Please rotate your device to landscape mode for a better experience.
Connexion

Monsters
GP: 31 | W: 21 | L: 6 | OTL: 4 | P: 46
GF: 155 | GA: 119 | PP%: 46.43% | PK%: 73.81%
DG: Paul-André Desrochers | Morale : 50 | Moyenne d’équipe : 59
Prochains matchs #506 vs Jayhawks

Centre de jeu
Monsters
21-6-4, 46pts
10
FINAL
5 Jayhawks
7-22-1, 15pts
Team Stats
L1SéquenceL4
7-3-4Fiche domicile4-13-1
14-3-0Fiche domicile3-9-0
7-1-2Derniers 10 matchs1-9-0
5.00Buts par match 3.30
3.84Buts contre par match 5.77
46.43%Pourcentage en avantage numérique19.72%
73.81%Pourcentage en désavantage numérique51.35%
Cabaret Lady Mary Ann
10-19-1, 21pts
6
FINAL
2 Monsters
21-6-4, 46pts
Team Stats
W1SéquenceL1
4-13-1Fiche domicile7-3-4
6-6-0Fiche domicile14-3-0
3-7-0Derniers 10 matchs7-1-2
4.00Buts par match 5.00
5.80Buts contre par match 3.84
24.69%Pourcentage en avantage numérique46.43%
64.41%Pourcentage en désavantage numérique73.81%
Jayhawks
7-22-1, 15pts
2025-12-13
Monsters
21-6-4, 46pts
Statistiques d’équipe
L4SéquenceL1
4-13-1Fiche domicile7-3-4
3-9-0Fiche visiteur14-3-0
1-9-010 derniers matchs7-1-2
3.30Buts par match 5.00
5.77Buts contre par match 5.00
19.72%Pourcentage en avantage numérique46.43%
51.35%Pourcentage en désavantage numérique73.81%
Monsters
21-6-4, 46pts
2025-12-16
Firebirds
14-10-4, 32pts
Statistiques d’équipe
L1SéquenceW1
7-3-4Fiche domicile4-8-3
14-3-0Fiche visiteur10-2-1
7-1-210 derniers matchs6-4-0
5.00Buts par match 4.00
3.84Buts contre par match 4.00
46.43%Pourcentage en avantage numérique35.80%
73.81%Pourcentage en désavantage numérique69.12%
Oceanics
19-9-2, 40pts
2025-12-19
Monsters
21-6-4, 46pts
Statistiques d’équipe
W1SéquenceL1
8-4-2Fiche domicile7-3-4
11-5-0Fiche visiteur14-3-0
8-1-110 derniers matchs7-1-2
5.57Buts par match 5.00
4.17Buts contre par match 5.00
34.29%Pourcentage en avantage numérique46.43%
76.54%Pourcentage en désavantage numérique73.81%
Meneurs d'équipe
Buts
Peyton Krebs
33
Passes
Mavrik Bourque
53
Points
Mavrik Bourque
75
Plus/Moins
Mavrik Bourque
20
Victoires
Artur Akhtyamov
20
Pourcentage d’arrêts
Artur Akhtyamov
0.849

Statistiques d’équipe
Buts pour
155
5.00 GFG
Tirs pour
905
29.19 Avg
Pourcentage en avantage numérique
46.4%
39 GF
Début de zone offensive
33.2%
Buts contre
119
3.84 GAA
Tirs contre
775
25.00 Avg
Pourcentage en désavantage numérique
73.8%%
22 GA
Début de la zone défensive
31.6%
Informations de l'équipe

Directeur généralPaul-André Desrochers
DivisionNord
ConférenceOuest
Capitaine
Assistant #1
Assistant #2


Informations de l’aréna

Capacité3,000
Assistance2,866
Billets de saison300


Informations de la formation

Équipe Pro27
Équipe Mineure19
Limite contact 46 / 50
Espoirs13


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPÂgeContratSalaire
1Peyton KrebsXX100.00786768797884847573756972746858050720231950,000$
2Mavrik Bourque (R)X100.00664185807076727364716868735550050690221894,167$
3Vasily Podkolzin (R)XX100.00755672737577757248696568706253050680231925,000$
4Olle Lycksell (R)X100.005740747365746365456460606657500506202511,150,000$
5Justin Sourdif (R)X100.00574663695964626443625858645150050600221847,500$
6Ty Mueller (R)X100.00624167676162616255625764625050050600213870,000$
7Dylan Peterson (R)X100.00614857626362616142555756605150050570232867,500$
8Aleksandr Kisakov (R)X100.00544071665659565640525252585050050550211859,167$
9Daniel Torgersson (R)X100.00654071587261595540525153555150050550221867,500$
10Jakub Stancl (R)X100.00614066586455535540545354555050050550193835,000$
11Josh Filmon (R)X100.00584066616058565440535354565050050550203838,333$
12Mike ReillyX100.00594075727683787140666367688272050690311975,000$
13Alex Alexeyev (R)X100.00624078719083696740616169666353050680241900,000$
14Lucas CarlssonX100.00584368716267666540606467675550050630271800,000$
15Matthew Robertson (R)X100.00614664656765646440625365615250050610231797,500$
16Tristan Luneau (R)X100.00604167676261606440635965635050050610203865,000$
17Hardy Häman AktellX100.00624269656565635940555266595350050600261900,000$
Rayé
1Alexander Pashin (R)XXX100.00494468665551515238464651565050050520221826,667$
2Prokhor Poltapov (R)X100.00454545454545454545454545454545050460213825,000$
3Vladislav Kolyachonok (R)XHO6341777275756866406062666659530506502300$
4Ian Moore (R)X100.00614062626359575640545461575150050580221620,000$
5Jesse Pulkkinen (R)X100.00624066596655535540545359565050050570193880,833$
6Daniil Zhuravlyov (R)X100.00504066665750495038464558555150050540241600,000$
7Aleksi Malinen (R)X100.00373737373737373737373737373737050380213620,000$
MOYENNE D’ÉQUIPE100.0059436765646461604457566060545105059
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPÂgeContratSalaire
1Artur Akhtyamov (R)100.0068626260646668666665595150050590222851,667$
2Filip Larsson100.0065606060626365626463525450050570261750,000$
Rayé
1Cameron Whitehead (R)100.0060575759585656545658545050050530213875,000$
MOYENNE D’ÉQUIPE100.006460606061626361626255525005056
Nom de l’entraîneur PH DF OF PD EX LD PO CNT Âge Contrat Salaire


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du joueur Nom de l’équipePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Mavrik BourqueMonsters (Col)C3122537520953637118345318.64%1459919.337182516510004392260.47%7212711022.5001100565
2Peyton KrebsMonsters (Col)C/LW29333568840206745132296925.00%1460020.699142323500001647060.82%1712911022.2701301733
3Vasily PodkolzinMonsters (Col)LW/RW312428521835155035102285423.53%1372723.48781513550001641148.89%452327011.4300300633
4Ty MuellerMonsters (Col)C31141630060594167163520.90%751616.65347938000032154.66%3221212001.1600000141
5Mike ReillyMonsters (Col)D30522278371544376127348.20%3681127.0646101560000463100%01645000.6700012102
6Olle LycksellMonsters (Col)RW30151227-4255432594247415.96%1056918.9934714360000271048.00%252630000.9500010112
7Justin SourdifMonsters (Col)RW31915243140533477305211.69%850516.30101380000302052.78%361412000.9500000121
8Alex AlexeyevMonsters (Col)D30418221110036455417237.41%4481927.33246860000069110%01243000.5400000010
9Tristan LuneauMonsters (Col)D31314176181025183412138.82%2158418.85112134000026100%11026000.5800011001
10Dylan PetersonMonsters (Col)C316814102515412944182613.64%842613.7600006000011044.70%132218100.6600102102
11Lucas CarlssonMonsters (Col)D300131314181029243115170%2058419.49044132000244000%0619000.4400110000
12Aleksandr KisakovMonsters (Col)LW3183111040372134141923.53%543614.0900016000061066.67%12113000.5000000100
13Josh FilmonMonsters (Col)LW316511-7115572323101226.09%1052216.842134350000211146.15%1325000.4200001000
14Daniel TorgerssonMonsters (Col)LW313362202611315100.00%12548.2000001000000037.50%823000.4700000000
15Matthew RobertsonMonsters (Col)D31145-3215151711539.09%544714.440000600008000%0115000.2200010000
16Jakub StanclMonsters (Col)C31202260229132715.38%62397.7300003000010035.63%8746000.1700000000
17Hardy Häman AktellMonsters (Col)D30011-37518273240%1145215.0800004000045000%0213000.0400001000
18Alexander PashinMonsters (Col)C/LW/RW1000100024000%02020.470000000000000%00000000000000
19Ian MooreMonsters (Col)D1000100100100%02121.270000000000000%00200000000000
20Aleksi MalinenMonsters (Col)D1000200000000%01515.020000100001000%00000000000000
21Jesse PulkkinenMonsters (Col)D1000100210000%22121.900000100000000%01300000000000
22Prokhor PoltapovMonsters (Col)RW1000200000000%01212.620000100000000%00000000000000
Statistiques d’équipe totales ou en moyenne52515525040510228811066148190528550017.13%235918917.5039641031084990001251921655.69%1573190314150.8802958242020
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du gardien Nom de l’équipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Artur AkhtyamovMonsters (Col)3120530.8493.671751011077103790100310011
2Filip LarssonMonsters (Col)41110.8445.00120001064350002030000
Statistiques d’équipe totales ou en moyenne3521640.8493.751871011177744140123130011


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du joueur Nom de l’équipePOS Âge Date de naissance Pays Recrue Poids Taille Non-échange Disponible pour échange Acquis Par Date de la Dernière Transaction Ballotage forcé Waiver Possible Contrat Date du Signature du Contrat Forcer UFA Rappel d'urgence Type Salaire actuel Plafond salarial Plafond salarial restant Exclus du plafond salarial Salaire année 2Salaire année 3Salaire année 4Salaire année 5Salaire année 6Salaire année 7Salaire année 8Salaire année 9Salaire année 10Plafond salarial année 2Plafond salarial année 3Plafond salarial année 4Plafond salarial année 5Plafond salarial année 6Plafond salarial année 7Plafond salarial année 8Plafond salarial année 9Plafond salarial année 10Non-échange année 2Non-échange année 3Non-échange année 4Non-échange année 5Non-échange année 6Non-échange année 7Non-échange année 8Non-échange année 9Non-échange année 10Lien
Aleksandr KisakovMonsters (Col)LW212002-11-01RUSYes163 Lbs5 ft11NoNoN/ANoNo1FalseFalsePro & Farm859,167$0$0$No---------------------------Lien
Aleksi MalinenMonsters (Col)D212003-05-26FINYes198 Lbs6 ft0NoNoProspectNoNo32025-07-10FalseFalsePro & Farm620,000$0$0$No620,000$620,000$-------620,000$620,000$-------NoNo-------Lien
Alex Alexeyev (contrat à 1 volet)Monsters (Col)D241999-11-15RUSYes229 Lbs6 ft4NoNoFree AgentNoYes12025-08-28FalseFalsePro & Farm900,000$0$0$No---------------------------Lien
Alexander PashinMonsters (Col)C/LW/RW222002-01-28RUSYes154 Lbs5 ft8NoNoN/ANoNo1FalseFalsePro & Farm826,667$0$0$No---------------------------Lien
Artur AkhtyamovMonsters (Col)G222001-10-31RUSYes170 Lbs6 ft2NoNoProspectNoNo22024-06-25FalseFalsePro & Farm851,667$0$0$No851,667$--------851,667$--------No--------Lien
Cameron WhiteheadMonsters (Col)G212003-06-13CANYes165 Lbs6 ft3NoNoProspectNoNo32025-07-10FalseFalsePro & Farm875,000$0$0$No875,000$875,000$-------875,000$875,000$-------NoNo-------Lien
Daniel TorgerssonMonsters (Col)LW222002-01-26SWEYes220 Lbs6 ft4NoNoN/ANoNo1FalseFalsePro & Farm867,500$0$0$No---------------------------Lien
Daniil ZhuravlyovMonsters (Col)D242000-04-08RUSYes163 Lbs6 ft0NoNoN/ANoYes1FalseFalsePro & Farm600,000$0$0$No---------------------------Lien
Dylan PetersonMonsters (Col)C232001-08-02USAYes192 Lbs6 ft4NoNoProspectNoNo22024-06-25FalseFalsePro & Farm867,500$0$0$No867,500$--------867,500$--------No--------Lien
Filip LarssonMonsters (Col)G261998-08-17SWENo194 Lbs6 ft2NoNoFree AgentYesYes12024-09-06FalseFalsePro & Farm750,000$0$0$No---------------------------Lien
Hardy Häman Aktell (contrat à 1 volet)Monsters (Col)D261998-07-04SWENo198 Lbs6 ft3NoNoN/AYesYes1FalseFalsePro & Farm900,000$0$0$No---------------------------Lien
Ian Moore (contrat à 1 volet)Monsters (Col)D222002-01-04USAYes194 Lbs6 ft3NoNoFree AgentNoNo12024-09-23FalseFalsePro & Farm620,000$0$0$No---------------------------Lien
Jakub StanclMonsters (Col)C192005-04-10CZEYes203 Lbs6 ft3NoNoDraftNoNo32025-07-10FalseFalsePro & Farm835,000$0$0$No835,000$835,000$-------835,000$835,000$-------NoNo-------Lien
Jesse PulkkinenMonsters (Col)D192004-12-27FINYes203 Lbs6 ft6NoNoDraftNoNo32025-07-10FalseFalsePro & Farm880,833$0$0$No880,833$880,833$-------880,833$880,833$-------NoNo-------Lien
Josh FilmonMonsters (Col)LW202004-03-18CANYes170 Lbs6 ft3NoNoProspectNoNo32025-07-10FalseFalsePro & Farm838,333$0$0$No838,333$838,333$-------838,333$838,333$-------NoNo-------Lien
Justin SourdifMonsters (Col)RW222002-03-24CANYes172 Lbs5 ft11NoNoN/ANoNo1FalseFalsePro & Farm847,500$0$0$No---------------------------Lien
Lucas CarlssonMonsters (Col)D271997-07-05SWENo190 Lbs6 ft0NoNoFree AgentYesYes12024-09-06FalseFalsePro & Farm800,000$0$0$No---------------------------Lien
Matthew RobertsonMonsters (Col)D232001-03-09CANYes201 Lbs6 ft4NoNoN/ANoNo1FalseFalsePro & Farm797,500$0$0$No---------------------------Lien
Mavrik BourqueMonsters (Col)C222002-01-08CANYes181 Lbs5 ft11NoNoTrade2025-09-18NoNo1FalseFalsePro & Farm894,167$0$0$No---------------------------Lien
Mike Reilly (contrat à 1 volet)Monsters (Col)D311993-07-13USANo191 Lbs6 ft2NoNoFree AgentYesYes12024-09-23FalseFalsePro & Farm975,000$55,000$36,192$No---------------------------Lien
Olle LycksellMonsters (Col)RW251999-08-24SWEYes163 Lbs5 ft10NoNoFree AgentYesYes12025-09-05FalseFalsePro & Farm1,150,000$0$0$No---------------------------Lien
Peyton Krebs (contrat à 1 volet)Monsters (Col)C/LW232001-01-26CANNo186 Lbs6 ft0NoNoFree AgentNoNo12024-09-11FalseFalsePro & Farm950,000$30,000$19,741$No---------------------------Lien
Prokhor PoltapovMonsters (Col)RW212003-02-01RUSYes176 Lbs6 ft0NoNoProspectNoNo32025-07-10FalseFalsePro & Farm825,000$0$0$No825,000$825,000$-------825,000$825,000$-------NoNo-------Lien
Tristan LuneauMonsters (Col)D202004-01-12CANYes190 Lbs6 ft2NoNoProspectNoNo32025-07-10FalseFalsePro & Farm865,000$0$0$No865,000$865,000$-------865,000$865,000$-------NoNo-------Lien
Ty MuellerMonsters (Col)C212003-02-26CANYes185 Lbs5 ft11NoNoDraftNoNo32025-07-10FalseFalsePro & Farm870,000$0$0$No870,000$870,000$-------870,000$870,000$-------NoNo-------Lien
Vasily PodkolzinMonsters (Col)LW/RW232001-06-24RUSYes190 Lbs6 ft1NoNoN/ANoNo1FalseFalsePro & Farm925,000$0$0$No---------------------------Lien
Vladislav KolyachonokMonsters (Col)D232001-05-26BLRYes195 Lbs6 ft2NoNoN/ANoNo0FalseFalsePro & Farm0$0$No---------------------------Lien
Nombre de joueursÂge moyenPoids moyenTaille moyenneContrat moyenSalaire moyen 1e année
2722.70187 Lbs6 ft11.63814,475$



Attaque à 5 contre 5
Ligne #Ailier gaucheCentreAilier droit% tempsPHYDFOF
1Peyton KrebsMavrik BourqueVasily Podkolzin40122
2Josh FilmonTy MuellerOlle Lycksell30122
3Aleksandr KisakovDylan PetersonJustin Sourdif20122
4Daniel TorgerssonJakub StanclVasily Podkolzin10122
Défense à 5 contre 5
Ligne #DéfenseDéfense% tempsPHYDFOF
1Mike ReillyAlex Alexeyev40122
2Lucas CarlssonTristan Luneau30122
3Matthew RobertsonHardy Häman Aktell20122
4Mike ReillyAlex Alexeyev10122
Attaque en avantage numérique
Ligne #Ailier gaucheCentreAilier droit% tempsPHYDFOF
1Peyton KrebsMavrik BourqueVasily Podkolzin60122
2Josh FilmonTy MuellerOlle Lycksell40122
Défense en avantage numérique
Ligne #DéfenseDéfense% tempsPHYDFOF
1Mike ReillyAlex Alexeyev60122
2Tristan LuneauLucas Carlsson40122
Attaque à 4 en désavantage numérique
Ligne #CentreAilier% tempsPHYDFOF
1Peyton KrebsVasily Podkolzin60122
2Mavrik BourqueOlle Lycksell40122
Défense à 4 en désavantage numérique
Ligne #DéfenseDéfense% tempsPHYDFOF
1Mike ReillyAlex Alexeyev60122
2Lucas CarlssonHardy Häman Aktell40122
3 joueurs en désavantage numérique
Ligne #Ailier% tempsPHYDFOFDéfenseDéfense% tempsPHYDFOF
1Peyton Krebs60122Alex AlexeyevHardy Häman Aktell60122
2Mavrik Bourque40122Mike ReillyLucas Carlsson40122
Attaque à 4 contre 4
Ligne #CentreAilier% tempsPHYDFOF
1Peyton KrebsVasily Podkolzin60122
2Mavrik BourqueOlle Lycksell40122
Défense à 4 contre 4
Ligne #DéfenseDéfense% tempsPHYDFOF
1Mike ReillyAlex Alexeyev60122
2Lucas CarlssonTristan Luneau40122
Attaque dernière minute
Ailier gaucheCentreAilier droitDéfenseDéfense
Peyton KrebsMavrik BourqueVasily PodkolzinMike ReillyAlex Alexeyev
Défense dernière minute
Ailier gaucheCentreAilier droitDéfenseDéfense
Peyton KrebsMavrik BourqueVasily PodkolzinMike ReillyAlex Alexeyev
Attaquants supplémentaires
Normal Avantage numériqueDésavantage numérique
Vasily Podkolzin, Olle Lycksell, Justin SourdifVasily Podkolzin, Olle LycksellJustin Sourdif
Défenseurs supplémentaires
Normal Avantage numériqueDésavantage numérique
Mike Reilly, Tristan Luneau, Matthew RobertsonMatthew RobertsonTristan Luneau, Matthew Robertson
Tirs de pénalité
Peyton Krebs, Mavrik Bourque, Vasily Podkolzin, Mike Reilly, Olle Lycksell
Gardien
#1 : Artur Akhtyamov, #2 : Filip Larsson


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
TotalDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals1010000049-51010000049-50000000000000.000448002478512302223693097331030242150.00%5340.00%027952752.94%28450156.69%31555756.55%619317653275600308
2Baby Hawks11000000541000000000001100000054121.00051015002478512322223693097348221100.00%10100.00%027952752.94%28450156.69%31555756.55%619317653275600308
3Bruins2010010058-31000010045-11010000013-210.250581300247851260222369309750161634100.00%8275.00%027952752.94%28450156.69%31555756.55%619317653275600308
4Cabaret Lady Mary Ann1010000026-41010000026-40000000000000.0002350024785122022236930972264163266.67%2150.00%027952752.94%28450156.69%31555756.55%619317653275600308
5Caroline11000000523110000005230000000000021.000571200247851226222369309713319243133.33%20100.00%027952752.94%28450156.69%31555756.55%619317653275600308
6Comets200011008801000010034-11000100054130.7508132100247851276222369309750191055100.00%5420.00%027952752.94%28450156.69%31555756.55%619317653275600308
7Crunch220000001183110000005411100000064241.000112031002478512552223693097461610225360.00%50100.00%027952752.94%28450156.69%31555756.55%619317653275600308
8Jayhawks220000001871100000000000220000001871141.0001827450024785126722236930974514213710660.00%8275.00%027952752.94%28450156.69%31555756.55%619317653275600308
9Las Vegas11000000541000000000001100000054121.00059140024785122222236930972554115240.00%20100.00%027952752.94%28450156.69%31555756.55%619317653275600308
10Minnesota11000000532000000000001100000053221.00059140024785123722236930972890264125.00%000%027952752.94%28450156.69%31555756.55%619317653275600308
11Monarchs11000000541000000000001100000054121.000561100247851226222369309730116174250.00%3166.67%027952752.94%28450156.69%31555756.55%619317653275600308
12Monsters11000000532000000000001100000053221.000510150024785122622236930973278312150.00%40100.00%027952752.94%28450156.69%31555756.55%619317653275600308
13Oil Kings11000000752000000000001100000075221.0007121900247851230222369309725214282150.00%2150.00%027952752.94%28450156.69%31555756.55%619317653275600308
14Phantoms11000000422000000000001100000042221.0004711002478512222223693097158211200.00%10100.00%027952752.94%28450156.69%31555756.55%619317653275600308
15Roadrunners220000001941511000000111101100000083541.0001931500024785126222236930974315394213753.85%2150.00%027952752.94%28450156.69%31555756.55%619317653275600308
16Rocket1000010023-11000010023-10000000000010.500235002478512282223693097287816200.00%40100.00%027952752.94%28450156.69%31555756.55%619317653275600308
17Sags21100000770110000004221010000035-220.5007111800247851258222369309750161246400.00%6183.33%027952752.94%28450156.69%31555756.55%619317653275600308
18Sound Tigers210010001165110000004041000100076141.000111728012478512552223693097511418605360.00%9277.78%027952752.94%28450156.69%31555756.55%619317653275600308
19Spiders20100001811-31000000156-11010000035-210.25081321002478512652223693097592414562150.00%70100.00%027952752.94%28450156.69%31555756.55%619317653275600308
20Stars1010000024-21010000024-20000000000000.0002351024785122522236930972082274125.00%110.00%027952752.94%28450156.69%31555756.55%619317653275600308
21Thunder11000000853110000008530000000000021.0008111900247851225222369309735931144375.00%3166.67%027952752.94%28450156.69%31555756.55%619317653275600308
22Wolf Pack22000000963110000006421100000032141.0009162500247851258222369309741818445480.00%4250.00%027952752.94%28450156.69%31555756.55%619317653275600308
Total3119602301155119361473003016555101712302000906426460.7421552504051124785129052223693097775235288662843946.43%842273.81%027952752.94%28450156.69%31555756.55%619317653275600308
_Since Last GM Reset3119602301155119361473003016555101712302000906426460.7421552504051124785129052223693097775235288662843946.43%842273.81%027952752.94%28450156.69%31555756.55%619317653275600308
_Vs Conference149201200705416622002001923-487001000513120220.7867011618610247851241822236930973369794283401742.50%32971.88%027952752.94%28450156.69%31555756.55%619317653275600308
_Vs Division721012004922272110020013585100100036171980.571498012910247851222322236930971705464153321546.88%12466.67%027952752.94%28450156.69%31555756.55%619317653275600308

Total pour les joueurs
Matchs jouésPointsSéquenceButsPassesPointsTirs pourTirs contreTirs bloquésMinutes de pénalitésMises en échecButs en filet désertBlanchissages
3146L115525040590577523528866211
Tous les matchs
GPWLOTWOTL SOWSOLGFGA
311962301155119
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
147303016555
Matchs extérieurs
GPWLOTWOTL SOWSOLGFGA
1712320009064
Derniers 10 matchs
WLOTWOTL SOWSOL
710200
Tentatives en avantage numériqueButs en avantage numérique% en avantage numériqueTentatives en désavantage numériqueButs contre en désavantage numérique% en désavantage numériqueButs pour en désavantage numérique
843946.43%842273.81%0
Tirs en 1e périodeTirs en 2e périodeTirs en 3e périodeTirs en 4e périodeButs en 1e périodeButs en 2e périodeButs en 3e périodeButs en 4e période
22236930972478512
Mises en jeu
Gagnées en zone offensiveTotal en zone offensive% gagnées en zone offensive Gagnées en zone défensiveTotal en zone défensive% gagnées en zone défensiveGagnées en zone neutreTotal en zone neutre% gagnées en zone neutre
27952752.94%28450156.69%31555756.55%
Temps avec la rondelle
En zone offensiveContrôle en zone offensiveEn zone défensiveContrôle en zone défensiveEn zone neutreContrôle en zone neutre
619317653275600308


Derniers matchs joués
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe visiteuse Score Équipe locale Score ST OT SO RI Lien
1 - 2025-10-073Monsters5Monarchs4WSommaire du match
3 - 2025-10-0918Roadrunners1Monsters11WSommaire du match
5 - 2025-10-1134Stars4Monsters2LSommaire du match
7 - 2025-10-1339Monsters6Crunch4WSommaire du match
10 - 2025-10-1667Monsters5Monsters3WSommaire du match
12 - 2025-10-1885Bruins5Monsters4LXSommaire du match
15 - 2025-10-21107Monsters8Roadrunners3WSommaire du match
17 - 2025-10-23121Caroline2Monsters5WSommaire du match
19 - 2025-10-25128Monsters1Bruins3LSommaire du match
20 - 2025-10-26140Monsters3Spiders5LSommaire du match
22 - 2025-10-28161Spiders6Monsters5LXXSommaire du match
25 - 2025-10-31178Monsters5Las Vegas4WSommaire du match
26 - 2025-11-01184Monsters3Sags5LSommaire du match
29 - 2025-11-04209Thunder5Monsters8WSommaire du match
33 - 2025-11-08240Monsters7Oil Kings5WSommaire du match
34 - 2025-11-09250Monsters5Comets4WXSommaire du match
36 - 2025-11-11262Admirals9Monsters4LSommaire du match
38 - 2025-11-13275Crunch4Monsters5WSommaire du match
41 - 2025-11-16300Sound Tigers0Monsters4WSommaire du match
45 - 2025-11-20326Wolf Pack4Monsters6WSommaire du match
47 - 2025-11-22343Monsters8Jayhawks2WSommaire du match
48 - 2025-11-23350Monsters5Baby Hawks4WSommaire du match
51 - 2025-11-26371Sags2Monsters4WSommaire du match
53 - 2025-11-28378Monsters5Minnesota3WSommaire du match
54 - 2025-11-29392Rocket3Monsters2LXSommaire du match
57 - 2025-12-02417Comets4Monsters3LXSommaire du match
59 - 2025-12-04430Monsters7Sound Tigers6WXSommaire du match
61 - 2025-12-06441Monsters3Wolf Pack2WSommaire du match
62 - 2025-12-07453Monsters4Phantoms2WSommaire du match
64 - 2025-12-09475Monsters10Jayhawks5WSommaire du match
66 - 2025-12-11490Cabaret Lady Mary Ann6Monsters2LSommaire du match
68 - 2025-12-13506Jayhawks-Monsters-
71 - 2025-12-16528Monsters-Firebirds-
74 - 2025-12-19546Oceanics-Monsters-
76 - 2025-12-21563Monsters-Minnesota-
78 - 2025-12-23584Roadrunners-Monsters-
82 - 2025-12-27600Monsters-Las Vegas-
84 - 2025-12-29611Monarchs-Monsters-
86 - 2025-12-31629Chiefs-Monsters-
89 - 2026-01-03653Monsters-Caroline-
90 - 2026-01-04659Monsters-Cabaret Lady Mary Ann-
92 - 2026-01-06668Monsters-Thunder-
94 - 2026-01-08691Senators-Monsters-
96 - 2026-01-10699Monsters-Monsters-
98 - 2026-01-12723Marlies-Monsters-
102 - 2026-01-16752Jayhawks-Monsters-
105 - 2026-01-19771Bears-Monsters-
107 - 2026-01-21789Admirals-Monsters-
109 - 2026-01-23805Phantoms-Monsters-
111 - 2026-01-25819Monsters-Marlies-
114 - 2026-01-28841Monsters-Senators-
115 - 2026-01-29845Monsters-Rocket-
117 - 2026-01-31860Monsters-Cougars-
119 - 2026-02-02883Cougars-Monsters-
121 - 2026-02-04897Sags-Monsters-
142 - 2026-02-25914Monsters-Roadrunners-
143 - 2026-02-26927Minnesota-Monsters-
145 - 2026-02-28938Baby Hawks-Monsters-
147 - 2026-03-02958Monsters-Monarchs-
148 - 2026-03-03968Monsters-Admirals-
151 - 2026-03-06984Monsters-Stars-
Date limite d’échanges --- Les échanges ne peuvent plus se faire après la simulation de cette journée!
153 - 2026-03-081001Minnesota-Monsters-
155 - 2026-03-101023Oil Kings-Monsters-
157 - 2026-03-121040Monsters-Firebirds-
159 - 2026-03-141045Monsters-Oceanics-
161 - 2026-03-161067Manchots-Monsters-
163 - 2026-03-181080Stars-Monsters-
165 - 2026-03-201096Monsters-Baby Hawks-
167 - 2026-03-221111Monsters-Bears-
169 - 2026-03-241126Monsters-Manchots-
171 - 2026-03-261145Monsters-Oceanics-
173 - 2026-03-281162Oceanics-Monsters-
175 - 2026-03-301174Heat-Monsters-
177 - 2026-04-011188Comets-Monsters-
180 - 2026-04-041209Monsters-Stars-
181 - 2026-04-051228Chiefs-Monsters-
183 - 2026-04-071238Monsters-Chiefs-
185 - 2026-04-091256Heat-Monsters-
187 - 2026-04-111274Las Vegas-Monsters-
189 - 2026-04-131289Monsters-Oil Kings-
190 - 2026-04-141298Monsters-Heat-
192 - 2026-04-161312Firebirds-Monsters-



Capacité de l’aréna - Tendance du prix des billets - %
Niveau 1Niveau 2
Capacité20001000
Prix des billets3515
Assistance26,82213,295
Assistance PCT95.79%94.96%

Revenu
Matchs à domicile restantsAssistance moyenne - %Revenu moyen par matchRevenu annuel à ce jourCapacitéPopularité de l’équipe
-11 2866 - 95.52% 97,560$1,365,834$3000100

Dépenses
Dépenses annuelles à ce jourSalaire total des joueursPlafond Salariale total des joueursSalaire des entraineurs
603,438$ 1,764,584$ 1,764,584$ 0$
Plafond salarial par jourPlafond salarial à ce jourJoueurs Inclus dans le plafond salarialJoueurs exclut du plafond Salarial
9,143$ 603,438$ 0 0

Estimation
Revenus de la saison estimésJours restants de la saisonDépenses par jourDépenses de la saison estimées
2,634,108$ 127 9,143$ 1,161,161$




Monsters Leaders statistiques des joueurs (saison régulière)

# Nom du joueur GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Monsters Leaders des statistiques des gardiens (saison régulière)

# Nom du gardien GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA

Monsters Statistiques de l'Équipe de Carrière

TotalDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT

Monsters Leaders statistiques des joueurs (séries éliminatoires)

# Nom du joueur GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Monsters Leaders des statistiques des gardiens (séries éliminatoires)

# Nom du gardien GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA