Please rotate your device to landscape mode for a better experience.
Connexion

Monsters
GP: 9 | W: 6 | L: 2 | OTL: 1 | P: 13
GF: 47 | GA: 29 | PP%: 48.39% | PK%: 77.27%
DG: Paul-André Desrochers | Morale : 50 | Moyenne d’équipe : 59
Prochains matchs #140 vs Spiders

Centre de jeu
Caroline
1-5-2, 4pts
2
FINAL
5 Monsters
6-2-1, 13pts
Team Stats
L2SéquenceL1
0-1-1Fiche domicile2-1-1
1-4-1Fiche domicile4-1-0
1-5-2Derniers 10 matchs6-2-1
3.88Buts par match 5.22
6.13Buts contre par match 3.22
7.69%Pourcentage en avantage numérique48.39%
58.06%Pourcentage en désavantage numérique77.27%
Monsters
6-2-1, 13pts
1
FINAL
3 Bruins
7-3-0, 14pts
Team Stats
L1SéquenceW3
2-1-1Fiche domicile4-2-0
4-1-0Fiche domicile3-1-0
6-2-1Derniers 10 matchs7-3-0
5.22Buts par match 4.20
3.22Buts contre par match 4.50
48.39%Pourcentage en avantage numérique36.67%
77.27%Pourcentage en désavantage numérique62.50%
Monsters
6-2-1, 13pts
2025-10-26
Spiders
5-1-2, 12pts
Statistiques d’équipe
L1SéquenceW2
2-1-1Fiche domicile3-0-1
4-1-0Fiche visiteur2-1-1
6-2-110 derniers matchs5-1-2
5.22Buts par match 5.63
3.22Buts contre par match 5.63
48.39%Pourcentage en avantage numérique19.35%
77.27%Pourcentage en désavantage numérique75.00%
Spiders
5-1-2, 12pts
2025-10-28
Monsters
6-2-1, 13pts
Statistiques d’équipe
W2SéquenceL1
3-0-1Fiche domicile2-1-1
2-1-1Fiche visiteur4-1-0
5-1-210 derniers matchs6-2-1
5.63Buts par match 5.22
4.63Buts contre par match 5.22
19.35%Pourcentage en avantage numérique48.39%
75.00%Pourcentage en désavantage numérique77.27%
Monsters
6-2-1, 13pts
2025-10-31
Las Vegas
2-5-1, 5pts
Statistiques d’équipe
L1SéquenceL2
2-1-1Fiche domicile1-2-1
4-1-0Fiche visiteur1-3-0
6-2-110 derniers matchs2-5-1
5.22Buts par match 3.88
3.22Buts contre par match 3.88
48.39%Pourcentage en avantage numérique23.53%
77.27%Pourcentage en désavantage numérique56.00%
Meneurs d'équipe
Buts
Vasily Podkolzin
11
Passes
Mavrik Bourque
16
Points
Mavrik Bourque
22
Plus/Moins
Mavrik Bourque
8
Victoires
Artur Akhtyamov
6
Pourcentage d’arrêts
Artur Akhtyamov
0.867

Statistiques d’équipe
Buts pour
47
5.22 GFG
Tirs pour
251
27.89 Avg
Pourcentage en avantage numérique
48.4%
15 GF
Début de zone offensive
33.6%
Buts contre
29
3.22 GAA
Tirs contre
211
23.44 Avg
Pourcentage en désavantage numérique
77.3%%
5 GA
Début de la zone défensive
30.3%
Informations de l'équipe

Directeur généralPaul-André Desrochers
DivisionNord
ConférenceOuest
Capitaine
Assistant #1
Assistant #2


Informations de l’aréna

Capacité3,000
Assistance2,901
Billets de saison300


Informations de la formation

Équipe Pro27
Équipe Mineure19
Limite contact 46 / 50
Espoirs13


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPÂgeContratSalaire
1Peyton KrebsXX100.00786768797884847573756972746858050720231950,000$
2Mavrik Bourque (R)X100.00664185807076727364716868735550050690221894,167$
3Vasily Podkolzin (R)XX100.00755672737577757248696568706253050680231925,000$
4Olle Lycksell (R)X100.005740747365746365456460606657500506202511,150,000$
5Justin Sourdif (R)X100.00574663695964626443625858645150050600221847,500$
6Ty Mueller (R)X100.00624167676162616255625764625050050600213870,000$
7Dylan Peterson (R)X100.00614857626362616142555756605150050570232867,500$
8Aleksandr Kisakov (R)X100.00544071665659565640525252585050050550211859,167$
9Daniel Torgersson (R)X100.00654071587261595540525153555150050550221867,500$
10Jakub Stancl (R)X100.00614066586455535540545354555050050550193835,000$
11Josh Filmon (R)X100.00584066616058565440535354565050050550203838,333$
12Mike ReillyX100.00594075727683787140666367688272050690311975,000$
13Alex Alexeyev (R)X100.00624078719083696740616169666353050680241900,000$
14Lucas CarlssonX100.00584368716267666540606467675550050630271800,000$
15Matthew Robertson (R)X100.00614664656765646440625365615250050610231797,500$
16Tristan Luneau (R)X100.00604167676261606440635965635050050610203865,000$
17Hardy Häman AktellX100.00624269656565635940555266595350050600261900,000$
Rayé
1Alexander Pashin (R)XXX100.00494468665551515238464651565050050520221826,667$
2Prokhor Poltapov (R)X100.00454545454545454545454545454545050460213825,000$
3Vladislav Kolyachonok (R)XHO6341777275756866406062666659530506502300$
4Ian Moore (R)X100.00614062626359575640545461575150050580221620,000$
5Jesse Pulkkinen (R)X100.00624066596655535540545359565050050570193880,833$
6Daniil Zhuravlyov (R)X100.00504066665750495038464558555150050540241600,000$
7Aleksi Malinen (R)X100.00373737373737373737373737373737050380213620,000$
MOYENNE D’ÉQUIPE100.0059436765646461604457566060545105059
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPÂgeContratSalaire
1Artur Akhtyamov (R)100.0068626260646668666665595150050590222851,667$
2Filip Larsson100.0065606060626365626463525450050570261750,000$
Rayé
1Cameron Whitehead (R)100.0060575759585656545658545050050530213875,000$
MOYENNE D’ÉQUIPE100.006460606061626361626255525005056
Nom de l’entraîneur PH DF OF PD EX LD PO CNT Âge Contrat Salaire


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du joueur Nom de l’équipePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Mavrik BourqueMonsters (Col)C961622820121236101516.67%318120.212573160001100063.05%203105002.4200000122
2Peyton KrebsMonsters (Col)C/LW981321211518144082520.00%718620.732687180000172064.41%5974002.2500100201
3Vasily PodkolzinMonsters (Col)LW/RW91192064017132981437.93%319922.214375180000160160.00%15910012.0000000212
4Mike ReillyMonsters (Col)D82810580107186811.11%721226.54134521000014100%0413000.9400000001
5Ty MuellerMonsters (Col)C945912013111851322.22%115116.85134316000011061.46%9633001.1900000030
6Alex AlexeyevMonsters (Col)D8268520108184611.11%1021326.71112321000017100%0315000.7500000000
7Justin SourdifMonsters (Col)RW9347040175217714.29%514916.5810123000081050.00%843000.9400000100
8Olle LycksellMonsters (Col)RW8516-2195861982026.32%415018.77213314000060025.00%867000.8000010000
9Tristan LuneauMonsters (Col)D9044175865240%816918.8701101100009000%038000.4700001000
10Aleksandr KisakovMonsters (Col)LW9303400107105330.00%112714.1700002000020075.00%418000.4700000100
11Josh FilmonMonsters (Col)LW9123-35515343425.00%114516.22112114000060050.00%611000.4100001000
12Lucas CarlssonMonsters (Col)D8022455866360%815319.1701109000111000%012000.2600100000
13Matthew RobertsonMonsters (Col)D9022-4115442310%114015.650000300002000%0110000.2800010000
14Daniel TorgerssonMonsters (Col)LW911240080101100.00%1758.390000000000000%012000.5300000000
15Dylan PetersonMonsters (Col)C90222121013914590%212013.3800001000000041.67%3617000.3300002000
16Hardy Häman AktellMonsters (Col)D8011-200462120%412515.6800001000011000%016000.1600000000
17Jakub StanclMonsters (Col)C91013206140125.00%4626.9600002000010041.67%2413000.3200000000
18Alexander PashinMonsters (Col)C/LW/RW1000100024000%02020.470000000000000%00000000000000
19Ian MooreMonsters (Col)D1000100100100%02121.270000000000000%00200000000000
20Aleksi MalinenMonsters (Col)D1000200000000%01515.020000100001000%00000000000000
21Jesse PulkkinenMonsters (Col)D1000100210000%22121.900000100000000%01300000000000
22Prokhor PoltapovMonsters (Col)RW1000200000000%01212.620000100000000%00000000000000
Statistiques d’équipe totales ou en moyenne15347761234194401841212517913918.73%72265817.371525403218500021386159.04%45958112010.9300224766
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du gardien Nom de l’équipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Artur AkhtyamovMonsters (Col)96210.8673.125390028210118010090000
Statistiques d’équipe totales ou en moyenne96210.8673.12539002821011801090000


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du joueur Nom de l’équipePOS Âge Date de naissance Pays Recrue Poids Taille Non-échange Disponible pour échange Acquis Par Date de la Dernière Transaction Ballotage forcé Waiver Possible Contrat Date du Signature du Contrat Forcer UFA Rappel d'urgence Type Salaire actuel Plafond salarial Plafond salarial restant Exclus du plafond salarial Salaire année 2Salaire année 3Salaire année 4Salaire année 5Salaire année 6Salaire année 7Salaire année 8Salaire année 9Salaire année 10Plafond salarial année 2Plafond salarial année 3Plafond salarial année 4Plafond salarial année 5Plafond salarial année 6Plafond salarial année 7Plafond salarial année 8Plafond salarial année 9Plafond salarial année 10Non-échange année 2Non-échange année 3Non-échange année 4Non-échange année 5Non-échange année 6Non-échange année 7Non-échange année 8Non-échange année 9Non-échange année 10Lien
Aleksandr KisakovMonsters (Col)LW212002-11-01RUSYes163 Lbs5 ft11NoNoN/ANoNo1FalseFalsePro & Farm859,167$0$0$No---------------------------Lien
Aleksi MalinenMonsters (Col)D212003-05-26FINYes198 Lbs6 ft0NoNoProspectNoNo32025-07-10FalseFalsePro & Farm620,000$0$0$No620,000$620,000$-------620,000$620,000$-------NoNo-------Lien
Alex Alexeyev (contrat à 1 volet)Monsters (Col)D241999-11-15RUSYes229 Lbs6 ft4NoNoFree AgentNoYes12025-08-28FalseFalsePro & Farm900,000$0$0$No---------------------------Lien
Alexander PashinMonsters (Col)C/LW/RW222002-01-28RUSYes154 Lbs5 ft8NoNoN/ANoNo1FalseFalsePro & Farm826,667$0$0$No---------------------------Lien
Artur AkhtyamovMonsters (Col)G222001-10-31RUSYes170 Lbs6 ft2NoNoProspectNoNo22024-06-25FalseFalsePro & Farm851,667$0$0$No851,667$--------851,667$--------No--------Lien
Cameron WhiteheadMonsters (Col)G212003-06-13CANYes165 Lbs6 ft3NoNoProspectNoNo32025-07-10FalseFalsePro & Farm875,000$0$0$No875,000$875,000$-------875,000$875,000$-------NoNo-------Lien
Daniel TorgerssonMonsters (Col)LW222002-01-26SWEYes220 Lbs6 ft4NoNoN/ANoNo1FalseFalsePro & Farm867,500$0$0$No---------------------------Lien
Daniil ZhuravlyovMonsters (Col)D242000-04-08RUSYes163 Lbs6 ft0NoNoN/ANoYes1FalseFalsePro & Farm600,000$0$0$No---------------------------Lien
Dylan PetersonMonsters (Col)C232001-08-02USAYes192 Lbs6 ft4NoNoProspectNoNo22024-06-25FalseFalsePro & Farm867,500$0$0$No867,500$--------867,500$--------No--------Lien
Filip LarssonMonsters (Col)G261998-08-17SWENo194 Lbs6 ft2NoNoFree AgentYesYes12024-09-06FalseFalsePro & Farm750,000$0$0$No---------------------------Lien
Hardy Häman Aktell (contrat à 1 volet)Monsters (Col)D261998-07-04SWENo198 Lbs6 ft3NoNoN/AYesYes1FalseFalsePro & Farm900,000$0$0$No---------------------------Lien
Ian Moore (contrat à 1 volet)Monsters (Col)D222002-01-04USAYes194 Lbs6 ft3NoNoFree AgentNoNo12024-09-23FalseFalsePro & Farm620,000$0$0$No---------------------------Lien
Jakub StanclMonsters (Col)C192005-04-10CZEYes203 Lbs6 ft3NoNoDraftNoNo32025-07-10FalseFalsePro & Farm835,000$0$0$No835,000$835,000$-------835,000$835,000$-------NoNo-------Lien
Jesse PulkkinenMonsters (Col)D192004-12-27FINYes203 Lbs6 ft6NoNoDraftNoNo32025-07-10FalseFalsePro & Farm880,833$0$0$No880,833$880,833$-------880,833$880,833$-------NoNo-------Lien
Josh FilmonMonsters (Col)LW202004-03-18CANYes170 Lbs6 ft3NoNoProspectNoNo32025-07-10FalseFalsePro & Farm838,333$0$0$No838,333$838,333$-------838,333$838,333$-------NoNo-------Lien
Justin SourdifMonsters (Col)RW222002-03-24CANYes172 Lbs5 ft11NoNoN/ANoNo1FalseFalsePro & Farm847,500$0$0$No---------------------------Lien
Lucas CarlssonMonsters (Col)D271997-07-05SWENo190 Lbs6 ft0NoNoFree AgentYesYes12024-09-06FalseFalsePro & Farm800,000$0$0$No---------------------------Lien
Matthew RobertsonMonsters (Col)D232001-03-09CANYes201 Lbs6 ft4NoNoN/ANoNo1FalseFalsePro & Farm797,500$0$0$No---------------------------Lien
Mavrik BourqueMonsters (Col)C222002-01-08CANYes181 Lbs5 ft11NoNoTrade2025-09-18NoNo1FalseFalsePro & Farm894,167$0$0$No---------------------------Lien
Mike Reilly (contrat à 1 volet)Monsters (Col)D311993-07-13USANo191 Lbs6 ft2NoNoFree AgentYesYes12024-09-23FalseFalsePro & Farm975,000$55,000$49,585$No---------------------------Lien
Olle LycksellMonsters (Col)RW251999-08-24SWEYes163 Lbs5 ft10NoNoFree AgentYesYes12025-09-05FalseFalsePro & Farm1,150,000$0$0$No---------------------------Lien
Peyton Krebs (contrat à 1 volet)Monsters (Col)C/LW232001-01-26CANNo186 Lbs6 ft0NoNoFree AgentNoNo12024-09-11FalseFalsePro & Farm950,000$30,000$27,047$No---------------------------Lien
Prokhor PoltapovMonsters (Col)RW212003-02-01RUSYes176 Lbs6 ft0NoNoProspectNoNo32025-07-10FalseFalsePro & Farm825,000$0$0$No825,000$825,000$-------825,000$825,000$-------NoNo-------Lien
Tristan LuneauMonsters (Col)D202004-01-12CANYes190 Lbs6 ft2NoNoProspectNoNo32025-07-10FalseFalsePro & Farm865,000$0$0$No865,000$865,000$-------865,000$865,000$-------NoNo-------Lien
Ty MuellerMonsters (Col)C212003-02-26CANYes185 Lbs5 ft11NoNoDraftNoNo32025-07-10FalseFalsePro & Farm870,000$0$0$No870,000$870,000$-------870,000$870,000$-------NoNo-------Lien
Vasily PodkolzinMonsters (Col)LW/RW232001-06-24RUSYes190 Lbs6 ft1NoNoN/ANoNo1FalseFalsePro & Farm925,000$0$0$No---------------------------Lien
Vladislav KolyachonokMonsters (Col)D232001-05-26BLRYes195 Lbs6 ft2NoNoN/ANoNo0FalseFalsePro & Farm0$0$No---------------------------Lien
Nombre de joueursÂge moyenPoids moyenTaille moyenneContrat moyenSalaire moyen 1e année
2722.70187 Lbs6 ft11.63814,475$



Attaque à 5 contre 5
Ligne #Ailier gaucheCentreAilier droit% tempsPHYDFOF
1Peyton KrebsMavrik BourqueVasily Podkolzin40122
2Josh FilmonTy MuellerOlle Lycksell30122
3Aleksandr KisakovDylan PetersonJustin Sourdif20122
4Daniel TorgerssonJakub StanclVasily Podkolzin10122
Défense à 5 contre 5
Ligne #DéfenseDéfense% tempsPHYDFOF
1Mike ReillyAlex Alexeyev40122
2Lucas CarlssonTristan Luneau30122
3Matthew RobertsonHardy Häman Aktell20122
4Mike ReillyAlex Alexeyev10122
Attaque en avantage numérique
Ligne #Ailier gaucheCentreAilier droit% tempsPHYDFOF
1Peyton KrebsMavrik BourqueVasily Podkolzin60122
2Josh FilmonTy MuellerOlle Lycksell40122
Défense en avantage numérique
Ligne #DéfenseDéfense% tempsPHYDFOF
1Mike ReillyAlex Alexeyev60122
2Tristan LuneauLucas Carlsson40122
Attaque à 4 en désavantage numérique
Ligne #CentreAilier% tempsPHYDFOF
1Peyton KrebsVasily Podkolzin60122
2Mavrik BourqueOlle Lycksell40122
Défense à 4 en désavantage numérique
Ligne #DéfenseDéfense% tempsPHYDFOF
1Mike ReillyAlex Alexeyev60122
2Lucas CarlssonHardy Häman Aktell40122
3 joueurs en désavantage numérique
Ligne #Ailier% tempsPHYDFOFDéfenseDéfense% tempsPHYDFOF
1Peyton Krebs60122Alex AlexeyevHardy Häman Aktell60122
2Mavrik Bourque40122Mike ReillyLucas Carlsson40122
Attaque à 4 contre 4
Ligne #CentreAilier% tempsPHYDFOF
1Peyton KrebsVasily Podkolzin60122
2Mavrik BourqueOlle Lycksell40122
Défense à 4 contre 4
Ligne #DéfenseDéfense% tempsPHYDFOF
1Mike ReillyAlex Alexeyev60122
2Lucas CarlssonTristan Luneau40122
Attaque dernière minute
Ailier gaucheCentreAilier droitDéfenseDéfense
Peyton KrebsMavrik BourqueVasily PodkolzinMike ReillyAlex Alexeyev
Défense dernière minute
Ailier gaucheCentreAilier droitDéfenseDéfense
Peyton KrebsMavrik BourqueVasily PodkolzinMike ReillyAlex Alexeyev
Attaquants supplémentaires
Normal Avantage numériqueDésavantage numérique
Vasily Podkolzin, Olle Lycksell, Justin SourdifVasily Podkolzin, Olle LycksellJustin Sourdif
Défenseurs supplémentaires
Normal Avantage numériqueDésavantage numérique
Mike Reilly, Tristan Luneau, Matthew RobertsonMatthew RobertsonTristan Luneau, Matthew Robertson
Tirs de pénalité
Peyton Krebs, Mavrik Bourque, Vasily Podkolzin, Mike Reilly, Olle Lycksell
Gardien
#1 : Artur Akhtyamov, #2 : Filip Larsson


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
TotalDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Bruins2010010058-31000010045-11010000013-210.2505813001317170606110189050161634100.00%8275.00%08315453.90%8413960.43%10416662.65%186961837417091
2Caroline11000000523110000005230000000000021.0005712001317170266110189013319243133.33%20100.00%08315453.90%8413960.43%10416662.65%186961837417091
3Crunch11000000642000000000001100000064221.0006111700131717026611018902312494375.00%20100.00%08315453.90%8413960.43%10416662.65%186961837417091
4Monarchs11000000541000000000001100000054121.0005611001317170266110189030116174250.00%3166.67%08315453.90%8413960.43%10416662.65%186961837417091
5Monsters11000000532000000000001100000053221.0005101500131717026611018903278312150.00%40100.00%08315453.90%8413960.43%10416662.65%186961837417091
6Roadrunners220000001941511000000111101100000083541.00019315000131717062611018904315394213753.85%2150.00%08315453.90%8413960.43%10416662.65%186961837417091
7Stars1010000024-21010000024-20000000000000.00023510131717025611018902082274125.00%110.00%08315453.90%8413960.43%10416662.65%186961837417091
Total96200100472918421001002212105410000025178130.7224776123101317170251611018902117294184311548.39%22577.27%08315453.90%8413960.43%10416662.65%186961837417091
_Since Last GM Reset96200100472918421001002212105410000025178130.7224776123101317170251611018902117294184311548.39%22577.27%08315453.90%8413960.43%10416662.65%186961837417091
_Vs Conference3210000013103211000007611100000064240.66713213410131717077611018905623256011545.45%5180.00%08315453.90%8413960.43%10416662.65%186961837417091
_Vs Division31100000218132010000013581100000083520.33321345510131717087611018906323416917847.06%3233.33%08315453.90%8413960.43%10416662.65%186961837417091

Total pour les joueurs
Matchs jouésPointsSéquenceButsPassesPointsTirs pourTirs contreTirs bloquésMinutes de pénalitésMises en échecButs en filet désertBlanchissages
913L14776123251211729418410
Tous les matchs
GPWLOTWOTL SOWSOLGFGA
96201004729
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
42101002212
Matchs extérieurs
GPWLOTWOTL SOWSOLGFGA
54100002517
Derniers 10 matchs
WLOTWOTL SOWSOL
620100
Tentatives en avantage numériqueButs en avantage numérique% en avantage numériqueTentatives en désavantage numériqueButs contre en désavantage numérique% en désavantage numériqueButs pour en désavantage numérique
311548.39%22577.27%0
Tirs en 1e périodeTirs en 2e périodeTirs en 3e périodeTirs en 4e périodeButs en 1e périodeButs en 2e périodeButs en 3e périodeButs en 4e période
611018901317170
Mises en jeu
Gagnées en zone offensiveTotal en zone offensive% gagnées en zone offensive Gagnées en zone défensiveTotal en zone défensive% gagnées en zone défensiveGagnées en zone neutreTotal en zone neutre% gagnées en zone neutre
8315453.90%8413960.43%10416662.65%
Temps avec la rondelle
En zone offensiveContrôle en zone offensiveEn zone défensiveContrôle en zone défensiveEn zone neutreContrôle en zone neutre
186961837417091


Derniers matchs joués
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe visiteuse Score Équipe locale Score ST OT SO RI Lien
1 - 2025-10-073Monsters5Monarchs4WSommaire du match
3 - 2025-10-0918Roadrunners1Monsters11WSommaire du match
5 - 2025-10-1134Stars4Monsters2LSommaire du match
7 - 2025-10-1339Monsters6Crunch4WSommaire du match
10 - 2025-10-1667Monsters5Monsters3WSommaire du match
12 - 2025-10-1885Bruins5Monsters4LXSommaire du match
15 - 2025-10-21107Monsters8Roadrunners3WSommaire du match
17 - 2025-10-23121Caroline2Monsters5WSommaire du match
19 - 2025-10-25128Monsters1Bruins3LSommaire du match
20 - 2025-10-26140Monsters-Spiders-
22 - 2025-10-28161Spiders-Monsters-
25 - 2025-10-31178Monsters-Las Vegas-
26 - 2025-11-01184Monsters-Sags-
29 - 2025-11-04209Thunder-Monsters-
33 - 2025-11-08240Monsters-Oil Kings-
34 - 2025-11-09250Monsters-Comets-
36 - 2025-11-11262Admirals-Monsters-
38 - 2025-11-13275Crunch-Monsters-
41 - 2025-11-16300Sound Tigers-Monsters-
45 - 2025-11-20326Wolf Pack-Monsters-
47 - 2025-11-22343Monsters-Jayhawks-
48 - 2025-11-23350Monsters-Baby Hawks-
51 - 2025-11-26371Sags-Monsters-
53 - 2025-11-28378Monsters-Minnesota-
54 - 2025-11-29392Rocket-Monsters-
57 - 2025-12-02417Comets-Monsters-
59 - 2025-12-04430Monsters-Sound Tigers-
61 - 2025-12-06441Monsters-Wolf Pack-
62 - 2025-12-07453Monsters-Phantoms-
64 - 2025-12-09475Monsters-Jayhawks-
66 - 2025-12-11490Cabaret Lady Mary Ann-Monsters-
68 - 2025-12-13506Jayhawks-Monsters-
71 - 2025-12-16528Monsters-Firebirds-
74 - 2025-12-19546Oceanics-Monsters-
76 - 2025-12-21563Monsters-Minnesota-
78 - 2025-12-23584Roadrunners-Monsters-
82 - 2025-12-27600Monsters-Las Vegas-
84 - 2025-12-29611Monarchs-Monsters-
86 - 2025-12-31629Chiefs-Monsters-
89 - 2026-01-03653Monsters-Caroline-
90 - 2026-01-04659Monsters-Cabaret Lady Mary Ann-
92 - 2026-01-06668Monsters-Thunder-
94 - 2026-01-08691Senators-Monsters-
96 - 2026-01-10699Monsters-Monsters-
98 - 2026-01-12723Marlies-Monsters-
102 - 2026-01-16752Jayhawks-Monsters-
105 - 2026-01-19771Bears-Monsters-
107 - 2026-01-21789Admirals-Monsters-
109 - 2026-01-23805Phantoms-Monsters-
111 - 2026-01-25819Monsters-Marlies-
114 - 2026-01-28841Monsters-Senators-
115 - 2026-01-29845Monsters-Rocket-
117 - 2026-01-31860Monsters-Cougars-
119 - 2026-02-02883Cougars-Monsters-
121 - 2026-02-04897Sags-Monsters-
142 - 2026-02-25914Monsters-Roadrunners-
143 - 2026-02-26927Minnesota-Monsters-
145 - 2026-02-28938Baby Hawks-Monsters-
147 - 2026-03-02958Monsters-Monarchs-
148 - 2026-03-03968Monsters-Admirals-
151 - 2026-03-06984Monsters-Stars-
Date limite d’échanges --- Les échanges ne peuvent plus se faire après la simulation de cette journée!
153 - 2026-03-081001Minnesota-Monsters-
155 - 2026-03-101023Oil Kings-Monsters-
157 - 2026-03-121040Monsters-Firebirds-
159 - 2026-03-141045Monsters-Oceanics-
161 - 2026-03-161067Manchots-Monsters-
163 - 2026-03-181080Stars-Monsters-
165 - 2026-03-201096Monsters-Baby Hawks-
167 - 2026-03-221111Monsters-Bears-
169 - 2026-03-241126Monsters-Manchots-
171 - 2026-03-261145Monsters-Oceanics-
173 - 2026-03-281162Oceanics-Monsters-
175 - 2026-03-301174Heat-Monsters-
177 - 2026-04-011188Comets-Monsters-
180 - 2026-04-041209Monsters-Stars-
181 - 2026-04-051228Chiefs-Monsters-
183 - 2026-04-071238Monsters-Chiefs-
185 - 2026-04-091256Heat-Monsters-
187 - 2026-04-111274Las Vegas-Monsters-
189 - 2026-04-131289Monsters-Oil Kings-
190 - 2026-04-141298Monsters-Heat-
192 - 2026-04-161312Firebirds-Monsters-



Capacité de l’aréna - Tendance du prix des billets - %
Niveau 1Niveau 2
Capacité20001000
Prix des billets3515
Assistance7,7513,854
Assistance PCT96.89%96.35%

Revenu
Matchs à domicile restantsAssistance moyenne - %Revenu moyen par matchRevenu annuel à ce jourCapacitéPopularité de l’équipe
-1 2901 - 96.71% 98,729$394,914$3000100

Dépenses
Dépenses annuelles à ce jourSalaire total des joueursPlafond Salariale total des joueursSalaire des entraineurs
173,717$ 1,764,584$ 1,764,584$ 0$
Plafond salarial par jourPlafond salarial à ce jourJoueurs Inclus dans le plafond salarialJoueurs exclut du plafond Salarial
9,143$ 173,717$ 0 0

Estimation
Revenus de la saison estimésJours restants de la saisonDépenses par jourDépenses de la saison estimées
3,652,954$ 174 9,143$ 1,590,882$




Monsters Leaders statistiques des joueurs (saison régulière)

# Nom du joueur GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Monsters Leaders des statistiques des gardiens (saison régulière)

# Nom du gardien GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA

Monsters Statistiques de l'Équipe de Carrière

TotalDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT

Monsters Leaders statistiques des joueurs (séries éliminatoires)

# Nom du joueur GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Monsters Leaders des statistiques des gardiens (séries éliminatoires)

# Nom du gardien GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA