 2026-03-03969Rocket-Sags-
151 - 2026-03-06989Chiefs-Sags-
152 - 2026-03-07999Sound Tigers-Sags-
Date limite d’échanges --- Les échanges ne peuvent plus se faire après la simulation de cette journée!
155 - 2026-03-101013Sags-Crunch-
157 - 2026-03-121027Sags-Bruins-
159 - 2026-03-141048Sags-Rocket-
160 - 2026-03-151058Sags-Senators-
162 - 2026-03-171073Sags-Oil Kings-
164 - 2026-03-191092Crunch-Sags-
166 - 2026-03-211103Phantoms-Sags-
169 - 2026-03-241129Sags-Jayhawks-
171 - 2026-03-261143Sags-Chiefs-
173 - 2026-03-281158Sags-Monsters-
175 - 2026-03-301177Chiefs-Sags-
177 - 2026-04-011190Admirals-Sags-
178 - 2026-04-021202Marlies-Sags-
180 - 2026-04-041220Jayhawks-Sags-
182 - 2026-04-061231Baby Hawks-Sags-
184 - 2026-04-081246Oil Kings-Sags-
185 - 2026-04-091258Sags-Admirals-
187 - 2026-04-111275Comets-Sags-
189 - 2026-04-131287Sags-Jayhawks-
191 - 2026-04-151305Sags-Baby Hawks-
192 - 2026-04-161308Sags-Oceanics-



Capacité de l’aréna - Tendance du prix des billets - %
Niveau 1Niveau 2
Capacité17501250
Prix des billets5020
Assistance5,4144,248
Assistance PCT61.87%67.97%

Revenu
Matchs à domicile restantsAssistance moyenne - %Revenu moyen par matchRevenu annuel à ce jourCapacitéPopularité de l’équipe
-1 1932 - 64.41% 85,358$426,792$3000100

Dépenses
Dépenses annuelles à ce jourSalaire total des joueursPlafond Salariale total des joueursSalaire des entraineurs
185,350$ 1,626,000$ 1,626,000$ 0$
Plafond salarial par jourPlafond salarial à ce jourJoueurs Inclus dans le plafond salarialJoueurs exclut du plafond Salarial
8,425$ 185,350$ 0 0

Estimation
Revenus de la saison estimésJours restants de la saisonDépenses par jourDépenses de la saison estimées
-170,717$ 171 8,425$ 1,440,675$




Sags Leaders statistiques des joueurs (saison régulière)

# Nom du joueur GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Sags Leaders des statistiques des gardiens (saison régulière)

# Nom du gardien GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA

Sags Statistiques de l'Équipe de Carrière

TotalDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT

Sags Leaders statistiques des joueurs (séries éliminatoires)

# Nom du joueur GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Sags Leaders des statistiques des gardiens (séries éliminatoires)

# Nom du gardien GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA