Connexion

Monsters
GP: 0 | W: 0 | L: 0 | OTL: 0 | P: 0
GF: 0 | GA: 0 | PP%: 0.00% | PK%: 0.00%
DG: Paul-André Desrochers | Morale : 50 | Moyenne d’équipe : 58
Prochains matchs #8 vs Baby Hawks
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Baby Hawks
0-0-0, 0pts
2022-10-12
Monsters
0-0-0, 0pts
Statistiques d’équipe
N/ASéquenceN/A
0-0-0Fiche domicile0-0-0
0-0-0Fiche visiteur0-0-0
0-0-010 derniers matchs0-0-0
0Buts par match 0
0Buts contre par match 0
0%Pourcentage en avantage numérique0%
0%Pourcentage en désavantage numérique0%
Monsters
0-0-0, 0pts
2022-10-13
Heat
0-0-0, 0pts
Statistiques d’équipe
N/ASéquenceN/A
0-0-0Fiche domicile0-0-0
0-0-0Fiche visiteur0-0-0
0-0-010 derniers matchs0-0-0
0Buts par match 0
0Buts contre par match 0
0%Pourcentage en avantage numérique0%
0%Pourcentage en désavantage numérique0%
Monsters
0-0-0, 0pts
2022-10-17
Minnesota
0-0-0, 0pts
Statistiques d’équipe
N/ASéquenceN/A
0-0-0Fiche domicile0-0-0
0-0-0Fiche visiteur0-0-0
0-0-010 derniers matchs0-0-0
0Buts par match 0
0Buts contre par match 0
0%Pourcentage en avantage numérique0%
0%Pourcentage en désavantage numérique0%
Meneurs d'équipe

Statistiques d’équipe
Informations de l'équipe

Directeur généralPaul-André Desrochers
DivisionNord
ConférenceOuest
Capitaine
Assistant #1
Assistant #2


Informations de l’aréna

Capacité3,000
Assistance
Billets de saison300


Informations de la formation

Équipe Pro22
Équipe Mineure18
Limite contact 40 / 50
Espoirs19


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPÂgeContratSalaire moyen
1Peyton Krebs (R)XX100.00634188806668697448716263255151050630202894,167$
2Brad RichardsonX100.007857777770575954785959702582860506203611,700,000$
3Vasily Podkolzin (R)X100.00764489787164656237627165255454050620204925,000$
4Brett SeneyXX100.00595665775671736780676259594949050610251782,500$
5Otto KoivulaXX100.00754599718458686267705563254545050610232700,000$
6Aliaksei Protas (R)X100.00674499728661646655645959254747050600203795,000$
7Oskar SteenXX100.00814490686559736031655970254646050600232809,168$
8Ben JonesX100.00686869666875796176526560624444050590223760,000$
9Marian StudenicX100.00714293726259666131565775254747050590222750,000$
10Ty RonningX100.00696187636161626150566261594444050570233750,833$
11Curtis Hall (R)X100.00868197708153554658424566434444050540213925,000$
12Grant MismashXX100.00746889656851524961454860464444050520222825,000$
13Olle Lycksell (R)X100.00454089676361804753414444485454050500223837,000$
14Steven KampferX100.00714392677065495725474669246364050600332750,000$
15Alexander AlexeyevX100.00808079718062664925433963374444050580213863,333$
16Jordan GrossX100.00716879666862626325615162484444050580261700,000$
17Matthew Robertson (R)X100.00797784637753554625373962374444050550204797,500$
Rayé
1Caleb JonesX100.008044897771706864255450767564640506602400$
2Lucas CarlssonX100.007543917170606557255149642550500506002400$
MOYENNE D’ÉQUIPE100.0072558771706265584655546439515105059
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPÂgeContratSalaire moyen
1Tyler Parsons100.0043485870394149484243294441050470241650,000$
2Filip Larsson (R)100.0041495871444447464041274441050470231836,666$
Rayé
1Laurent Brossoit100.00635354817056706265636257570506302800$
MOYENNE D’ÉQUIPE100.004950577451475552494939484605052
Nom de l’entraîneur PH DF OF PD EX LD PO CNT Âge Contrat Salaire


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du joueur Nom de l’équipePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du gardien Nom de l’équipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du joueur Nom de l’équipePOS Âge Date de naissance Nouveau joueur Poids Taille Non-échange Disponible pour échange Ballotage forcé Contrat Type Salaire actuel Salaire moyen restantPlafond salarial Plafond salarial restant Exclus du plafond salarial Salaire annuel 2Salaire annuel 3Salaire annuel 4Salaire annuel 5Salaire annuel 6Salaire annuel 7Salaire annuel 8Salaire annuel 9Salaire annuel 10Link
Alexander AlexeyevMonsters (Col)D211999-11-15No210 Lbs6 ft4NoNoNo3Pro & Farm863,333$863,333$86,333$86,333$No863,333$863,333$Lien
Aliaksei ProtasMonsters (Col)C202001-01-06Yes225 Lbs6 ft6NoNoNo3Pro & Farm795,000$795,000$79,500$79,500$No795,000$795,000$Lien
Ben JonesMonsters (Col)C221999-02-25No187 Lbs6 ft0NoNoNo3Pro & Farm760,000$760,000$76,000$76,000$No760,000$760,000$Lien
Brad RichardsonMonsters (Col)C361985-02-03No190 Lbs6 ft0NoNoNo1Pro & Farm1,700,000$1,700,000$170,000$170,000$NoLien
Brett SeneyMonsters (Col)C/LW251996-02-27No156 Lbs5 ft9NoNoNo1Pro & Farm782,500$782,500$78,250$78,250$NoLien
Caleb JonesMonsters (Col)D241997-06-05No194 Lbs6 ft1NoNoNo0Pro & Farm0$0$NoLien
Curtis HallMonsters (Col)C212000-04-26Yes216 Lbs6 ft4NoNoNo3Pro & Farm925,000$925,000$92,500$92,500$No925,000$925,000$Lien
Filip LarssonMonsters (Col)G231998-08-17Yes181 Lbs6 ft2NoNoNo1Pro & Farm836,666$836,666$83,667$83,667$NoLien
Grant MismashMonsters (Col)C/LW221999-02-19No185 Lbs6 ft0NoNoNo2Pro & Farm825,000$825,000$82,500$82,500$No825,000$Lien
Jordan GrossMonsters (Col)D261995-05-09No190 Lbs5 ft10NoNoNo1Pro & Farm700,000$700,000$70,000$70,000$NoLien
Laurent BrossoitMonsters (Col)G281993-03-22No205 Lbs6 ft3NoNoNo0Pro & Farm0$0$NoLien
Lucas CarlssonMonsters (Col)D241997-07-05No190 Lbs6 ft0NoNoNo0Pro & Farm0$0$NoLien
Marian StudenicMonsters (Col)RW221998-10-28No163 Lbs6 ft1NoNoNo2Pro & Farm750,000$750,000$75,000$75,000$No750,000$Lien
Matthew RobertsonMonsters (Col)D202001-03-09Yes201 Lbs6 ft4NoNoNo4Pro & Farm797,500$797,500$79,750$79,750$No797,500$797,500$797,500$Lien
Olle LycksellMonsters (Col)RW221999-08-24Yes176 Lbs5 ft11NoNoNo3Pro & Farm837,000$837,000$83,700$83,700$No837,000$837,000$Lien
Oskar SteenMonsters (Col)C/RW231998-03-09No188 Lbs5 ft9NoNoNo2Pro & Farm809,168$809,168$80,917$80,917$No809,168$Lien
Otto KoivulaMonsters (Col)C/LW231998-09-01No223 Lbs6 ft5NoNoNo2Pro & Farm700,000$700,000$70,000$70,000$No700,000$Lien
Peyton KrebsMonsters (Col)C/LW202001-01-26Yes180 Lbs5 ft11NoNoNo2Pro & Farm894,167$894,167$89,417$89,417$No894,167$Lien
Steven KampferMonsters (Col)D331988-09-24No198 Lbs5 ft11NoNoNo2Pro & Farm750,000$750,000$75,000$75,000$No750,000$Lien
Ty RonningMonsters (Col)RW231997-10-20No172 Lbs5 ft9NoNoNo3Pro & Farm750,833$750,833$75,083$75,083$No750,833$750,833$Lien
Tyler ParsonsMonsters (Col)G241997-09-17No185 Lbs6 ft1NoNoNo1Pro & Farm650,000$650,000$65,000$65,000$NoLien
Vasily PodkolzinMonsters (Col)RW202001-06-24Yes190 Lbs6 ft1NoNoNo4Pro & Farm925,000$925,000$92,500$92,500$No925,000$925,000$925,000$Lien
Nombre de joueursÂge moyenPoids moyenTaille moyenneContrat moyenSalaire moyen 1e année
2223.73191 Lbs6 ft11.95729,599$



Attaque à 5 contre 5
Ligne #Ailier gaucheCentreAilier droit% tempsPHYDFOF
1Oskar Steen40122
2Ben JonesTy Ronning30122
3Aliaksei Protas20122
4Brett Seney10122
Défense à 5 contre 5
Ligne #DéfenseDéfense% tempsPHYDFOF
1Steven Kampfer40122
230122
320122
4Steven Kampfer10122
Attaque en avantage numérique
Ligne #Ailier gaucheCentreAilier droit% tempsPHYDFOF
1Oskar Steen60122
2Ben JonesTy Ronning40122
Défense en avantage numérique
Ligne #DéfenseDéfense% tempsPHYDFOF
1Steven Kampfer60122
240122
Attaque à 4 en désavantage numérique
Ligne #CentreAilier% tempsPHYDFOF
160122
2Oskar SteenBen Jones40122
Défense à 4 en désavantage numérique
Ligne #DéfenseDéfense% tempsPHYDFOF
1Steven Kampfer60122
240122
3 joueurs en désavantage numérique
Ligne #Ailier% tempsPHYDFOFDéfenseDéfense% tempsPHYDFOF
160122Steven Kampfer60122
24012240122
Attaque à 4 contre 4
Ligne #CentreAilier% tempsPHYDFOF
160122
2Oskar SteenBen Jones40122
Défense à 4 contre 4
Ligne #DéfenseDéfense% tempsPHYDFOF
1Steven Kampfer60122
240122
Attaque dernière minute
Ailier gaucheCentreAilier droitDéfenseDéfense
Oskar SteenSteven Kampfer
Défense dernière minute
Ailier gaucheCentreAilier droitDéfenseDéfense
Oskar SteenSteven Kampfer
Attaquants supplémentaires
Normal Avantage numériqueDésavantage numérique
Aliaksei Protas, , Aliaksei Protas,
Défenseurs supplémentaires
Normal Avantage numériqueDésavantage numérique
, , ,
Tirs de pénalité
, , Oskar Steen, Ben Jones, Ty Ronning
Gardien
#1 : , #2 :


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
TotalDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Total00000000000000000000000000000000000.000000000000000000000000.00%000.00%0000.00%000.00%000.00%000000

Total pour les joueurs
Matchs jouésPointsSéquenceButsPassesPointsTirs pourTirs contreTirs bloquésMinutes de pénalitésMises en échecButs en filet désertBlanchissages
00N/A0000000000
Tous les matchs
GPWLOTWOTL SOWSOLGFGA
000000000
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
000000000
Matchs extérieurs
GPWLOTWOTL SOWSOLGFGA
000000000
Derniers 10 matchs
WLOTWOTL SOWSOL
000000
Tentatives en avantage numériqueButs en avantage numérique% en avantage numériqueTentatives en désavantage numériqueButs contre en désavantage numérique% en désavantage numériqueButs pour en désavantage numérique
000.00%000.00%0
Tirs en 1e périodeTirs en 2e périodeTirs en 3e périodeTirs en 4e périodeButs en 1e périodeButs en 2e périodeButs en 3e périodeButs en 4e période
00000000
Mises en jeu
Gagnées en zone offensiveTotal en zone offensive% gagnées en zone offensive Gagnées en zone défensiveTotal en zone défensive% gagnées en zone défensiveGagnées en zone neutreTotal en zone neutre% gagnées en zone neutre
000.00%000.00%000.00%
Temps avec la rondelle
En zone offensiveContrôle en zone offensiveEn zone défensiveContrôle en zone défensiveEn zone neutreContrôle en zone neutre
000000


Derniers matchs joués
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe visiteuse Score Équipe locale Score ST OT SO RI Lien
6 - 2022-10-128Baby Hawks-Monsters-
7 - 2022-10-1318Monsters-Heat-
11 - 2022-10-1745Monsters-Minnesota-
13 - 2022-10-1957Oceanics-Monsters-
15 - 2022-10-2173Seattle-Monsters-
16 - 2022-10-2285Monsters-Las Vegas-
19 - 2022-10-2599Monsters-Wolf Pack-
22 - 2022-10-28123Monsters-Spiders-
23 - 2022-10-29135Monsters-Sound Tigers-
29 - 2022-11-04174Monsters-Monsters-
30 - 2022-11-05176Monsters-Monsters-
35 - 2022-11-10219Chill-Monsters-
37 - 2022-11-12233Caroline-Monsters-
39 - 2022-11-14247Chiefs-Monsters-
42 - 2022-11-17261Monsters-Caroline-
44 - 2022-11-19279Monsters-Bears-
46 - 2022-11-21298Monsters-Stars-
48 - 2022-11-23317Comets-Monsters-
50 - 2022-11-25319Monsters-Chill-
51 - 2022-11-26339Stars-Monsters-
54 - 2022-11-29357Monsters-Oceanics-
56 - 2022-12-01365Monsters-Crunch-
58 - 2022-12-03381Monsters-Bruins-
60 - 2022-12-05397Monsters-Phantoms-
62 - 2022-12-07415Bruins-Monsters-
64 - 2022-12-09430Wolf Pack-Monsters-
66 - 2022-12-11442Monsters-Chiefs-
68 - 2022-12-13464Phantoms-Monsters-
70 - 2022-12-15479Crunch-Monsters-
72 - 2022-12-17493Chill-Monsters-
74 - 2022-12-19506Sound Tigers-Monsters-
76 - 2022-12-21520Rocket-Monsters-
78 - 2022-12-23539Monsters-Chill-
82 - 2022-12-27554Monsters-Jayhawks-
84 - 2022-12-29571Monarchs-Monsters-
86 - 2022-12-31582Marlies-Monsters-
88 - 2023-01-02596Las Vegas-Monsters-
91 - 2023-01-05619Monsters-Comets-
93 - 2023-01-07635Monsters-Oil Kings-
96 - 2023-01-10656Cabaret Lady Mary Ann-Monsters-
98 - 2023-01-12671Monsters-Baby Hawks-
100 - 2023-01-14678Senators-Monsters-
102 - 2023-01-16696Cougars-Monsters-
104 - 2023-01-18715Monsters-Heat-
106 - 2023-01-20731Monsters-Comets-
107 - 2023-01-21743Monsters-Seattle-
110 - 2023-01-24764Bears-Monsters-
112 - 2023-01-26776Admirals-Monsters-
114 - 2023-01-28788Chiefs-Monsters-
124 - 2023-02-07813Monsters-Manchots-
126 - 2023-02-09821Monsters-Thunder-
128 - 2023-02-11839Monsters-Cabaret Lady Mary Ann-
131 - 2023-02-14862Thunder-Monsters-
132 - 2023-02-15867Monsters-Minnesota-
135 - 2023-02-18883Monsters-Chiefs-
136 - 2023-02-19898Oil Kings-Monsters-
141 - 2023-02-24935Monsters-Oceanics-
142 - 2023-02-25945Heat-Monsters-
144 - 2023-02-27956Las Vegas-Monsters-
146 - 2023-03-01971Spiders-Monsters-
149 - 2023-03-04997Monsters-Stars-
150 - 2023-03-051005Seattle-Monsters-
152 - 2023-03-071019Sharks-Monsters-
154 - 2023-03-091033Monarchs-Monsters-
156 - 2023-03-111041Jayhawks-Monsters-
158 - 2023-03-131062Monsters-Rocket-
160 - 2023-03-151077Monsters-Marlies-
161 - 2023-03-161080Monsters-Senators-
163 - 2023-03-181095Monsters-Cougars-
165 - 2023-03-201117Baby Hawks-Monsters-
Date limite d’échanges --- Les échanges ne peuvent plus se faire après la simulation de cette journée!
167 - 2023-03-221133Manchots-Monsters-
169 - 2023-03-241149Jayhawks-Monsters-
171 - 2023-03-261165Monsters-Jayhawks-
172 - 2023-03-271174Monsters-Admirals-
174 - 2023-03-291188Minnesota-Monsters-
177 - 2023-04-011212Stars-Monsters-
180 - 2023-04-041239Monsters-Sharks-
182 - 2023-04-061256Monsters-Sharks-
184 - 2023-04-081272Monsters-Monarchs-
185 - 2023-04-091274Monsters-Admirals-
187 - 2023-04-111292Oil Kings-Monsters-
189 - 2023-04-131309Oceanics-Monsters-



Capacité de l’aréna - Tendance du prix des billets - %
Niveau 1Niveau 2
Capacité20001000
Prix des billets3515
Assistance0.00%0.00%
Assistance PCT0.00%0.00%

Revenu
Matchs à domicile restantsAssistance moyenne - %Revenu moyen par matchRevenu annuel à ce jourCapacitéPopularité de l’équipe
41 0 - 0.00%0$0$3000100

Dépenses
Dépenses annuelles à ce jourSalaire total des joueursSalaire total moyen des joueursSalaire des entraineurs
0$ 1,605,117$ 1,605,117$ 0$
Plafond salarial par jourPlafond salarial à ce jourJoueurs Inclus dans le plafond salarialJoueurs exclut du plafond Salarial
8,448$ 0$ 19 0

Estimation
Revenus de la saison estimésJours restants de la saisonDépenses par jourDépenses de la saison estimées
0$ 190 8,448$ 1,605,120$




Monsters Leaders statistiques (saison régulière)

# Nom du joueur GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Monsters Leaders des statistiques des gardiens (saison régulière)

# Nom du gardien GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA

Monsters Statistiques de l'Équipe de Carrière

TotalDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT

Monsters Leaders statistiques (séries éliminatoires)

# Nom du joueur GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Monsters Leaders des statistiques des gardiens (séries éliminatoires)

# Nom du gardien GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA