Please rotate your device to landscape mode for a better experience.
Connexion

Phantoms
GP: 26 | W: 19 | L: 6 | OTL: 1 | P: 39
GF: 128 | GA: 91 | PP%: 45.00% | PK%: 83.02%
DG: Richard Duguay | Morale : 50 | Moyenne d’équipe : 62
Prochains matchs #453 vs Monsters

Centre de jeu
Manchots
17-7-2, 36pts
3
FINAL
4 Phantoms
19-6-1, 39pts
Team Stats
L1SéquenceW2
8-4-0Fiche domicile10-4-1
9-3-2Fiche domicile9-2-0
5-4-1Derniers 10 matchs7-3-0
4.19Buts par match 4.92
3.23Buts contre par match 3.50
25.30%Pourcentage en avantage numérique45.00%
72.13%Pourcentage en désavantage numérique83.02%
Crunch
7-20-1, 15pts
1
FINAL
3 Phantoms
19-6-1, 39pts
Team Stats
L5SéquenceW2
4-11-1Fiche domicile10-4-1
3-9-0Fiche domicile9-2-0
2-8-0Derniers 10 matchs7-3-0
4.11Buts par match 4.92
6.07Buts contre par match 3.50
25.00%Pourcentage en avantage numérique45.00%
58.82%Pourcentage en désavantage numérique83.02%
Monsters
18-5-4, 40pts
2025-12-07
Phantoms
19-6-1, 39pts
Statistiques d’équipe
W1SéquenceW2
7-2-4Fiche domicile10-4-1
11-3-0Fiche visiteur9-2-0
8-0-210 derniers matchs7-3-0
5.04Buts par match 4.92
3.85Buts contre par match 4.92
44.29%Pourcentage en avantage numérique45.00%
75.64%Pourcentage en désavantage numérique83.02%
Sags
18-8-3, 39pts
2025-12-09
Phantoms
19-6-1, 39pts
Statistiques d’équipe
L1SéquenceW2
12-3-2Fiche domicile10-4-1
6-5-1Fiche visiteur9-2-0
5-4-110 derniers matchs7-3-0
4.28Buts par match 4.92
3.62Buts contre par match 4.92
26.47%Pourcentage en avantage numérique45.00%
66.67%Pourcentage en désavantage numérique83.02%
Las Vegas
8-17-2, 18pts
2025-12-11
Phantoms
19-6-1, 39pts
Statistiques d’équipe
L1SéquenceW2
4-9-2Fiche domicile10-4-1
4-8-0Fiche visiteur9-2-0
3-7-010 derniers matchs7-3-0
4.04Buts par match 4.92
5.04Buts contre par match 4.92
31.58%Pourcentage en avantage numérique45.00%
56.84%Pourcentage en désavantage numérique83.02%
Meneurs d'équipe
Buts
Frank Nazar
21
Passes
Frank Nazar
27
Points
Frank Nazar
48
Plus/Moins
Caleb Jones
16
Victoires
Devon Levi
12
Pourcentage d’arrêts
James Reimer
0.89

Statistiques d’équipe
Buts pour
128
4.92 GFG
Tirs pour
697
26.81 Avg
Pourcentage en avantage numérique
45.0%
27 GF
Début de zone offensive
31.8%
Buts contre
91
3.50 GAA
Tirs contre
742
28.54 Avg
Pourcentage en désavantage numérique
83.0%%
9 GA
Début de la zone défensive
35.3%
Informations de l'équipe

Directeur généralRichard Duguay
DivisionNord-Est
ConférenceEst
Capitaine
Assistant #1
Assistant #2


Informations de l’aréna

Capacité3,000
Assistance2,883
Billets de saison300


Informations de la formation

Équipe Pro20
Équipe Mineure21
Limite contact 41 / 50
Espoirs16


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPÂgeContratSalaire
1Frank Nazar (R)X100.00604076787684687260686867735550050680202950,000$
2Conor Geekie (R)X100.00704076697875666759636564675250050640203886,667$
3Tanner LaczynskiX100.0059427267646965644563596263605005061X0271775,000$
4Nick Abruzzese (R)X100.00564174676069676444645855635450050600251850,000$
5Ryder Rolston (R)X100.0064417364666463624259575961515005059X0222895,000$
6Elliot Desnoyers (R)X100.00584271666264636142605355605150050580221825,000$
7Dalibor Dvorský (R)X100.00604167626358576242616055625050050580193886,667$
8Tristan Broz (R)X100.00574264626162616255605955615050050580213925,000$
9Julian Lutz (R)X100.00604168586361595741575454575050050560203923,333$
10Caleb JonesX100.0064427568697472654063566963755605065N0272680,000$
11Kevin Korchinski (R)X100.00604473686970656840655962655550050630202918,333$
12Dylan CoghlanX100.0054426968666864664061646266605005062N0261650,000$
13Tobias Bjornfot (R)X100.0062417165656361594056536559525005060X0232800,000$
14Topi Niemelä (R)X100.00564271686164626240625563625150050600221856,667$
Rayé
1Trey Fix-Wolansky (R)X100.00574762715867666746656360675450050620251650,000$
MOYENNE D’ÉQUIPE100.0060427167656764644562596063555005061
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPÂgeContratSalaire
1Devon Levi (R)100.0077697268737575767674675850050670221925,000$
2Chris Driedger100.00697071676969706868696965580506303031,000,000$
Rayé
1James Reimer100.007085847880807780807878908305073N03612,222,222$
2Vadim Zherenko (R)100.0071636666686871666968585250050620231846,667$
3Cooper Black (R)100.0066595769646466656562545250050590232950,000$
MOYENNE D’ÉQUIPE100.007169707071717271727065635805065
Nom de l’entraîneur PH DF OF PD EX LD PO CNT Âge Contrat Salaire


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du joueur Nom de l’équipePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Frank NazarPhantoms (Phi)C2621274851154352104586320.19%1861223.564111510391012460157.28%6322520021.5722100432
2Conor GeekiePhantoms (Phi)C26172037275383574144322.97%1351119.672686291015412153.28%2291517001.4502010341
3Ryder RolstonPhantoms (Phi)RW261318311195344062243220.97%452920.384812839000034147.37%381522011.1700001303
4Elliot DesnoyersPhantoms (Phi)LW261613297100352760153126.67%1350019.256391634000292246.43%281215001.1600000322
5Nick AbruzzesePhantoms (Phi)C26101626420403171144714.08%944217.04000110001192050.00%781310001.1700000213
6Dalibor DvorskýPhantoms (Phi)RW26815234115392265193212.31%446017.70336732000051035.29%171117001.0000001102
7Tanner LaczynskiPhantoms (Phi)C2611920460252356163719.64%740015.42000010002201152.98%1681314001.0012000031
8Caleb JonesPhantoms (Phi)D26414181695303333141112.12%2569426.72112347011254100%1736000.5200100000
9Kevin KorchinskiPhantoms (Phi)D26214161616021293211186.25%3269726.83123348022146000%01728000.4600000001
10Dylan CoghlanPhantoms (Phi)D2621214104017142810107.14%1552120.06011027011137000%0725100.5400000001
11Topi NiemeläPhantoms (Phi)D26110116195122819685.26%1651919.9713422600003510100.00%1725000.4200001010
12Tristan BrozPhantoms (Phi)C26459-410021182251218.18%940115.4300006000071053.85%26518000.4500000010
13Michael McLeodPhiladelphieC3235120781191218.18%37324.6201104000180073.56%8703001.3501000002
14Tobias BjornfotPhantoms (Phi)D26044-79592010530%1236914.2000004000070050.00%2213000.2200001000
15Julian LutzPhantoms (Phi)LW26224-8752622143714.29%633112.761011140110140064.71%17110000.2400100000
Statistiques d’équipe totales ou en moyenne367113182295671324039740266122336617.10%186706619.26233962573572571735715655.89%1324150273130.8337314161518
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du gardien Nom de l’équipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Devon LeviPhantoms (Phi)1812310.8813.3610170057478259001.0003179210
2James ReimerPhantoms (Phi)97100.8902.915160125228108000.750497010
3Chris DriedgerPhantoms (Phi)20200.75013.50400093612000008000
Statistiques d’équipe totales ou en moyenne2919610.8773.47157501917423790072624220


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du joueur Nom de l’équipePOS Âge Date de naissance Pays Recrue Poids Taille Non-échange Disponible pour échange Acquis Par Date de la Dernière Transaction Ballotage forcé Waiver Possible Contrat Date du Signature du Contrat Forcer UFA Rappel d'urgence Type Salaire actuel Plafond salarial Plafond salarial restant Exclus du plafond salarial Salaire année 2Salaire année 3Salaire année 4Salaire année 5Salaire année 6Salaire année 7Salaire année 8Salaire année 9Salaire année 10Plafond salarial année 2Plafond salarial année 3Plafond salarial année 4Plafond salarial année 5Plafond salarial année 6Plafond salarial année 7Plafond salarial année 8Plafond salarial année 9Plafond salarial année 10Non-échange année 2Non-échange année 3Non-échange année 4Non-échange année 5Non-échange année 6Non-échange année 7Non-échange année 8Non-échange année 9Non-échange année 10Lien
Caleb JonesPhantoms (Phi)D271997-06-06USANo194 Lbs6 ft1YesNoFree AgentYesYes22025-09-21FalseFalsePro & Farm680,000$0$0$No680,000$--------680,000$--------No--------Lien
Chris Driedger (contrat à 1 volet)Phantoms (Phi)G301994-05-18CANNo207 Lbs6 ft4NoNoFree AgentYesYes32024-09-23FalseFalsePro & Farm1,000,000$80,000$55,130$No1,000,000$1,000,000$-------1,000,000$1,000,000$-------NoNo-------Lien
Conor GeekiePhantoms (Phi)C202004-05-05CANYes207 Lbs6 ft4NoNoProspectNoNo32025-07-10FalseFalsePro & Farm886,667$0$0$No886,667$886,667$-------886,667$886,667$-------NoNo-------Lien
Cooper BlackPhantoms (Phi)G232001-06-14USAYes194 Lbs6 ft8NoNoDraftNoNo22024-06-25FalseFalsePro & Farm950,000$0$0$No950,000$--------950,000$--------No--------Lien
Dalibor DvorskýPhantoms (Phi)RW192005-06-15SLVYes201 Lbs6 ft1NoNoTrade2025-07-18NoNo32025-07-10FalseFalsePro & Farm886,667$0$0$No886,667$886,667$-------886,667$886,667$-------NoNo-------Lien
Devon LeviPhantoms (Phi)G222001-12-27CANYes183 Lbs6 ft0NoNoN/ANoNo1FalseFalsePro & Farm925,000$0$0$No---------------------------Lien
Dylan CoghlanPhantoms (Phi)D261998-02-19CANNo205 Lbs6 ft2YesNoFree AgentYesYes12025-09-21FalseFalsePro & Farm650,000$0$0$No---------600,000$-----------------Lien
Elliot DesnoyersPhantoms (Phi)LW222002-01-21CANYes183 Lbs5 ft11NoNoN/ANoNo1FalseFalsePro & Farm825,000$0$0$No---------------------------Lien
Frank NazarPhantoms (Phi)C202004-01-14USAYes190 Lbs5 ft10NoNoProspectNoNo22024-06-25FalseFalsePro & Farm950,000$0$0$No950,000$--------950,000$--------No--------Lien
James Reimer (contrat à 1 volet)Phantoms (Phi)G361988-03-15CANNo200 Lbs6 ft2YesNoTrade2024-12-12YesYes1FalseFalsePro & Farm2,222,222$1,302,222$897,386$No---------------------------Lien
Julian LutzPhantoms (Phi)LW202004-02-29GERYes194 Lbs6 ft3NoNoProspectNoNo32025-07-10FalseFalsePro & Farm923,333$0$0$No923,333$923,333$-------923,333$923,333$-------NoNo-------Lien
Kevin KorchinskiPhantoms (Phi)D202004-06-21CANYes192 Lbs6 ft3NoNoProspectNoNo22024-06-25FalseFalsePro & Farm918,333$0$0$No918,333$--------918,333$--------No--------Lien
Nick AbruzzesePhantoms (Phi)C251999-06-04USAYes181 Lbs5 ft11NoNoTrade2024-10-17YesYes1FalseFalsePro & Farm850,000$0$0$No---------------------------Lien
Ryder RolstonPhantoms (Phi)RW222001-10-31USAYes201 Lbs6 ft2NoYesProspectNoNo22024-06-25FalseFalsePro & Farm895,000$0$0$No895,000$--------895,000$--------No--------Lien
Tanner LaczynskiPhantoms (Phi)C271997-06-01USANo190 Lbs6 ft1NoYesN/AYesYes1FalseFalsePro & Farm775,000$0$0$No---------------------------Lien
Tobias BjornfotPhantoms (Phi)D232001-04-06SWEYes203 Lbs6 ft0NoYesFree Agent2024-06-23NoNo22024-08-31FalseFalsePro & Farm800,000$0$0$No800,000$--------800,000$--------No--------Lien
Topi NiemeläPhantoms (Phi)D222002-03-25FINYes179 Lbs6 ft0NoNoTrade2024-01-24NoNo1FalseFalsePro & Farm856,667$0$0$No---------------------------Lien
Trey Fix-Wolansky (contrat à 1 volet)Phantoms (Phi)RW251999-05-26CANYes179 Lbs5 ft7NoNoWaiver2025-07-23YesYes12025-09-05FalseFalsePro & Farm650,000$0$0$No---------------------------Lien
Tristan BrozPhantoms (Phi)C212002-10-10USAYes179 Lbs6 ft0NoNoProspectNoNo32025-07-10FalseFalsePro & Farm925,000$0$0$No925,000$925,000$-------925,000$925,000$-------NoNo-------Lien
Vadim ZherenkoPhantoms (Phi)G232001-03-15RUSYes196 Lbs6 ft4NoNoN/ANoNo1FalseFalsePro & Farm846,667$0$0$No---------------------------Lien
Nombre de joueursÂge moyenPoids moyenTaille moyenneContrat moyenSalaire moyen 1e année
2023.65193 Lbs6 ft11.80920,778$



Attaque à 5 contre 5
Ligne #Ailier gaucheCentreAilier droit% tempsPHYDFOF
1Elliot DesnoyersFrank NazarRyder Rolston40122
2Julian LutzConor GeekieDalibor Dvorský30122
3Nick AbruzzeseTanner LaczynskiTristan Broz20122
4Frank NazarNick AbruzzeseConor Geekie10122
Défense à 5 contre 5
Ligne #DéfenseDéfense% tempsPHYDFOF
1Caleb JonesKevin Korchinski40122
2Dylan CoghlanTopi Niemelä30122
3Tobias Bjornfot20122
4Caleb JonesKevin Korchinski10122
Attaque en avantage numérique
Ligne #Ailier gaucheCentreAilier droit% tempsPHYDFOF
1Elliot DesnoyersFrank NazarRyder Rolston60122
2Julian LutzConor GeekieDalibor Dvorský40122
Défense en avantage numérique
Ligne #DéfenseDéfense% tempsPHYDFOF
1Caleb JonesKevin Korchinski60122
2Dylan CoghlanTopi Niemelä40122
Attaque à 4 en désavantage numérique
Ligne #CentreAilier% tempsPHYDFOF
1Frank NazarConor Geekie60122
2Tanner LaczynskiNick Abruzzese40122
Défense à 4 en désavantage numérique
Ligne #DéfenseDéfense% tempsPHYDFOF
1Caleb JonesKevin Korchinski60122
2Dylan CoghlanTopi Niemelä40122
3 joueurs en désavantage numérique
Ligne #Ailier% tempsPHYDFOFDéfenseDéfense% tempsPHYDFOF
1Frank Nazar60122Caleb JonesKevin Korchinski60122
2Conor Geekie40122Dylan CoghlanTopi Niemelä40122
Attaque à 4 contre 4
Ligne #CentreAilier% tempsPHYDFOF
1Frank NazarConor Geekie60122
2Tanner LaczynskiNick Abruzzese40122
Défense à 4 contre 4
Ligne #DéfenseDéfense% tempsPHYDFOF
1Caleb JonesKevin Korchinski60122
2Dylan CoghlanTopi Niemelä40122
Attaque dernière minute
Ailier gaucheCentreAilier droitDéfenseDéfense
Elliot DesnoyersFrank NazarRyder RolstonCaleb JonesKevin Korchinski
Défense dernière minute
Ailier gaucheCentreAilier droitDéfenseDéfense
Elliot DesnoyersFrank NazarRyder RolstonCaleb JonesKevin Korchinski
Attaquants supplémentaires
Normal Avantage numériqueDésavantage numérique
Tristan Broz, Ryder Rolston, Dalibor DvorskýTristan Broz, Ryder RolstonDalibor Dvorský
Défenseurs supplémentaires
Normal Avantage numériqueDésavantage numérique
Tobias Bjornfot, Dylan Coghlan, Topi NiemeläTobias BjornfotDylan Coghlan, Topi Niemelä
Tirs de pénalité
Frank Nazar, Conor Geekie, Tanner Laczynski, Nick Abruzzese, Ryder Rolston
Gardien
#1 : Devon Levi, #2 : Chris Driedger


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
TotalDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Cabaret Lady Mary Ann33000000198111100000091822000000107361.00019294800304153579164264263127221275510770.00%6266.67%025342958.97%25647753.67%24644455.41%496243557234521273
2Caroline10001000651000000000001000100065121.00061117003041535311642642631234209300.00%000%025342958.97%25647753.67%24644455.41%496243557234521273
3Chiefs20200000613-71010000049-51010000024-200.00068140030415355816426426312441610383133.33%5180.00%025342958.97%25647753.67%24644455.41%496243557234521273
4Crunch11000000312110000003120000000000021.00036900304153530164264263123011412300.00%2150.00%025342958.97%25647753.67%24644455.41%496243557234521273
5Firebirds1010000013-21010000013-20000000000000.0001120030415352116426426312244920000%20100.00%025342958.97%25647753.67%24644455.41%496243557234521273
6Heat11000000936110000009360000000000021.0009142300304153525164264263124565193266.67%000%025342958.97%25647753.67%24644455.41%496243557234521273
7Jayhawks220000001266110000006331100000063341.000122133003041535541642642631243154358337.50%20100.00%125342958.97%25647753.67%24644455.41%496243557234521273
8Manchots20000110990200001109900000000000030.750913220030415353616426426312691714352150.00%8187.50%125342958.97%25647753.67%24644455.41%496243557234521273
9Marlies1010000035-21010000035-20000000000000.0003470030415352716426426312287421100.00%2150.00%025342958.97%25647753.67%24644455.41%496243557234521273
10Minnesota11000000642110000006420000000000021.000610160030415352216426426312226216200.00%10100.00%125342958.97%25647753.67%24644455.41%496243557234521273
11Oceanics11000000734110000007340000000000021.00071219003041535331642642631241162625200.00%30100.00%025342958.97%25647753.67%24644455.41%496243557234521273
12Oil Kings1010000023-11010000023-10000000000000.00022400304153524164264263122154212150.00%2150.00%025342958.97%25647753.67%24644455.41%496243557234521273
13Rocket11000000642000000000001100000064221.00061016003041535171642642631221461311100.00%30100.00%025342958.97%25647753.67%24644455.41%496243557234521273
14Senators220000001028110000006241100000040441.0001014240130415353616426426312391413304250.00%40100.00%025342958.97%25647753.67%24644455.41%496243557234521273
15Sound Tigers21001000752110000005411000100021141.00071118003041535631642642631261199394250.00%20100.00%025342958.97%25647753.67%24644455.41%496243557234521273
16Spiders21100000121201100000042210100000810-220.5001220320030415357716426426312962212296466.67%6183.33%025342958.97%25647753.67%24644455.41%496243557234521273
17Stars10000010431000000000001000001043121.00044800304153528164264263123012615100.00%3166.67%025342958.97%25647753.67%24644455.41%496243557234521273
18Thunder11000000624000000000001100000062421.000681400304153536164264263122289125360.00%20100.00%025342958.97%25647753.67%24644455.41%496243557234521273
Total26156021201289137159400110745222116202010543915390.75012819832601304153569716426426312742205164444602745.00%53983.02%325342958.97%25647753.67%24644455.41%496243557234521273
_Since Last GM Reset26156021201289137159400110745222116202010543915390.75012819832601304153569716426426312742205164444602745.00%53983.02%325342958.97%25647753.67%24644455.41%496243557234521273
_Vs Conference11620111054381674100110342594210100020137170.77354821360130415353081642642631235610387191241250.00%27388.89%125342958.97%25647753.67%24644455.41%496243557234521273
_Vs Division72101000343134200000018153301010001616060.42934558900304153520716426426312260603511215746.67%16287.50%125342958.97%25647753.67%24644455.41%496243557234521273

Total pour les joueurs
Matchs jouésPointsSéquenceButsPassesPointsTirs pourTirs contreTirs bloquésMinutes de pénalitésMises en échecButs en filet désertBlanchissages
2639W212819832669774220516444401
Tous les matchs
GPWLOTWOTL SOWSOLGFGA
26156212012891
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
159401107452
Matchs extérieurs
GPWLOTWOTL SOWSOLGFGA
116220105439
Derniers 10 matchs
WLOTWOTL SOWSOL
730000
Tentatives en avantage numériqueButs en avantage numérique% en avantage numériqueTentatives en désavantage numériqueButs contre en désavantage numérique% en désavantage numériqueButs pour en désavantage numérique
602745.00%53983.02%3
Tirs en 1e périodeTirs en 2e périodeTirs en 3e périodeTirs en 4e périodeButs en 1e périodeButs en 2e périodeButs en 3e périodeButs en 4e période
164264263123041535
Mises en jeu
Gagnées en zone offensiveTotal en zone offensive% gagnées en zone offensive Gagnées en zone défensiveTotal en zone défensive% gagnées en zone défensiveGagnées en zone neutreTotal en zone neutre% gagnées en zone neutre
25342958.97%25647753.67%24644455.41%
Temps avec la rondelle
En zone offensiveContrôle en zone offensiveEn zone défensiveContrôle en zone défensiveEn zone neutreContrôle en zone neutre
496243557234521273


Derniers matchs joués
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe visiteuse Score Équipe locale Score ST OT SO RI Lien
3 - 2025-10-0912Phantoms5Cabaret Lady Mary Ann3WSommaire du match
5 - 2025-10-1130Phantoms6Caroline5WXSommaire du match
7 - 2025-10-1344Cabaret Lady Mary Ann1Phantoms9WSommaire du match
10 - 2025-10-1666Oceanics3Phantoms7WSommaire du match
12 - 2025-10-1881Minnesota4Phantoms6WSommaire du match
14 - 2025-10-2094Firebirds3Phantoms1LSommaire du match
17 - 2025-10-23112Phantoms4Senators0WSommaire du match
19 - 2025-10-25127Sound Tigers4Phantoms5WSommaire du match
22 - 2025-10-28150Manchots6Phantoms5LXSommaire du match
24 - 2025-10-30170Jayhawks3Phantoms6WSommaire du match
26 - 2025-11-01188Marlies5Phantoms3LSommaire du match
27 - 2025-11-02196Heat3Phantoms9WSommaire du match
29 - 2025-11-04204Phantoms6Rocket4WSommaire du match
31 - 2025-11-06223Phantoms6Jayhawks3WSommaire du match
33 - 2025-11-08232Senators2Phantoms6WSommaire du match
37 - 2025-11-12266Oil Kings3Phantoms2LSommaire du match
39 - 2025-11-14281Phantoms2Chiefs4LSommaire du match
40 - 2025-11-15293Phantoms4Stars3WXXSommaire du match
45 - 2025-11-20324Chiefs9Phantoms4LSommaire du match
47 - 2025-11-22339Spiders2Phantoms4WSommaire du match
49 - 2025-11-24353Phantoms6Thunder2WSommaire du match
51 - 2025-11-26363Phantoms5Cabaret Lady Mary Ann4WSommaire du match
53 - 2025-11-28381Phantoms2Sound Tigers1WXSommaire du match
54 - 2025-11-29395Phantoms8Spiders10LSommaire du match
56 - 2025-12-01407Manchots3Phantoms4WXXSommaire du match
58 - 2025-12-03423Crunch1Phantoms3WSommaire du match
62 - 2025-12-07453Monsters-Phantoms-
64 - 2025-12-09469Sags-Phantoms-
66 - 2025-12-11483Las Vegas-Phantoms-
68 - 2025-12-13501Caroline-Phantoms-
69 - 2025-12-14510Phantoms-Caroline-
71 - 2025-12-16521Phantoms-Rocket-
73 - 2025-12-18535Phantoms-Crunch-
75 - 2025-12-20549Phantoms-Wolf Pack-
77 - 2025-12-22572Comets-Phantoms-
78 - 2025-12-23583Phantoms-Baby Hawks-
83 - 2025-12-28605Phantoms-Firebirds-
85 - 2025-12-30621Phantoms-Comets-
86 - 2025-12-31630Phantoms-Heat-
89 - 2026-01-03647Phantoms-Oil Kings-
92 - 2026-01-06670Admirals-Phantoms-
94 - 2026-01-08686Marlies-Phantoms-
96 - 2026-01-10705Thunder-Phantoms-
98 - 2026-01-12719Thunder-Phantoms-
100 - 2026-01-14736Phantoms-Crunch-
101 - 2026-01-15741Phantoms-Manchots-
103 - 2026-01-17755Wolf Pack-Phantoms-
105 - 2026-01-19775Phantoms-Las Vegas-
107 - 2026-01-21790Phantoms-Roadrunners-
109 - 2026-01-23805Phantoms-Monsters-
112 - 2026-01-26827Sound Tigers-Phantoms-
114 - 2026-01-28840Phantoms-Monsters-
115 - 2026-01-29843Phantoms-Bruins-
117 - 2026-01-31859Monarchs-Phantoms-
120 - 2026-02-03889Bears-Phantoms-
122 - 2026-02-05907Senators-Phantoms-
142 - 2026-02-25911Phantoms-Bears-
143 - 2026-02-26924Phantoms-Wolf Pack-
145 - 2026-02-28935Bruins-Phantoms-
147 - 2026-03-02954Phantoms-Marlies-
150 - 2026-03-05976Roadrunners-Phantoms-
152 - 2026-03-07993Phantoms-Manchots-
Date limite d’échanges --- Les échanges ne peuvent plus se faire après la simulation de cette journée!
154 - 2026-03-091008Wolf Pack-Phantoms-
156 - 2026-03-111026Bears-Phantoms-
157 - 2026-03-121035Phantoms-Minnesota-
159 - 2026-03-141052Monsters-Phantoms-
163 - 2026-03-181082Phantoms-Admirals-
164 - 2026-03-191093Phantoms-Monarchs-
166 - 2026-03-211103Phantoms-Sags-
169 - 2026-03-241125Monsters-Phantoms-
171 - 2026-03-261142Baby Hawks-Phantoms-
173 - 2026-03-281163Phantoms-Cougars-
174 - 2026-03-291172Stars-Phantoms-
176 - 2026-03-311184Phantoms-Bears-
178 - 2026-04-021196Cougars-Phantoms-
179 - 2026-04-031205Phantoms-Sound Tigers-
181 - 2026-04-051224Bruins-Phantoms-
183 - 2026-04-071236Phantoms-Spiders-
185 - 2026-04-091250Phantoms-Cougars-
187 - 2026-04-111272Phantoms-Oceanics-
189 - 2026-04-131284Caroline-Phantoms-
190 - 2026-04-141294Rocket-Phantoms-



Capacité de l’aréna - Tendance du prix des billets - %
Niveau 1Niveau 2
Capacité20001000
Prix des billets3515
Assistance28,92814,318
Assistance PCT96.43%95.45%

Revenu
Matchs à domicile restantsAssistance moyenne - %Revenu moyen par matchRevenu annuel à ce jourCapacitéPopularité de l’équipe
-12 2883 - 96.10% 98,180$1,472,700$3000100

Dépenses
Dépenses annuelles à ce jourSalaire total des joueursPlafond Salariale total des joueursSalaire des entraineurs
462,052$ 1,454,334$ 1,454,334$ 0$
Plafond salarial par jourPlafond salarial à ce jourJoueurs Inclus dans le plafond salarialJoueurs exclut du plafond Salarial
7,535$ 462,052$ 0 0

Estimation
Revenus de la saison estimésJours restants de la saisonDépenses par jourDépenses de la saison estimées
2,552,680$ 133 7,535$ 1,002,155$




Phantoms Leaders statistiques des joueurs (saison régulière)

# Nom du joueur GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Phantoms Leaders des statistiques des gardiens (saison régulière)

# Nom du gardien GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA

Phantoms Statistiques de l'Équipe de Carrière

TotalDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT

Phantoms Leaders statistiques des joueurs (séries éliminatoires)

# Nom du joueur GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Phantoms Leaders des statistiques des gardiens (séries éliminatoires)

# Nom du gardien GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA