Please rotate your device to landscape mode for a better experience.
Connexion

Monsters
GP: 45 | W: 25 | L: 18 | OTL: 2 | P: 52
GF: 190 | GA: 168 | PP%: 30.16% | PK%: 73.02%
DG: Fred Gagnon | Morale : 50 | Moyenne d’équipe : 60
Prochains matchs #728 vs Heat

Centre de jeu
Monsters
25-18-2, 52pts
2
FINAL
8 Monsters
29-10-5, 63pts
Team Stats
L5SéquenceW5
11-9-0Fiche domicile11-5-5
14-9-2Fiche domicile18-5-0
4-6-0Derniers 10 matchs7-2-1
4.22Buts par match 5.05
3.73Buts contre par match 4.00
30.16%Pourcentage en avantage numérique39.68%
73.02%Pourcentage en désavantage numérique71.79%
Monsters
25-18-2, 52pts
1
FINAL
3 Roadrunners
23-20-3, 49pts
Team Stats
L5SéquenceW3
11-9-0Fiche domicile14-6-0
14-9-2Fiche domicile9-14-3
4-6-0Derniers 10 matchs6-4-0
4.22Buts par match 5.17
3.73Buts contre par match 5.33
30.16%Pourcentage en avantage numérique49.07%
73.02%Pourcentage en désavantage numérique58.28%
Heat
23-18-4, 50pts
2026-01-13
Monsters
25-18-2, 52pts
Statistiques d’équipe
W5SéquenceL5
11-7-3Fiche domicile11-9-0
12-11-1Fiche visiteur14-9-2
6-2-210 derniers matchs4-6-0
5.07Buts par match 4.22
4.84Buts contre par match 4.22
44.92%Pourcentage en avantage numérique30.16%
66.67%Pourcentage en désavantage numérique73.02%
Comets
23-16-5, 51pts
2026-01-15
Monsters
25-18-2, 52pts
Statistiques d’équipe
SOL1SéquenceL5
10-7-2Fiche domicile11-9-0
13-9-3Fiche visiteur14-9-2
5-3-210 derniers matchs4-6-0
4.16Buts par match 4.22
3.64Buts contre par match 4.22
54.64%Pourcentage en avantage numérique30.16%
69.41%Pourcentage en désavantage numérique73.02%
Monsters
25-18-2, 52pts
2026-01-17
Manchots
26-15-3, 55pts
Statistiques d’équipe
L5SéquenceOTL1
11-9-0Fiche domicile13-9-0
14-9-2Fiche visiteur13-6-3
4-6-010 derniers matchs5-4-1
4.22Buts par match 4.43
3.73Buts contre par match 4.43
30.16%Pourcentage en avantage numérique30.66%
73.02%Pourcentage en désavantage numérique66.98%
Meneurs d'équipe
Buts
Ivan Miroshnichenko
35
Passes
Fedor Svechkov
45
Points
Ivan Miroshnichenko
76
Plus/Moins
Fedor Svechkov
24
Victoires
Arturs Silovs
25
Pourcentage d’arrêts
Arturs Silovs
0.867

Statistiques d’équipe
Buts pour
190
4.22 GFG
Tirs pour
1144
25.42 Avg
Pourcentage en avantage numérique
30.2%
38 GF
Début de zone offensive
33.8%
Buts contre
168
3.73 GAA
Tirs contre
1228
27.29 Avg
Pourcentage en désavantage numérique
73.0%%
34 GA
Début de la zone défensive
35.8%
Informations de l'équipe

Directeur généralFred Gagnon
DivisionNord-Est
ConférenceEst
Capitaine
Assistant #1
Assistant #2


Informations de l’aréna

Capacité3,000
Assistance2,882
Billets de saison300


Informations de la formation

Équipe Pro25
Équipe Mineure21
Limite contact 46 / 50
Espoirs9


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPÂgeContratSalaire
1Fedor Svechkov (R)X100.00654080727475666959666565695250050650212925,000$
2Ivan Miroshnichenko (R)XX100.00694077747878636740636263675550050640202950,000$
3Matt Rempe (R)XXX100.00777058648871686547596063635550050630221820,000$
4Benoit-Olivier Groulx (R)XXX100.00654470677070676464625962645950050620241700,000$
5Laurent DauphinXXX100.00574359655765646043605862616053050600291888,888$
6Jared Davidson (R)X100.00644365696362606343596063645050050600222862,500$
7William Strömgren (R)X100.00584173656465636343645655615050050590212900,833$
8Dylan Roobroeck (R)X100.00644264626760586242586059615050050590203850,000$
9Cole Fonstad (R)X100.00494069655853545540515051585150050530241700,000$
10Matteo Costantini (R)X100.00525554545551515254515154535555050530222620,000$
11Drew Helleson (R)X100.00715167717977726940656371685650050680231925,000$
12Chase PriskieX100.00564270716170696640626267665950050630282700,000$
13Matt KierstedX100.00644466696370676440625469626050050630262930,000$
14Connor MackeyX100.00605955666571686340595767626050050620281925,000$
15Vincent Iorio (R)X100.00664270666863616340595568615050050620211845,000$
16Frederic Brunet (R)X100.00654270686461596240605568625050050620212860,000$
17Roman Schmidt (R)X100.00644758626761605840545564585050050590213805,833$
18Guillaume Richard (R)X100.00584062625958575640545560585050050570213867,500$
Rayé
1Zach PariseX100.001920202020181819201818201920200502304012,400,000$
2Lukas Cormier (R)X100.00554269666361595940575358595150050580221793,333$
3Daniil Chayka (R)X100.00584168636660585540515157565050050570211847,500$
MOYENNE D’ÉQUIPE100.0060446464646360604357556060524905059
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPÂgeContratSalaire
1Arturs Silovs (R)100.0074697079737170687272675652050650231870,000$
2Jakub Skarek (R)100.0069636566666567636667565350050600241765,000$
Rayé
1Mads Sogaard (R)100.0065596171656262596364585250050580231800,000$
2Yaniv Perets (R)100.0067595866636059566262565250050560242805,000$
MOYENNE D’ÉQUIPE100.006963647167656562666659535105060
Nom de l’entraîneur PH DF OF PD EX LD PO CNT Âge Contrat Salaire


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du joueur Nom de l’équipePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Ivan MiroshnichenkoMonsters (Clb)LW/RW4535417616291569521904610618.42%19106123.5881321258930391065145.05%915322041.4302102943
2Fedor SvechkovMonsters (Clb)C432145662424105394146498514.38%2496322.414111518810330954158.89%11312321011.3712002374
3Jimmy SnuggerudColumbusRW412922511130105954128235622.66%1279719.4554913722022333250.00%402515021.2800011470
4Benoit-Olivier GroulxMonsters (Clb)C/LW/RW4520294972810527194256621.28%1890220.0638118781122634057.95%4591420011.0912002330
5Matt RempeMonsters (Clb)C/LW/RW452424481416670644099325324.24%2190920.2256118860114344048.72%782019001.0612428305
6Laurent DauphinMonsters (Clb)C/LW/RW4517143144810815865194826.15%1884218.723258770002201040.54%371318000.7400002203
7Jared DavidsonMonsters (Clb)C45121426-23410515381214614.81%1169715.50123214000020046.72%2591413000.7500200103
8William StrömgrenMonsters (Clb)LW4591120-1075483460254815.00%1268515.231121110001181138.64%441816000.5800010011
9Dylan RoobroeckMonsters (Clb)C4551318-1012053505119389.80%1367414.9900000000001053.57%112911000.5300000021
10Chase PriskieMonsters (Clb)D4521517619526515416183.70%3090520.130224640000710016.67%61833000.3800001000
11Matt KierstedMonsters (Clb)D45116176251530414712172.13%2187319.420112630001680050.00%21128000.3900102000
12Frederic BrunetMonsters (Clb)D4567134602736194931.58%2873716.384267109000064100%0530000.3500000000
13Owen PickeringColumbusD221121344018302012115.00%2852924.07134455000058000%0927000.4900000001
14Roman SchmidtMonsters (Clb)D45112134763043703321113.03%5496421.430000000000000%01126000.2700006012
15Vincent IorioMonsters (Clb)D4546101012022362291018.18%3073016.233367530110107000%1126000.2700000000
16Connor MackeyMonsters (Clb)D32279284302424259118.00%3346614.5600001000050050.00%4623000.3900312010
17Matteo CostantiniMonsters (Clb)C4033-395772120%26817.0000000000000050.62%8110000.8800100000
18Cole FonstadMonsters (Clb)LW4000-320976120%27117.93000010000300100.00%20500000000000
19Drew HellesonMonsters (Clb)D3000055110000%23311.100000000003000%01200000001000
20Daniil ChaykaMonsters (Clb)D33000-400310010%2551.6900001000030014.29%71100000000000
21Lukas CormierMonsters (Clb)D43000375081000%02505.820000000000000%00300000001000
22Guillaume RichardMonsters (Clb)D45000000141000%31222.72000020000000100.00%10000000000000
Statistiques d’équipe totales ou en moyenne81018929148083627235741822114434463816.52%3831334316.4738589610786766122176024554.90%2355253359080.723812530252623
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du gardien Nom de l’équipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Arturs SilovsMonsters (Clb)45251420.8673.552500211481114561310.5008450000
2Jakub SkarekMonsters (Clb)90400.8415.172090018113590000045000
Statistiques d’équipe totales ou en moyenne54251820.8653.6827092116612276203184545000


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du joueur Nom de l’équipePOS Âge Date de naissance Pays Recrue Poids Taille Non-échange Disponible pour échange Acquis Par Date de la Dernière Transaction Ballotage forcé Waiver Possible Contrat Date du Signature du Contrat Forcer UFA Rappel d'urgence Type Salaire actuel Plafond salarial Plafond salarial restant Exclus du plafond salarial Salaire année 2Salaire année 3Salaire année 4Salaire année 5Salaire année 6Salaire année 7Salaire année 8Salaire année 9Salaire année 10Plafond salarial année 2Plafond salarial année 3Plafond salarial année 4Plafond salarial année 5Plafond salarial année 6Plafond salarial année 7Plafond salarial année 8Plafond salarial année 9Plafond salarial année 10Non-échange année 2Non-échange année 3Non-échange année 4Non-échange année 5Non-échange année 6Non-échange année 7Non-échange année 8Non-échange année 9Non-échange année 10Lien
Arturs SilovsMonsters (Clb)G232001-03-22LVAYes203 Lbs6 ft4NoNoTrade2025-02-24NoNo1FalseFalsePro & Farm870,000$0$0$No---------------------------Lien
Benoit-Olivier GroulxMonsters (Clb)C/LW/RW242000-02-06CANYes194 Lbs6 ft2NoNoFree AgentNoYes12025-09-05FalseFalsePro & Farm700,000$0$0$No---------------------------Lien
Chase PriskieMonsters (Clb)D281996-03-19USANo185 Lbs6 ft0NoNoFree AgentYesYes22024-09-03FalseFalsePro & Farm700,000$0$0$No700,000$--------700,000$--------No--------Lien
Cole FonstadMonsters (Clb)LW242000-04-24CANYes170 Lbs5 ft10NoNoN/ANoYes1FalseFalsePro & Farm700,000$0$0$No---------------------------Lien
Connor MackeyMonsters (Clb)D281996-09-12USANo190 Lbs6 ft2NoNoFree AgentYesYes12025-08-27FalseFalsePro & Farm925,000$0$0$No---------------------------Lien
Daniil ChaykaMonsters (Clb)D212002-10-22RUSYes187 Lbs6 ft3NoNoN/ANoNo1FalseFalsePro & Farm847,500$0$0$No---------------------------Lien
Drew HellesonMonsters (Clb)D232001-03-26USAYes213 Lbs6 ft3NoNoN/ANoNo1FalseFalsePro & Farm925,000$0$0$No---------------------------Lien
Dylan RoobroeckMonsters (Clb)C202004-07-27CANYes205 Lbs6 ft7NoNoDraftNoNo32025-07-10FalseFalsePro & Farm850,000$0$0$No850,000$850,000$-------850,000$850,000$-------NoNo-------Lien
Fedor SvechkovMonsters (Clb)C212003-04-05RUSYes187 Lbs6 ft0NoNoTrade2025-07-26NoNo22024-06-25FalseFalsePro & Farm925,000$0$0$No925,000$--------925,000$--------No--------Lien
Frederic BrunetMonsters (Clb)D212003-08-21CANYes176 Lbs6 ft2NoNoProspectNoNo22024-06-25FalseFalsePro & Farm860,000$0$0$No860,000$--------860,000$--------No--------Lien
Guillaume RichardMonsters (Clb)D212003-02-10CANYes170 Lbs6 ft2NoNoProspectNoNo32025-07-10FalseFalsePro & Farm867,500$0$0$No867,500$867,500$-------867,500$867,500$-------NoNo-------Lien
Ivan MiroshnichenkoMonsters (Clb)LW/RW202004-02-04RUSYes185 Lbs6 ft1NoNoProspectNoNo22024-06-25FalseFalsePro & Farm950,000$0$0$No950,000$--------950,000$--------No--------Lien
Jakub SkarekMonsters (Clb)G241999-11-10CZEYes203 Lbs6 ft3NoNoFree AgentNoYes12025-08-27FalseFalsePro & Farm765,000$0$0$No---------------------------Lien
Jared DavidsonMonsters (Clb)C222002-07-07CANYes181 Lbs6 ft0NoNoProspectNoNo22024-06-25FalseFalsePro & Farm862,500$0$0$No862,500$--------862,500$--------No--------Lien
Laurent Dauphin (contrat à 1 volet)Monsters (Clb)C/LW/RW291995-03-27CANNo181 Lbs6 ft1NoNoN/AYesYes1FalseFalsePro & Farm888,888$0$0$No---------------------------Lien
Lukas CormierMonsters (Clb)D222002-03-27CANYes185 Lbs5 ft11NoNoN/ANoNo1FalseFalsePro & Farm793,333$0$0$No---------------------------Lien
Mads SogaardMonsters (Clb)G232000-12-13DENYes196 Lbs6 ft7NoNoFree AgentNoNo12024-09-03FalseFalsePro & Farm800,000$0$0$No---------------------------Lien
Matt KierstedMonsters (Clb)D261998-04-14USANo181 Lbs6 ft0NoNoFree AgentYesYes22025-08-27FalseFalsePro & Farm930,000$0$0$No930,000$--------930,000$--------No--------Lien
Matt RempeMonsters (Clb)C/LW/RW222002-06-29CANYes255 Lbs6 ft9NoNoN/ANoNo1FalseFalsePro & Farm820,000$0$0$No---------------------------Lien
Matteo CostantiniMonsters (Clb)C222002-08-16CANYes176 Lbs6 ft2NoNoProspectNoNo22024-06-25FalseFalsePro & Farm620,000$0$0$No620,000$--------620,000$--------No--------Lien
Roman SchmidtMonsters (Clb)D212003-02-27USAYes209 Lbs6 ft5NoNoProspectNoNo32025-07-10FalseFalsePro & Farm805,833$0$0$No805,833$805,833$-------805,833$805,833$-------NoNo-------Lien
Vincent IorioMonsters (Clb)D212002-11-14CANYes205 Lbs6 ft4NoNoN/ANoNo1FalseFalsePro & Farm845,000$0$0$No---------------------------Lien
William StrömgrenMonsters (Clb)LW212003-06-07SWEYes174 Lbs6 ft3NoNoProspectNoNo22024-06-25FalseFalsePro & Farm900,833$0$0$No900,833$--------900,833$--------No--------Lien
Yaniv PeretsMonsters (Clb)G242000-03-04CANYes181 Lbs6 ft1NoNoTrade2025-02-14NoYes22024-06-25FalseFalsePro & Farm805,000$0$0$No805,000$--------805,000$--------No--------Lien
Zach Parise (contrat à 1 volet)ColumbusLW401984-07-28USANo195 Lbs5 ft11NoNoTrade2025-09-17YesYes1FalseFalsePro & Farm2,400,000$2,400,000$1,193,782$No---------------------------Lien
Nombre de joueursÂge moyenPoids moyenTaille moyenneContrat moyenSalaire moyen 1e année
2523.64191 Lbs6 ft21.60894,255$



Attaque à 5 contre 5
Ligne #Ailier gaucheCentreAilier droit% tempsPHYDFOF
1Ivan MiroshnichenkoMatteo CostantiniMatt Rempe40122
2Laurent DauphinBenoit-Olivier GroulxCole Fonstad30122
3William StrömgrenJared DavidsonDylan Roobroeck20122
4Matt RempeDylan RoobroeckIvan Miroshnichenko10122
Défense à 5 contre 5
Ligne #DéfenseDéfense% tempsPHYDFOF
1Roman SchmidtConnor Mackey40122
2Chase PriskieMatt Kiersted30122
3Vincent IorioFrederic Brunet20122
4Roman SchmidtDrew Helleson10122
Attaque en avantage numérique
Ligne #Ailier gaucheCentreAilier droit% tempsPHYDFOF
1Ivan MiroshnichenkoJared DavidsonMatt Rempe60122
2Laurent DauphinBenoit-Olivier GroulxWilliam Strömgren40122
Défense en avantage numérique
Ligne #DéfenseDéfense% tempsPHYDFOF
1Frederic BrunetVincent Iorio60122
2Chase PriskieMatt Kiersted40122
Attaque à 4 en désavantage numérique
Ligne #CentreAilier% tempsPHYDFOF
1William StrömgrenIvan Miroshnichenko60122
2Matt RempeBenoit-Olivier Groulx40122
Défense à 4 en désavantage numérique
Ligne #DéfenseDéfense% tempsPHYDFOF
1Vincent IorioFrederic Brunet60122
2Chase PriskieMatt Kiersted40122
3 joueurs en désavantage numérique
Ligne #Ailier% tempsPHYDFOFDéfenseDéfense% tempsPHYDFOF
1Matt Rempe60122Frederic BrunetVincent Iorio60122
2Ivan Miroshnichenko40122Chase PriskieMatt Kiersted40122
Attaque à 4 contre 4
Ligne #CentreAilier% tempsPHYDFOF
1Laurent DauphinIvan Miroshnichenko60122
2Matt RempeBenoit-Olivier Groulx40122
Défense à 4 contre 4
Ligne #DéfenseDéfense% tempsPHYDFOF
1Vincent IorioFrederic Brunet60122
2Chase PriskieMatt Kiersted40122
Attaque dernière minute
Ailier gaucheCentreAilier droitDéfenseDéfense
Ivan MiroshnichenkoBenoit-Olivier GroulxMatt RempeChase PriskieMatt Kiersted
Défense dernière minute
Ailier gaucheCentreAilier droitDéfenseDéfense
Ivan MiroshnichenkoBenoit-Olivier GroulxMatt RempeChase PriskieMatt Kiersted
Attaquants supplémentaires
Normal Avantage numériqueDésavantage numérique
Jared Davidson, William Strömgren, Ivan MiroshnichenkoJared Davidson, William StrömgrenIvan Miroshnichenko
Défenseurs supplémentaires
Normal Avantage numériqueDésavantage numérique
Guillaume Richard, Vincent Iorio, Frederic BrunetGuillaume RichardVincent Iorio, Frederic Brunet
Tirs de pénalité
Jared Davidson, Ivan Miroshnichenko, Matt Rempe, Benoit-Olivier Groulx, Dylan Roobroeck
Gardien
#1 : Arturs Silovs, #2 : Jakub Skarek


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
TotalDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals2010010038-51010000015-41000010023-110.2503470028718856325241447214661425454125.00%5340.00%044079655.28%46884455.45%38571553.85%838381923426950498
2Bears311010008621010000013-22100100073440.66781119012871885582524144721450198427114.29%4175.00%044079655.28%46884455.45%38571553.85%838381923426950498
3Cabaret Lady Mary Ann11000000422000000000001100000042221.000471100287188531252414472142444187114.29%20100.00%044079655.28%46884455.45%38571553.85%838381923426950498
4Caroline11000000826000000000001100000082621.0008917002871885392524144721424102143266.67%10100.00%044079655.28%46884455.45%38571553.85%838381923426950498
5Chiefs1010000025-31010000025-30000000000000.00024600287188523252414472143068224125.00%4175.00%044079655.28%46884455.45%38571553.85%838381923426950498
6Comets1010000012-1000000000001010000012-100.0001230028718851925241447214287417300.00%20100.00%044079655.28%46884455.45%38571553.85%838381923426950498
7Cougars22000000954110000004221100000053241.000916250028718855525241447214541113344250.00%4175.00%044079655.28%46884455.45%38571553.85%838381923426950498
8Crunch2200000018711110000009271100000095441.0001825430028718854925241447214531654278450.00%70100.00%144079655.28%46884455.45%38571553.85%838381923426950498
9Firebirds10001000431000000000001000100043121.000461000287188529252414472142488154125.00%4175.00%044079655.28%46884455.45%38571553.85%838381923426950498
10Heat11000000642000000000001100000064221.0006101600287188516252414472144610138000%4175.00%044079655.28%46884455.45%38571553.85%838381923426950498
11Jayhawks11000000725000000000001100000072521.000711180028718852425241447214241126142150.00%20100.00%044079655.28%46884455.45%38571553.85%838381923426950498
12Las Vegas2110000078-1110000004311010000035-220.500710171028718855725241447214431718427228.57%9277.78%044079655.28%46884455.45%38571553.85%838381923426950498
13Manchots30300000715-820200000612-61010000013-200.000711180028718855325241447214853543487228.57%14471.43%044079655.28%46884455.45%38571553.85%838381923426950498
14Marlies312000001615121100000121021010000045-120.33316294500287188594252414472147821455511545.45%15566.67%144079655.28%46884455.45%38571553.85%838381923426950498
15Minnesota220000001055110000005321100000052341.0001014240028718855125241447214401513346466.67%4175.00%044079655.28%46884455.45%38571553.85%838381923426950498
16Monarchs11000000532000000000001100000053221.0005813002871885392524144721429117152150.00%10100.00%044079655.28%46884455.45%38571553.85%838381923426950498
17Monsters20200000513-81010000035-21010000028-600.000581300287188543252414472145913639600.00%3166.67%044079655.28%46884455.45%38571553.85%838381923426950498
18Oceanics1010000036-3000000000001010000036-300.000369002871885312524144721438101414400.00%20100.00%044079655.28%46884455.45%38571553.85%838381923426950498
19Oil Kings22000000844110000004221100000042241.000812200028718855025241447214452016333133.33%3166.67%044079655.28%46884455.45%38571553.85%838381923426950498
20Roadrunners1010000013-2000000000001010000013-200.000123002871885212524144721440151311200.00%4175.00%044079655.28%46884455.45%38571553.85%838381923426950498
21Rocket11000000817110000008170000000000021.00081018002871885272524144721419619146116.67%20100.00%144079655.28%46884455.45%38571553.85%838381923426950498
22Sags10100000511-60000000000010100000511-600.00058130028718852725241447214481361144250.00%330.00%044079655.28%46884455.45%38571553.85%838381923426950498
23Senators210000101266110000007251000001054141.0001216280028718856125241447214511150337342.86%5260.00%144079655.28%46884455.45%38571553.85%838381923426950498
24Sound Tigers21000001981110000004221000000156-130.75091423002871885462524144721450166229200.00%6183.33%244079655.28%46884455.45%38571553.85%838381923426950498
25Spiders321000001613321100000111011100000053240.66716264200287188587252414472141134183667228.57%9277.78%044079655.28%46884455.45%38571553.85%838381923426950498
26Stars1010000035-2000000000001010000035-200.0003470028718852425241447214245411000%220.00%044079655.28%46884455.45%38571553.85%838381923426950498
27Thunder11000000422110000004220000000000021.000461000287188514252414472141882154125.00%10100.00%044079655.28%46884455.45%38571553.85%838381923426950498
28Wolf Pack1010000014-31010000014-30000000000000.00012300287188513252414472142510812200.00%4175.00%044079655.28%46884455.45%38571553.85%838381923426950498
Total452218021111901682220119000008673132511902111104959520.57819029148111287188511442524144721412283836297411263830.16%1263473.02%644079655.28%46884455.45%38571553.85%838381923426950498
_Since Last GM Reset452218021111901682220119000008673132511902111104959520.57819029148111287188511442524144721412283836297411263830.16%1263473.02%644079655.28%46884455.45%38571553.85%838381923426950498
_Vs Conference248120111190100-101257000004750-31235011114350-7220.4589014323301287188560725241447214691224421399631828.57%732368.49%444079655.28%46884455.45%38571553.85%838381923426950498
_Vs Division13320000149481722000002331-8610000012617970.26949731220128718852962524144721434713120621128725.00%38976.32%244079655.28%46884455.45%38571553.85%838381923426950498

Total pour les joueurs
Matchs jouésPointsSéquenceButsPassesPointsTirs pourTirs contreTirs bloquésMinutes de pénalitésMises en échecButs en filet désertBlanchissages
4552L51902914811144122838362974111
Tous les matchs
GPWLOTWOTL SOWSOLGFGA
4522182111190168
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
2011900008673
Matchs extérieurs
GPWLOTWOTL SOWSOLGFGA
25119211110495
Derniers 10 matchs
WLOTWOTL SOWSOL
460000
Tentatives en avantage numériqueButs en avantage numérique% en avantage numériqueTentatives en désavantage numériqueButs contre en désavantage numérique% en désavantage numériqueButs pour en désavantage numérique
1263830.16%1263473.02%6
Tirs en 1e périodeTirs en 2e périodeTirs en 3e périodeTirs en 4e périodeButs en 1e périodeButs en 2e périodeButs en 3e périodeButs en 4e période
252414472142871885
Mises en jeu
Gagnées en zone offensiveTotal en zone offensive% gagnées en zone offensive Gagnées en zone défensiveTotal en zone défensive% gagnées en zone défensiveGagnées en zone neutreTotal en zone neutre% gagnées en zone neutre
44079655.28%46884455.45%38571553.85%
Temps avec la rondelle
En zone offensiveContrôle en zone offensiveEn zone défensiveContrôle en zone défensiveEn zone neutreContrôle en zone neutre
838381923426950498


Derniers matchs joués
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe visiteuse Score Équipe locale Score ST OT SO RI Lien
3 - 2025-10-0916Monsters7Jayhawks2WSommaire du match
5 - 2025-10-1133Monsters5Minnesota2WSommaire du match
7 - 2025-10-1345Spiders5Monsters9WSommaire du match
10 - 2025-10-1667Monsters5Monsters3LSommaire du match
12 - 2025-10-1882Thunder2Monsters4WSommaire du match
15 - 2025-10-21106Monsters3Stars5LSommaire du match
18 - 2025-10-24125Bears3Monsters1LSommaire du match
19 - 2025-10-25134Monsters1Manchots3LSommaire du match
22 - 2025-10-28152Monsters9Crunch5WSommaire du match
23 - 2025-10-29166Marlies8Monsters6LSommaire du match
26 - 2025-11-01189Chiefs5Monsters2LSommaire du match
27 - 2025-11-02195Monsters5Sound Tigers6LXXSommaire du match
30 - 2025-11-05215Monsters6Heat4WSommaire du match
33 - 2025-11-08241Monsters1Comets2LSommaire du match
35 - 2025-11-10254Monsters4Oil Kings2WSommaire du match
36 - 2025-11-11264Monsters4Firebirds3WXSommaire du match
38 - 2025-11-13274Oil Kings2Monsters4WSommaire du match
40 - 2025-11-15290Wolf Pack4Monsters1LSommaire du match
42 - 2025-11-17305Rocket1Monsters8WSommaire du match
43 - 2025-11-18311Monsters3Oceanics6LSommaire du match
45 - 2025-11-20319Monsters4Marlies5LSommaire du match
47 - 2025-11-22335Monsters5Cougars3WSommaire du match
49 - 2025-11-24356Monsters4Bears3WXSommaire du match
51 - 2025-11-26369Marlies2Monsters6WSommaire du match
53 - 2025-11-28388Manchots4Monsters1LSommaire du match
56 - 2025-12-01406Monsters5Spiders3WSommaire du match
59 - 2025-12-04432Cougars2Monsters4WSommaire du match
61 - 2025-12-06442Monsters4Cabaret Lady Mary Ann2WSommaire du match
62 - 2025-12-07459Monsters3Bears0WSommaire du match
64 - 2025-12-09471Monsters8Caroline2WSommaire du match
66 - 2025-12-11486Senators2Monsters7WSommaire du match
68 - 2025-12-13502Las Vegas3Monsters4WSommaire du match
71 - 2025-12-16525Admirals5Monsters1LSommaire du match
73 - 2025-12-18540Minnesota3Monsters5WSommaire du match
75 - 2025-12-20560Monsters2Admirals3LXSommaire du match
77 - 2025-12-22574Monsters5Monarchs3WSommaire du match
83 - 2025-12-28603Sound Tigers2Monsters4WSommaire du match
84 - 2025-12-29606Monsters5Senators4WXXSommaire du match
86 - 2025-12-31627Spiders5Monsters2LSommaire du match
89 - 2026-01-03646Crunch2Monsters9WSommaire du match
90 - 2026-01-04658Manchots8Monsters5LSommaire du match
92 - 2026-01-06675Monsters5Sags11LSommaire du match
94 - 2026-01-08692Monsters3Las Vegas5LSommaire du match
96 - 2026-01-10699Monsters2Monsters8LSommaire du match
97 - 2026-01-11714Monsters1Roadrunners3LSommaire du match
99 - 2026-01-13728Heat-Monsters-
101 - 2026-01-15743Comets-Monsters-
103 - 2026-01-17760Monsters-Manchots-
106 - 2026-01-20782Senators-Monsters-
108 - 2026-01-22797Stars-Monsters-
110 - 2026-01-24814Thunder-Monsters-
112 - 2026-01-26828Monarchs-Monsters-
114 - 2026-01-28840Phantoms-Monsters-
116 - 2026-01-30858Monsters-Baby Hawks-
117 - 2026-01-31868Monsters-Chiefs-
120 - 2026-02-03887Monsters-Spiders-
121 - 2026-02-04894Baby Hawks-Monsters-
143 - 2026-02-26918Monsters-Bruins-
145 - 2026-02-28937Sound Tigers-Monsters-
147 - 2026-03-02953Monsters-Wolf Pack-
148 - 2026-03-03963Jayhawks-Monsters-
150 - 2026-03-05978Cabaret Lady Mary Ann-Monsters-
152 - 2026-03-07995Roadrunners-Monsters-
Date limite d’échanges --- Les échanges ne peuvent plus se faire après la simulation de cette journée!
155 - 2026-03-101015Monsters-Thunder-
157 - 2026-03-121031Monsters-Cabaret Lady Mary Ann-
159 - 2026-03-141052Monsters-Phantoms-
162 - 2026-03-171070Caroline-Monsters-
164 - 2026-03-191086Wolf Pack-Monsters-
166 - 2026-03-211104Firebirds-Monsters-
167 - 2026-03-221114Monsters-Sound Tigers-
169 - 2026-03-241125Monsters-Phantoms-
171 - 2026-03-261137Monsters-Rocket-
173 - 2026-03-281158Sags-Monsters-
174 - 2026-03-291170Bruins-Monsters-
176 - 2026-03-311185Caroline-Monsters-
178 - 2026-04-021197Monsters-Caroline-
180 - 2026-04-041215Oceanics-Monsters-
183 - 2026-04-071235Monsters-Cougars-
185 - 2026-04-091247Monsters-Crunch-
187 - 2026-04-111271Monsters-Rocket-
188 - 2026-04-121278Bruins-Monsters-
190 - 2026-04-141295Bears-Monsters-



Capacité de l’aréna - Tendance du prix des billets - %
Niveau 1Niveau 2
Capacité20001000
Prix des billets3515
Assistance38,78018,852
Assistance PCT96.95%94.26%

Revenu
Matchs à domicile restantsAssistance moyenne - %Revenu moyen par matchRevenu annuel à ce jourCapacitéPopularité de l’équipe
-16 2882 - 96.05% 98,405$1,968,096$3000100

Dépenses
Dépenses annuelles à ce jourSalaire total des joueursPlafond Salariale total des joueursSalaire des entraineurs
978,642$ 1,906,749$ 1,906,749$ 0$
Plafond salarial par jourPlafond salarial à ce jourJoueurs Inclus dans le plafond salarialJoueurs exclut du plafond Salarial
9,880$ 978,642$ 0 0

Estimation
Revenus de la saison estimésJours restants de la saisonDépenses par jourDépenses de la saison estimées
2,066,501$ 96 9,880$ 948,480$




Monsters Leaders statistiques des joueurs (saison régulière)

# Nom du joueur GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Monsters Leaders des statistiques des gardiens (saison régulière)

# Nom du gardien GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA

Monsters Statistiques de l'Équipe de Carrière

TotalDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT

Monsters Leaders statistiques des joueurs (séries éliminatoires)

# Nom du joueur GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Monsters Leaders des statistiques des gardiens (séries éliminatoires)

# Nom du gardien GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA