Connexion

Wolf Pack
GP: 0 | W: 0 | L: 0 | OTL: 0 | P: 0
GF: 0 | GA: 0 | PP%: 0.00% | PK%: 0.00%
DG: Jonathan Laroche | Morale : 50 | Moyenne d’équipe : 56
Prochains matchs #3 vs Thunder
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Thunder
0-0-0, 0pts
2022-10-11
Wolf Pack
0-0-0, 0pts
Statistiques d’équipe
N/ASéquenceN/A
0-0-0Fiche domicile0-0-0
0-0-0Fiche visiteur0-0-0
0-0-010 derniers matchs0-0-0
0Buts par match 0
0Buts contre par match 0
0%Pourcentage en avantage numérique0%
0%Pourcentage en désavantage numérique0%
Wolf Pack
0-0-0, 0pts
2022-10-13
Minnesota
0-0-0, 0pts
Statistiques d’équipe
N/ASéquenceN/A
0-0-0Fiche domicile0-0-0
0-0-0Fiche visiteur0-0-0
0-0-010 derniers matchs0-0-0
0Buts par match 0
0Buts contre par match 0
0%Pourcentage en avantage numérique0%
0%Pourcentage en désavantage numérique0%
Wolf Pack
0-0-0, 0pts
2022-10-14
Oceanics
0-0-0, 0pts
Statistiques d’équipe
N/ASéquenceN/A
0-0-0Fiche domicile0-0-0
0-0-0Fiche visiteur0-0-0
0-0-010 derniers matchs0-0-0
0Buts par match 0
0Buts contre par match 0
0%Pourcentage en avantage numérique0%
0%Pourcentage en désavantage numérique0%
Meneurs d'équipe

Statistiques d’équipe
Informations de l'équipe

Directeur généralJonathan Laroche
DivisionNord-Est
ConférenceEst
Capitaine
Assistant #1
Assistant #2


Informations de l’aréna

Capacité3,000
Assistance
Billets de saison300


Informations de la formation

Équipe Pro14
Équipe Mineure19
Limite contact 33 / 50
Espoirs19


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPÂgeContratSalaire moyen
1Joel KivirantaXX100.00824493806654675825605564255555050590252925,000$
2Jacob Perreault (R)XX100.00696969706966676278606161584444050590192925,000$
3Vasili Ponomarev (R)X100.00726588736541356580656263594444050580194813,333$
4Dylan Holloway (R)XX100.00777485617447446278606065574444050570204925,000$
5Mathias BromeXX100.00654289716760596234505263244646050560273925,000$
6Samuel Bolduc (R)X100.00858390658356604525344065384444050570202842,500$
7Kevin CzuczmanX100.00807689667656594625374063384646050560301700,000$
8Bode WildeX100.00818098597354505228384968454444050560212778,333$
9Ty Emberson (R)X100.00777190637152544625364161394444050540213853,333$
10Anton Karlsson (R)X100.00656980606954584225333558364444050520252700,000$
Rayé
MOYENNE D’ÉQUIPE100.0075678767715455544247506342464605056
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPÂgeContratSalaire moyen
1Carter Hutton100.00454658754590455090814564640506303512,600,000$
2Evan Cormier (R)100.0053445580555554585857304444050550232600,000$
Rayé
1David Hrenak (R)100.0044405075454445494545454444050480233820,000$
2Joel Blomqvist (R)100.0044405072454445494545454444050480194825,000$
MOYENNE D’ÉQUIPE100.004743537648584752605741494905054
Nom de l’entraîneur PH DF OF PD EX LD PO CNT Âge Contrat Salaire


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du joueur Nom de l’équipePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du gardien Nom de l’équipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du joueur Nom de l’équipePOS Âge Date de naissance Nouveau joueur Poids Taille Non-échange Disponible pour échange Ballotage forcé Contrat Type Salaire actuel Salaire moyen restantPlafond salarial Plafond salarial restant Exclus du plafond salarial Salaire annuel 2Salaire annuel 3Salaire annuel 4Salaire annuel 5Salaire annuel 6Salaire annuel 7Salaire annuel 8Salaire annuel 9Salaire annuel 10Link
Anton KarlssonWolf Pack (Ran)D251996-08-03Yes187 Lbs6 ft1NoNoNo2Pro & Farm700,000$700,000$70,000$70,000$No700,000$Lien
Bode WildeWolf Pack (Ran)D212000-01-24No192 Lbs6 ft3NoNoNo2Pro & Farm778,333$778,333$77,833$77,833$No778,333$Lien
Carter HuttonWolf Pack (Ran)G351985-12-18No208 Lbs6 ft0NoNoNo1Pro & Farm2,200,000$2,600,000$260,000$260,000$NoLien
David HrenakWolf Pack (Ran)G231998-05-05Yes190 Lbs6 ft2NoNoNo3Pro & Farm820,000$820,000$82,000$82,000$No820,000$820,000$Lien
Dylan HollowayWolf Pack (Ran)C/LW202001-09-23Yes203 Lbs6 ft1NoNoNo4Pro & Farm925,000$925,000$92,500$92,500$No925,000$925,000$925,000$Lien
Evan CormierWolf Pack (Ran)G231997-11-06Yes200 Lbs6 ft3NoNoNo2Pro & Farm600,000$600,000$60,000$60,000$No600,000$Lien
Jacob PerreaultWolf Pack (Ran)C/RW192002-04-15Yes192 Lbs5 ft11NoNoNo2Pro & Farm925,000$925,000$92,500$92,500$No925,000$Lien
Joel BlomqvistWolf Pack (Ran)G192002-01-10Yes183 Lbs6 ft2NoNoNo4Pro & Farm825,000$825,000$82,500$82,500$No825,000$825,000$825,000$Lien
Joel KivirantaWolf Pack (Ran)LW/RW251996-03-23No180 Lbs5 ft11NoNoNo2Pro & Farm925,000$925,000$92,500$92,500$No925,000$Lien
Kevin CzuczmanWolf Pack (Ran)D301991-01-09No206 Lbs6 ft2NoNoNo1Pro & Farm700,000$700,000$70,000$70,000$NoLien
Mathias BromeWolf Pack (Ran)LW/RW271994-07-28No183 Lbs6 ft0NoNoNo3Pro & Farm925,000$925,000$92,500$92,500$No925,000$925,000$Lien
Samuel BolducWolf Pack (Ran)D202000-12-09Yes220 Lbs6 ft4NoNoNo2Pro & Farm842,500$842,500$84,250$84,250$No842,500$Lien
Ty EmbersonWolf Pack (Ran)D212000-05-24Yes194 Lbs6 ft1NoNoNo3Pro & Farm853,333$853,333$85,333$85,333$No853,333$853,333$Lien
Vasili PonomarevWolf Pack (Ran)C192002-03-13Yes181 Lbs5 ft10NoNoNo4Pro & Farm813,333$813,333$81,333$81,333$No813,333$813,333$813,333$Lien
Nombre de joueursÂge moyenPoids moyenTaille moyenneContrat moyenSalaire moyen 1e année
1423.36194 Lbs6 ft12.50916,607$



Attaque à 5 contre 5
Ligne #Ailier gaucheCentreAilier droit% tempsPHYDFOF
1Jacob Perreault40122
2Mathias Brome30122
320122
4Jacob Perreault10122
Défense à 5 contre 5
Ligne #DéfenseDéfense% tempsPHYDFOF
140122
2Bode Wilde30122
3Kevin Czuczman20122
410122
Attaque en avantage numérique
Ligne #Ailier gaucheCentreAilier droit% tempsPHYDFOF
160122
2Mathias Brome40122
Défense en avantage numérique
Ligne #DéfenseDéfense% tempsPHYDFOF
160122
2Bode Wilde40122
Attaque à 4 en désavantage numérique
Ligne #CentreAilier% tempsPHYDFOF
160122
2Mathias Brome40122
Défense à 4 en désavantage numérique
Ligne #DéfenseDéfense% tempsPHYDFOF
160122
2Bode Wilde40122
3 joueurs en désavantage numérique
Ligne #Ailier% tempsPHYDFOFDéfenseDéfense% tempsPHYDFOF
16012260122
240122Bode Wilde40122
Attaque à 4 contre 4
Ligne #CentreAilier% tempsPHYDFOF
160122
2Mathias Brome40122
Défense à 4 contre 4
Ligne #DéfenseDéfense% tempsPHYDFOF
160122
2Bode Wilde40122
Attaque dernière minute
Ailier gaucheCentreAilier droitDéfenseDéfense
Défense dernière minute
Ailier gaucheCentreAilier droitDéfenseDéfense
Attaquants supplémentaires
Normal Avantage numériqueDésavantage numérique
, , Jacob Perreault,
Défenseurs supplémentaires
Normal Avantage numériqueDésavantage numérique
, Kevin Czuczman, , Kevin Czuczman
Tirs de pénalité
, , Mathias Brome, ,
Gardien
#1 : Carter Hutton, #2 :


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
TotalDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Total00000000000000000000000000000000000.000000000000000000000000.00%000.00%0000.00%000.00%000.00%000000

Total pour les joueurs
Matchs jouésPointsSéquenceButsPassesPointsTirs pourTirs contreTirs bloquésMinutes de pénalitésMises en échecButs en filet désertBlanchissages
00N/A0000000000
Tous les matchs
GPWLOTWOTL SOWSOLGFGA
000000000
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
000000000
Matchs extérieurs
GPWLOTWOTL SOWSOLGFGA
000000000
Derniers 10 matchs
WLOTWOTL SOWSOL
000000
Tentatives en avantage numériqueButs en avantage numérique% en avantage numériqueTentatives en désavantage numériqueButs contre en désavantage numérique% en désavantage numériqueButs pour en désavantage numérique
000.00%000.00%0
Tirs en 1e périodeTirs en 2e périodeTirs en 3e périodeTirs en 4e périodeButs en 1e périodeButs en 2e périodeButs en 3e périodeButs en 4e période
00000000
Mises en jeu
Gagnées en zone offensiveTotal en zone offensive% gagnées en zone offensive Gagnées en zone défensiveTotal en zone défensive% gagnées en zone défensiveGagnées en zone neutreTotal en zone neutre% gagnées en zone neutre
000.00%000.00%000.00%
Temps avec la rondelle
En zone offensiveContrôle en zone offensiveEn zone défensiveContrôle en zone défensiveEn zone neutreContrôle en zone neutre
000000


Derniers matchs joués
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe visiteuse Score Équipe locale Score ST OT SO RI Lien
5 - 2022-10-113Thunder-Wolf Pack-
7 - 2022-10-1317Wolf Pack-Minnesota-
8 - 2022-10-1423Wolf Pack-Oceanics-
11 - 2022-10-1739Admirals-Wolf Pack-
14 - 2022-10-2064Sharks-Wolf Pack-
17 - 2022-10-2389Monsters-Wolf Pack-
19 - 2022-10-2599Monsters-Wolf Pack-
20 - 2022-10-26108Wolf Pack-Sound Tigers-
23 - 2022-10-29127Wolf Pack-Stars-
24 - 2022-10-30141Wolf Pack-Jayhawks-
26 - 2022-11-01149Phantoms-Wolf Pack-
28 - 2022-11-03161Bruins-Wolf Pack-
31 - 2022-11-06190Cougars-Wolf Pack-
33 - 2022-11-08198Sound Tigers-Wolf Pack-
35 - 2022-11-10217Wolf Pack-Cougars-
37 - 2022-11-12232Wolf Pack-Chill-
38 - 2022-11-13240Jayhawks-Wolf Pack-
42 - 2022-11-17271Wolf Pack-Seattle-
44 - 2022-11-19288Wolf Pack-Sharks-
47 - 2022-11-22302Wolf Pack-Monarchs-
48 - 2022-11-23314Wolf Pack-Admirals-
51 - 2022-11-26332Oil Kings-Wolf Pack-
53 - 2022-11-28346Spiders-Wolf Pack-
55 - 2022-11-30362Wolf Pack-Senators-
57 - 2022-12-02376Senators-Wolf Pack-
58 - 2022-12-03387Baby Hawks-Wolf Pack-
60 - 2022-12-05398Chiefs-Wolf Pack-
62 - 2022-12-07417Wolf Pack-Las Vegas-
64 - 2022-12-09430Wolf Pack-Monsters-
67 - 2022-12-12450Spiders-Wolf Pack-
70 - 2022-12-15476Marlies-Wolf Pack-
72 - 2022-12-17489Wolf Pack-Phantoms-
73 - 2022-12-18499Wolf Pack-Baby Hawks-
75 - 2022-12-20511Wolf Pack-Manchots-
77 - 2022-12-22527Sound Tigers-Wolf Pack-
82 - 2022-12-27549Bears-Wolf Pack-
84 - 2022-12-29565Wolf Pack-Thunder-
87 - 2023-01-01591Wolf Pack-Cabaret Lady Mary Ann-
89 - 2023-01-03600Caroline-Wolf Pack-
91 - 2023-01-05613Wolf Pack-Rocket-
93 - 2023-01-07628Wolf Pack-Spiders-
96 - 2023-01-10649Minnesota-Wolf Pack-
98 - 2023-01-12663Stars-Wolf Pack-
101 - 2023-01-15691Rocket-Wolf Pack-
102 - 2023-01-16701Wolf Pack-Monsters-
105 - 2023-01-19718Bruins-Wolf Pack-
109 - 2023-01-23751Cabaret Lady Mary Ann-Wolf Pack-
111 - 2023-01-25767Wolf Pack-Marlies-
113 - 2023-01-27784Las Vegas-Wolf Pack-
123 - 2023-02-06809Heat-Wolf Pack-
125 - 2023-02-08819Comets-Wolf Pack-
127 - 2023-02-10828Seattle-Wolf Pack-
128 - 2023-02-11841Wolf Pack-Caroline-
132 - 2023-02-15869Wolf Pack-Comets-
134 - 2023-02-17881Wolf Pack-Oil Kings-
135 - 2023-02-18891Wolf Pack-Heat-
137 - 2023-02-20907Oceanics-Wolf Pack-
140 - 2023-02-23925Wolf Pack-Cougars-
142 - 2023-02-25937Wolf Pack-Bears-
143 - 2023-02-26950Monarchs-Wolf Pack-
146 - 2023-03-01968Wolf Pack-Phantoms-
147 - 2023-03-02976Senators-Wolf Pack-
149 - 2023-03-04991Wolf Pack-Bruins-
154 - 2023-03-091028Wolf Pack-Rocket-
156 - 2023-03-111040Wolf Pack-Crunch-
157 - 2023-03-121054Wolf Pack-Manchots-
159 - 2023-03-141067Bears-Wolf Pack-
161 - 2023-03-161082Manchots-Wolf Pack-
163 - 2023-03-181103Manchots-Wolf Pack-
164 - 2023-03-191112Chill-Wolf Pack-
Date limite d’échanges --- Les échanges ne peuvent plus se faire après la simulation de cette journée!
166 - 2023-03-211120Caroline-Wolf Pack-
168 - 2023-03-231138Wolf Pack-Caroline-
170 - 2023-03-251156Wolf Pack-Cabaret Lady Mary Ann-
173 - 2023-03-281176Monsters-Wolf Pack-
175 - 2023-03-301191Wolf Pack-Spiders-
176 - 2023-03-311200Wolf Pack-Crunch-
178 - 2023-04-021217Wolf Pack-Bears-
181 - 2023-04-051241Thunder-Wolf Pack-
182 - 2023-04-061251Wolf Pack-Chiefs-
184 - 2023-04-081264Wolf Pack-Monsters-
186 - 2023-04-101276Crunch-Wolf Pack-
189 - 2023-04-131304Marlies-Wolf Pack-



Capacité de l’aréna - Tendance du prix des billets - %
Niveau 1Niveau 2
Capacité20001000
Prix des billets4020
Assistance0.00%0.00%
Assistance PCT0.00%0.00%

Revenu
Matchs à domicile restantsAssistance moyenne - %Revenu moyen par matchRevenu annuel à ce jourCapacitéPopularité de l’équipe
41 0 - 0.00%0$0$3000100

Dépenses
Dépenses annuelles à ce jourSalaire total des joueursSalaire total moyen des joueursSalaire des entraineurs
0$ 1,283,249$ 1,323,249$ 0$
Plafond salarial par jourPlafond salarial à ce jourJoueurs Inclus dans le plafond salarialJoueurs exclut du plafond Salarial
6,964$ 0$ 14 0

Estimation
Revenus de la saison estimésJours restants de la saisonDépenses par jourDépenses de la saison estimées
0$ 190 6,754$ 1,283,260$




Wolf Pack Leaders statistiques (saison régulière)

# Nom du joueur GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Wolf Pack Leaders des statistiques des gardiens (saison régulière)

# Nom du gardien GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA

Wolf Pack Statistiques de l'Équipe de Carrière

TotalDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT

Wolf Pack Leaders statistiques (séries éliminatoires)

# Nom du joueur GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Wolf Pack Leaders des statistiques des gardiens (séries éliminatoires)

# Nom du gardien GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA