Votre version du STHS est obsolète! Veuillez mettre à jour votre version du STHS!
Please rotate your device to landscape mode for a better experience.
Connexion

Oceanics
GP: 34 | W: 22 | L: 9 | OTL: 3 | P: 47
GF: 194 | GA: 140 | PP%: 33.61% | PK%: 77.42%
DG: Stéphane Gagné | Morale : 50 | Moyenne d’équipe : 62
Prochains matchs #569 vs Roadrunners

Centre de jeu
Oceanics
22-9-3, 47pts
4
FINAL
0 Chiefs
22-13-1, 45pts
Team Stats
SOL1SéquenceL2
10-4-2Fiche domicile13-7-0
12-5-1Fiche domicile9-6-1
8-1-1Derniers 10 matchs7-3-0
5.71Buts par match 4.25
4.12Buts contre par match 3.58
33.61%Pourcentage en avantage numérique34.91%
77.42%Pourcentage en désavantage numérique72.97%
Oceanics
22-9-3, 47pts
7
FINAL
8 Monsters
22-8-4, 48pts
Team Stats
SOL1SéquenceW1
10-4-2Fiche domicile8-4-4
12-5-1Fiche domicile14-4-0
8-1-1Derniers 10 matchs5-3-2
5.71Buts par match 4.97
4.12Buts contre par match 4.03
33.61%Pourcentage en avantage numérique42.71%
77.42%Pourcentage en désavantage numérique71.43%
Oceanics
22-9-3, 47pts
2025-12-21
Roadrunners
18-16-3, 39pts
Statistiques d’équipe
SOL1SéquenceW4
10-4-2Fiche domicile9-6-0
12-5-1Fiche visiteur9-10-3
8-1-110 derniers matchs7-2-1
5.71Buts par match 5.08
4.12Buts contre par match 5.08
33.61%Pourcentage en avantage numérique50.59%
77.42%Pourcentage en désavantage numérique58.68%
Minnesota
14-14-7, 35pts
2025-12-27
Oceanics
22-9-3, 47pts
Statistiques d’équipe
L2SéquenceSOL1
7-7-5Fiche domicile10-4-2
7-7-2Fiche visiteur12-5-1
6-3-110 derniers matchs8-1-1
3.83Buts par match 5.71
4.40Buts contre par match 5.71
27.69%Pourcentage en avantage numérique33.61%
69.23%Pourcentage en désavantage numérique77.42%
Oil Kings
17-13-5, 39pts
2025-12-29
Oceanics
22-9-3, 47pts
Statistiques d’équipe
OTL1SéquenceSOL1
7-5-2Fiche domicile10-4-2
10-8-3Fiche visiteur12-5-1
4-3-310 derniers matchs8-1-1
4.37Buts par match 5.71
3.51Buts contre par match 5.71
47.25%Pourcentage en avantage numérique33.61%
72.50%Pourcentage en désavantage numérique77.42%
Meneurs d'équipe
Buts
Glenn Gawdin
37
Passes
Glenn Gawdin
38
Points
Glenn Gawdin
75
Plus/Moins
Marc Gatcomb
25
Victoires
Colten Ellis
22
Pourcentage d’arrêts
Colten Ellis
0.854

Statistiques d’équipe
Buts pour
194
5.71 GFG
Tirs pour
1226
36.06 Avg
Pourcentage en avantage numérique
33.6%
40 GF
Début de zone offensive
37.2%
Buts contre
140
4.12 GAA
Tirs contre
905
26.62 Avg
Pourcentage en désavantage numérique
77.4%%
21 GA
Début de la zone défensive
31.7%
Informations de l'équipe

Directeur généralStéphane Gagné
DivisionAtlantique
ConférenceEst
Capitaine
Assistant #1
Assistant #2


Informations de l’aréna

Capacité3,000
Assistance2,064
Billets de saison300


Informations de la formation

Équipe Pro24
Équipe Mineure19
Limite contact 43 / 50
Espoirs15


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPÂgeContratSalaire
1Walker DuehrXX100.00734083718477726840636364676353050660262920,000$
2Glenn GawdinX100.00604664696370696652656262665750050630271900,000$
3Marc Gatcomb (R)X100.0076457671747464664759636366525005063N0252620,000$
4Will LockwoodX100.00624274696270686344585761636452050610261800,000$
5Jeffrey VielX100.00626450656569686444625863625750050610271900,000$
6Juha JaaskaX100.0061436967747159634962596263515005061N0262620,000$
7Mike Hardman (R)X100.0063417264666766634460606063545005060N0252620,000$
8Brian Halonen (R)X100.0063446765656664634457636164545005060N0251620,000$
9Nic PetanXXX100.00514365675664636151605456615952050580292900,000$
10Reid Schaefer (R)X100.00684266607259565942555460585050050580212886,667$
11Noah Laba (R)XXX100.00614066616258565640545455575050050560213870,000$
12Miko Matikka (R)X100.00604067596259575540545354565050050550203870,000$
13Philip Broberg (R)X100.00674084748181757640726877726253050720231863,333$
14Emil Lilleberg (R)X100.00736866748382727040716273685550050700232870,000$
15Parker WotherspoonX100.007050817577857369406661746859500506902731,200,000$
16Keaton MiddletonX100.00706462648676726740605970636456050670262700,000$
17Lian Bichsel (R)X100.00735061678673606540616267655150050650202918,333$
18Max LajoieX100.00624468676369676440645669625550050630261800,000$
Rayé
1Riley Fiddler-Schultz (R)X100.0062416864656260595556565759515005058N0222620,000$
2Montana Onyebuchi (R)X100.00656253656866646140535467605350050610241620,000$
3Tyson Hinds (R)X100.00594467656365636240585560605050050600212829,444$
4Gianni Fairbrother (R)X100.00475249535745444638434350485050050490241848,333$
MOYENNE D’ÉQUIPE100.0064486766706964634360586362555105062
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPÂgeContratSalaire
1Colten Ellis (R)100.0072616462666871686967575250050610241850,833$
2Samuel Hlavaj (R)100.0068636668686768666767585150050610232875,000$
Rayé
MOYENNE D’ÉQUIPE100.007062656567687067686758525005061
Nom de l’entraîneur PH DF OF PD EX LD PO CNT Âge Contrat Salaire


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du joueur Nom de l’équipePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Glenn GawdinOceanics (Win)C34373875732204740138388326.81%1168320.1113142723831124408155.56%9992313042.1901112923
2Jeffrey VielOceanics (Win)LW342425491149956330102345023.53%1663618.73691516801011231262.50%401820011.5402748230
3Walker DuehrOceanics (Win)C/RW3120274723404337108387218.52%759119.080332700003531046.59%1761723011.5923000641
4Philip BrobergOceanics (Win)D3043842-475485411147483.60%3984728.24310131583000376000%02948000.9900001013
5Emil LillebergOceanics (Win)D3453439-3845079579432265.32%3891526.93412161590000070110%02346000.8500415003
6Marc GatcombOceanics (Win)C34102333253010424581233712.35%646713.7600003000021052.87%3311710011.4100101230
7Ross JohnstonWinnipegLW/RW20101929-98650412078183912.82%539919.992101210470000400058.33%361211001.4511343103
8Parker WotherspoonOceanics (Win)D344232717262025555926316.78%2868620.18224467011158100%01323000.7900031020
9Mike HardmanOceanics (Win)LW3414132724155282043152332.56%1149014.420000100000100370.83%24814011.1000010001
10Brian HalonenOceanics (Win)LW3414102414155291873172919.18%43179.3400003000014271.43%7126001.5100001130
11Juha JaaskaOceanics (Win)LW3413720-520332578173516.67%645013.254156680002261050.00%10206000.8900000100
12Will LockwoodOceanics (Win)RW3451419-817536195322319.43%643212.73224346000000075.00%121210000.8801100004
13Keaton MiddletonOceanics (Win)D342151721583037393313166.06%3067619.89112369000057000%1928000.5000123001
14Nic PetanOceanics (Win)C/LW/RW349413-680281747122819.15%1046713.760000160001331061.46%192511000.5600000021
15Riley Fiddler-SchultzOceanics (Win)C246713125516122641523.08%62349.7800000000000049.25%6731001.1100100001
16Max LajoieOceanics (Win)D341910226018242511114.00%1645713.4500021100011500100.00%1023000.4400000002
17Miko MatikkaOceanics (Win)RW147310712101412277925.93%530421.743146380001280132.14%2826000.6602011001
18Noah LabaOceanics (Win)C/LW/RW3164101312034151882133.33%636211.690111340000251048.31%8916000.5500000100
19Lian BichselOceanics (Win)D34055231610291815890%1543012.670000500004000%0619000.2300110000
20Reid SchaeferOceanics (Win)LW13235320196111518.18%313510.4400000000001075.00%413000.7400000010
21Montana OnyebuchiOceanics (Win)D4011-3552106330%611127.8500001400008000%019000.1800100000
Statistiques d’équipe totales ou en moyenne609193322515174591325711573122639462115.74%2741010116.59406610610684722417577211054.59%2017232336081.02310211826232124
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du gardien Nom de l’équipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Colten EllisOceanics (Win)3422720.8543.82186801119817414210.8005340011
2Samuel HlavajOceanics (Win)70210.7935.6319200188742000.6005034000
Statistiques d’équipe totales ou en moyenne4122930.8483.9920610113790445621103434011


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du joueur Nom de l’équipePOS Âge Date de naissance Pays Recrue Poids Taille Non-échange Disponible pour échange Acquis Par Date de la Dernière Transaction Ballotage forcé Waiver Possible Contrat Date du Signature du Contrat Forcer UFA Rappel d'urgence Type Salaire actuel Plafond salarial Plafond salarial restant Exclus du plafond salarial Salaire année 2Salaire année 3Salaire année 4Salaire année 5Salaire année 6Salaire année 7Salaire année 8Salaire année 9Salaire année 10Plafond salarial année 2Plafond salarial année 3Plafond salarial année 4Plafond salarial année 5Plafond salarial année 6Plafond salarial année 7Plafond salarial année 8Plafond salarial année 9Plafond salarial année 10Non-échange année 2Non-échange année 3Non-échange année 4Non-échange année 5Non-échange année 6Non-échange année 7Non-échange année 8Non-échange année 9Non-échange année 10Lien
Brian HalonenOceanics (Win)LW251999-01-11USAYes205 Lbs6 ft0YesNoFree AgentYesYes12025-09-28FalseFalsePro & Farm620,000$0$0$No---------------------------Lien
Colten EllisOceanics (Win)G242000-10-05CANYes185 Lbs6 ft1NoNoN/ANoYes1FalseFalsePro & Farm850,833$0$0$No---------------------------Lien
Emil LillebergOceanics (Win)D232001-02-02NORYes208 Lbs6 ft3NoNoProspectNoNo22024-07-08FalseFalsePro & Farm870,000$0$0$No870,000$--------870,000$--------No--------Lien
Gianni FairbrotherOceanics (Win)D242000-09-30CANYes204 Lbs6 ft0NoNoN/ANoYes1FalseFalsePro & Farm848,333$0$0$No---------------------------Lien
Glenn GawdinOceanics (Win)C271997-03-25CANNo192 Lbs6 ft1NoNoN/AYesYes1FalseFalsePro & Farm900,000$0$0$No---------------------------Lien
Jeffrey VielOceanics (Win)LW271997-01-28CANNo205 Lbs6 ft2NoNoN/AYesYes1FalseFalsePro & Farm900,000$0$0$No---------------------------Lien
Juha JaaskaOceanics (Win)LW261998-02-09FINNo210 Lbs6 ft0YesNoFree AgentNoYes22025-09-28FalseFalsePro & Farm620,000$0$0$No620,000$--------620,000$--------No--------Lien
Keaton Middleton (contrat à 1 volet)Oceanics (Win)D261998-02-10CANNo240 Lbs6 ft6NoNoFree AgentYesYes22025-08-28FalseFalsePro & Farm700,000$0$0$No700,000$--------700,000$--------No--------Lien
Lian BichselOceanics (Win)D202004-05-18CHEYes231 Lbs6 ft7NoNoProspectNoNo22024-06-25FalseFalsePro & Farm918,333$0$0$No918,333$--------918,333$--------No--------Lien
Marc Gatcomb (contrat à 1 volet)Oceanics (Win)C251999-07-22USAYes195 Lbs6 ft2YesNoFree AgentYesYes22025-09-21FalseFalsePro & Farm620,000$0$0$No620,000$--------620,000$--------No--------Lien
Max LajoieOceanics (Win)D261997-11-05CANNo196 Lbs6 ft1NoNoFree AgentYesYes12024-09-06FalseFalsePro & Farm800,000$0$0$No---------------------------Lien
Mike HardmanOceanics (Win)LW251999-02-05USAYes205 Lbs6 ft2YesNoFree AgentYesYes22025-09-28FalseFalsePro & Farm620,000$0$0$No620,000$--------620,000$--------No--------Lien
Miko MatikkaOceanics (Win)RW202003-10-26FINYes187 Lbs6 ft3NoNoProspectNoNo32025-07-10FalseFalsePro & Farm870,000$0$0$No870,000$870,000$-------870,000$870,000$-------NoNo-------Lien
Montana Onyebuchi (contrat à 1 volet)Oceanics (Win)D242000-03-08CANYes201 Lbs6 ft3NoNoFree AgentNoYes12025-08-28FalseFalsePro & Farm620,000$0$0$No---------------------------Lien
Nic Petan (contrat à 1 volet)Oceanics (Win)C/LW/RW291995-03-22CANNo174 Lbs5 ft9NoNoN/AYesYes2FalseFalsePro & Farm900,000$0$0$No900,000$--------900,000$--------No--------Lien
Noah LabaOceanics (Win)C/LW/RW212003-08-04USAYes192 Lbs6 ft2NoNoProspectNoNo32025-07-10FalseFalsePro & Farm870,000$0$0$No870,000$870,000$-------870,000$870,000$-------NoNo-------Lien
Parker Wotherspoon (contrat à 1 volet)Oceanics (Win)D271997-08-24CANNo192 Lbs6 ft1NoNoFree AgentYesYes32025-09-05FalseFalsePro & Farm1,200,000$280,000$172,642$No1,200,000$1,200,000$-------1,200,000$1,200,000$-------NoNo-------Lien
Philip BrobergOceanics (Win)D232001-06-25SWEYes212 Lbs6 ft4NoNoN/ANoNo1FalseFalsePro & Farm863,333$0$0$No---------------------------Lien
Reid SchaeferOceanics (Win)LW212003-09-21CANYes220 Lbs6 ft4NoNoProspectNoNo22024-06-25FalseFalsePro & Farm886,667$0$0$No886,667$--------886,667$--------No--------Lien
Riley Fiddler-SchultzOceanics (Win)C222002-05-13CANYes196 Lbs6 ft1YesNoFree AgentNoNo22025-09-21FalseFalsePro & Farm620,000$0$0$No620,000$--------620,000$--------No--------Lien
Samuel HlavajOceanics (Win)G232001-05-29SLVYes218 Lbs6 ft4NoNoProspectNoNo22024-06-25FalseFalsePro & Farm875,000$0$0$No875,000$--------875,000$--------No--------Lien
Tyson HindsOceanics (Win)D212003-03-02CANYes179 Lbs6 ft3NoNoProspectNoNo22024-06-25FalseFalsePro & Farm829,444$0$0$No829,444$--------829,444$--------No--------Lien
Walker Duehr (contrat à 1 volet)Oceanics (Win)C/RW261997-11-23USANo210 Lbs6 ft2NoNoFree AgentYesYes22025-08-28FalseFalsePro & Farm920,000$0$0$No920,000$--------920,000$--------No--------Lien
Will LockwoodOceanics (Win)RW261998-06-20USANo172 Lbs5 ft11NoNoFree AgentYesYes12024-09-06FalseFalsePro & Farm800,000$0$0$No---------------------------Lien
Nombre de joueursÂge moyenPoids moyenTaille moyenneContrat moyenSalaire moyen 1e année
2424.21201 Lbs6 ft21.75813,414$



Attaque à 5 contre 5
Ligne #Ailier gaucheCentreAilier droit% tempsPHYDFOF
1Jeffrey VielGlenn GawdinMiko Matikka40113
2Mike HardmanMarc GatcombWalker Duehr30113
3Reid SchaeferNic PetanWill Lockwood20122
4Brian HalonenNoah LabaJuha Jaaska10122
Défense à 5 contre 5
Ligne #DéfenseDéfense% tempsPHYDFOF
1Emil LillebergPhilip Broberg40131
2Parker WotherspoonKeaton Middleton30131
3Lian BichselMax Lajoie20131
4Emil LillebergPhilip Broberg10131
Attaque en avantage numérique
Ligne #Ailier gaucheCentreAilier droit% tempsPHYDFOF
1Jeffrey VielGlenn GawdinMiko Matikka60005
2Juha JaaskaWalker DuehrNoah Laba40005
Défense en avantage numérique
Ligne #DéfenseDéfense% tempsPHYDFOF
1Emil LillebergPhilip Broberg60014
2Keaton MiddletonParker Wotherspoon40014
Attaque à 4 en désavantage numérique
Ligne #CentreAilier% tempsPHYDFOF
1Noah LabaMiko Matikka60050
2Glenn GawdinJuha Jaaska40050
Défense à 4 en désavantage numérique
Ligne #DéfenseDéfense% tempsPHYDFOF
1Emil LillebergPhilip Broberg60140
2Keaton MiddletonParker Wotherspoon40140
3 joueurs en désavantage numérique
Ligne #Ailier% tempsPHYDFOFDéfenseDéfense% tempsPHYDFOF
1Walker Duehr60050Philip BrobergEmil Lilleberg60050
2Glenn Gawdin40050Keaton MiddletonParker Wotherspoon40050
Attaque à 4 contre 4
Ligne #CentreAilier% tempsPHYDFOF
1Noah LabaMiko Matikka60023
2Glenn GawdinJuha Jaaska40023
Défense à 4 contre 4
Ligne #DéfenseDéfense% tempsPHYDFOF
1Philip BrobergEmil Lilleberg60122
2Keaton MiddletonParker Wotherspoon40122
Attaque dernière minute
Ailier gaucheCentreAilier droitDéfenseDéfense
Jeffrey VielWalker DuehrMiko MatikkaEmil LillebergPhilip Broberg
Défense dernière minute
Ailier gaucheCentreAilier droitDéfenseDéfense
Jeffrey VielWalker DuehrMiko MatikkaEmil LillebergPhilip Broberg
Attaquants supplémentaires
Normal Avantage numériqueDésavantage numérique
Miko Matikka, Jeffrey Viel, Walker DuehrMiko Matikka, Walker DuehrMiko Matikka
Défenseurs supplémentaires
Normal Avantage numériqueDésavantage numérique
Philip Broberg, Emil Lilleberg, Parker WotherspoonPhilip BrobergPhilip Broberg, Emil Lilleberg
Tirs de pénalité
Walker Duehr, Miko Matikka, Jeffrey Viel, Glenn Gawdin, Will Lockwood
Gardien
#1 : Colten Ellis, #2 : Samuel Hlavaj


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
TotalDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals1010000035-2000000000001010000035-200.00035800407675541380432407172391626100.00%3166.67%040775054.27%35064054.69%34462754.86%738408690298633332
2Baby Hawks11000000615110000006150000000000021.000610160040767553338043240717331330175120.00%000%040775054.27%35064054.69%34462754.86%738408690298633332
3Bears22000000963110000007521100000021141.000917260040767558538043240717522018468225.00%40100.00%040775054.27%35064054.69%34462754.86%738408690298633332
4Bruins1100000010461100000010460000000000021.0001015250040767554838043240717211510346466.67%000%040775054.27%35064054.69%34462754.86%738408690298633332
5Caroline2200000017611110000009361100000083541.0001730470040767557238043240717411543379444.44%40100.00%040775054.27%35064054.69%34462754.86%738408690298633332
6Chiefs11000000404000000000001100000040421.000461001407675538380432407171054282150.00%20100.00%040775054.27%35064054.69%34462754.86%738408690298633332
7Comets1010000017-6000000000001010000017-600.00012300407675539380432407173374024200.00%5420.00%040775054.27%35064054.69%34462754.86%738408690298633332
8Crunch2200000014410110000005231100000092741.0001419330040767556738043240717381442409444.44%60100.00%040775054.27%35064054.69%34462754.86%738408690298633332
9Firebirds201010001112-11010000057-21000100065120.50011172800407675568380432407175814394222100.00%7185.71%040775054.27%35064054.69%34462754.86%738408690298633332
10Heat303000001322-91010000028-6202000001114-300.0001322350040767551083804324071710722665711327.27%8625.00%040775054.27%35064054.69%34462754.86%738408690298633332
11Jayhawks220000001248110000008171100000043141.00012223400407675559380432407174515354110660.00%50100.00%040775054.27%35064054.69%34462754.86%738408690298633332
12Manchots1010000056-11010000056-10000000000000.0005813104076755303804324071739141427400.00%20100.00%040775054.27%35064054.69%34462754.86%738408690298633332
13Minnesota21000001121021000000145-11100000085330.7501222340040767557238043240717521419335240.00%2150.00%040775054.27%35064054.69%34462754.86%738408690298633332
14Monarchs210001009631000010023-11100000073430.75091221004076755643804324071747927355120.00%11190.91%140775054.27%35064054.69%34462754.86%738408690298633332
15Monsters11000000633110000006330000000000021.0006101600407675538380432407173192834200.00%40100.00%040775054.27%35064054.69%34462754.86%738408690298633332
16Monsters1000000178-1000000000001000000178-110.5007132000407675540380432407172613122111100.00%6183.33%040775054.27%35064054.69%34462754.86%738408690298633332
17Oil Kings10001000871000000000001000100087121.000814220040767554838043240717381211165120.00%3233.33%140775054.27%35064054.69%34462754.86%738408690298633332
18Phantoms1010000037-4000000000001010000037-400.00035800407675541380432407173333422300.00%20100.00%040775054.27%35064054.69%34462754.86%738408690298633332
19Roadrunners11000000936110000009360000000000021.000916250040767553438043240717196191410440.00%20100.00%040775054.27%35064054.69%34462754.86%738408690298633332
20Rocket11000000532000000000001100000053221.000581300407675528380432407172166134250.00%3166.67%040775054.27%35064054.69%34462754.86%738408690298633332
21Sags11000000312000000000001100000031221.00036900407675524380432407172041019100.00%50100.00%040775054.27%35064054.69%34462754.86%738408690298633332
22Senators11000000927110000009270000000000021.00091322004076755353804324071724616255120.00%3166.67%040775054.27%35064054.69%34462754.86%738408690298633332
23Sound Tigers10000010541000000000001000001054121.0005712004076755433804324071737141122200.00%3166.67%040775054.27%35064054.69%34462754.86%738408690298633332
24Stars2110000013942110000013940000000000020.5001323360040767557138043240717571641397114.29%3166.67%040775054.27%35064054.69%34462754.86%738408690298633332
Total34199021121941405416104001011006238189502011947816470.6911943225161140767551226380432407179052755917121194033.61%932177.42%240775054.27%35064054.69%34462754.86%738408690298633332
_Since Last GM Reset34199021121941405416104001011006238189502011947816470.6911943225161140767551226380432407179052755917121194033.61%932177.42%240775054.27%35064054.69%34462754.86%738408690298633332
_Vs Conference138300110714724751001004826226320001023212190.7317111418510407675548338043240717346109203304471225.53%39489.74%140775054.27%35064054.69%34462754.86%738408690298633332
_Vs Division54000100381325320001002481622000000145990.900385593004076755178380432407171044174112241145.83%12283.33%040775054.27%35064054.69%34462754.86%738408690298633332

Total pour les joueurs
Matchs jouésPointsSéquenceButsPassesPointsTirs pourTirs contreTirs bloquésMinutes de pénalitésMises en échecButs en filet désertBlanchissages
3447SOL1194322516122690527559171211
Tous les matchs
GPWLOTWOTL SOWSOLGFGA
341992112194140
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
16104010110062
Matchs extérieurs
GPWLOTWOTL SOWSOLGFGA
189520119478
Derniers 10 matchs
WLOTWOTL SOWSOL
810001
Tentatives en avantage numériqueButs en avantage numérique% en avantage numériqueTentatives en désavantage numériqueButs contre en désavantage numérique% en désavantage numériqueButs pour en désavantage numérique
1194033.61%932177.42%2
Tirs en 1e périodeTirs en 2e périodeTirs en 3e périodeTirs en 4e périodeButs en 1e périodeButs en 2e périodeButs en 3e périodeButs en 4e période
380432407174076755
Mises en jeu
Gagnées en zone offensiveTotal en zone offensive% gagnées en zone offensive Gagnées en zone défensiveTotal en zone défensive% gagnées en zone défensiveGagnées en zone neutreTotal en zone neutre% gagnées en zone neutre
40775054.27%35064054.69%34462754.86%
Temps avec la rondelle
En zone offensiveContrôle en zone offensiveEn zone défensiveContrôle en zone défensiveEn zone neutreContrôle en zone neutre
738408690298633332


Derniers matchs joués
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe visiteuse Score Équipe locale Score ST OT SO RI Lien
3 - 2025-10-0917Stars2Oceanics8WSommaire du match
5 - 2025-10-1122Monarchs3Oceanics2LXSommaire du match
7 - 2025-10-1342Oceanics5Sound Tigers4WXXSommaire du match
10 - 2025-10-1666Oceanics3Phantoms7LSommaire du match
12 - 2025-10-1884Jayhawks1Oceanics8WSommaire du match
14 - 2025-10-2096Oceanics7Heat8LSommaire du match
17 - 2025-10-23120Firebirds7Oceanics5LSommaire du match
18 - 2025-10-24126Heat8Oceanics2LSommaire du match
20 - 2025-10-26143Roadrunners3Oceanics9WSommaire du match
22 - 2025-10-28157Oceanics8Minnesota5WSommaire du match
24 - 2025-10-30174Baby Hawks1Oceanics6WSommaire du match
26 - 2025-11-01182Manchots6Oceanics5LSommaire du match
29 - 2025-11-04212Oceanics7Monarchs3WSommaire du match
32 - 2025-11-07230Oceanics3Sags1WSommaire du match
34 - 2025-11-09251Oceanics3Admirals5LSommaire du match
36 - 2025-11-11263Oceanics1Comets7LSommaire du match
38 - 2025-11-13278Oceanics6Firebirds5WXSommaire du match
40 - 2025-11-15294Oceanics4Heat6LSommaire du match
43 - 2025-11-18311Monsters3Oceanics6WSommaire du match
46 - 2025-11-21333Caroline3Oceanics9WSommaire du match
48 - 2025-11-23348Minnesota5Oceanics4LXXSommaire du match
51 - 2025-11-26367Oceanics2Bears1WSommaire du match
53 - 2025-11-28387Oceanics8Caroline3WSommaire du match
54 - 2025-11-29397Oceanics4Jayhawks3WSommaire du match
56 - 2025-12-01408Oceanics9Crunch2WSommaire du match
58 - 2025-12-03422Oceanics5Rocket3WSommaire du match
60 - 2025-12-05437Crunch2Oceanics5WSommaire du match
61 - 2025-12-06450Oceanics8Oil Kings7WXSommaire du match
64 - 2025-12-09473Stars7Oceanics5LSommaire du match
66 - 2025-12-11489Bruins4Oceanics10WSommaire du match
68 - 2025-12-13503Bears5Oceanics7WSommaire du match
70 - 2025-12-15516Senators2Oceanics9WSommaire du match
72 - 2025-12-17531Oceanics4Chiefs0WSommaire du match
74 - 2025-12-19546Oceanics7Monsters8LXXSommaire du match
76 - 2025-12-21569Oceanics-Roadrunners-
82 - 2025-12-27594Minnesota-Oceanics-
84 - 2025-12-29609Oil Kings-Oceanics-
86 - 2025-12-31626Oceanics-Cougars-
87 - 2026-01-01634Oceanics-Marlies-
89 - 2026-01-03650Oceanics-Senators-
92 - 2026-01-06673Las Vegas-Oceanics-
94 - 2026-01-08690Oil Kings-Oceanics-
95 - 2026-01-09695Monarchs-Oceanics-
97 - 2026-01-11711Spiders-Oceanics-
99 - 2026-01-13732Sound Tigers-Oceanics-
101 - 2026-01-15744Oceanics-Minnesota-
103 - 2026-01-17762Marlies-Oceanics-
105 - 2026-01-19776Oceanics-Baby Hawks-
106 - 2026-01-20785Chiefs-Oceanics-
108 - 2026-01-22799Cabaret Lady Mary Ann-Oceanics-
110 - 2026-01-24815Cougars-Oceanics-
113 - 2026-01-27835Oceanics-Spiders-
115 - 2026-01-29847Oceanics-Thunder-
117 - 2026-01-31862Oceanics-Cabaret Lady Mary Ann-
119 - 2026-02-02882Oceanics-Stars-
121 - 2026-02-04895Rocket-Oceanics-
142 - 2026-02-25915Oceanics-Comets-
144 - 2026-02-27933Oceanics-Admirals-
146 - 2026-03-01950Oceanics-Sags-
148 - 2026-03-03964Baby Hawks-Oceanics-
150 - 2026-03-05980Thunder-Oceanics-
152 - 2026-03-07996Comets-Oceanics-
Date limite d’échanges --- Les échanges ne peuvent plus se faire après la simulation de cette journée!
155 - 2026-03-101022Admirals-Oceanics-
157 - 2026-03-121036Wolf Pack-Oceanics-
159 - 2026-03-141045Monsters-Oceanics-
160 - 2026-03-151057Chiefs-Oceanics-
162 - 2026-03-171071Jayhawks-Oceanics-
164 - 2026-03-191083Oceanics-Bruins-
166 - 2026-03-211099Oceanics-Manchots-
167 - 2026-03-221110Oceanics-Wolf Pack-
169 - 2026-03-241131Las Vegas-Oceanics-
171 - 2026-03-261145Monsters-Oceanics-
173 - 2026-03-281162Oceanics-Monsters-
176 - 2026-03-311186Oceanics-Baby Hawks-
178 - 2026-04-021198Oceanics-Stars-
180 - 2026-04-041215Oceanics-Monsters-
182 - 2026-04-061230Firebirds-Oceanics-
185 - 2026-04-091253Oceanics-Chiefs-
187 - 2026-04-111272Phantoms-Oceanics-
189 - 2026-04-131290Oceanics-Las Vegas-
190 - 2026-04-141297Oceanics-Roadrunners-
192 - 2026-04-161308Sags-Oceanics-



Capacité de l’aréna - Tendance du prix des billets - %
Niveau 1Niveau 2
Capacité20001000
Prix des billets4520
Assistance22,13810,883
Assistance PCT69.18%68.02%

Revenu
Matchs à domicile restantsAssistance moyenne - %Revenu moyen par matchRevenu annuel à ce jourCapacitéPopularité de l’équipe
-13 2064 - 68.79% 91,040$1,456,644$3000100

Dépenses
Dépenses annuelles à ce jourSalaire total des joueursPlafond Salariale total des joueursSalaire des entraineurs
570,036$ 1,456,193$ 1,456,193$ 0$
Plafond salarial par jourPlafond salarial à ce jourJoueurs Inclus dans le plafond salarialJoueurs exclut du plafond Salarial
7,545$ 570,036$ 0 0

Estimation
Revenus de la saison estimésJours restants de la saisonDépenses par jourDépenses de la saison estimées
2,276,006$ 119 7,545$ 897,855$




Oceanics Leaders statistiques des joueurs (saison régulière)

# Nom du joueur GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Oceanics Leaders des statistiques des gardiens (saison régulière)

# Nom du gardien GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA

Oceanics Statistiques de l'Équipe de Carrière

TotalDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT

Oceanics Leaders statistiques des joueurs (séries éliminatoires)

# Nom du joueur GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Oceanics Leaders des statistiques des gardiens (séries éliminatoires)

# Nom du gardien GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA