Connexion

Seattle
GP: 0 | W: 0 | L: 0 | OTL: 0 | P: 0
GF: 0 | GA: 0 | PP%: 0.00% | PK%: 0.00%
DG: Yvon Bergeron | Morale : 50 | Moyenne d’équipe : 61
Prochains matchs #9 vs Admirals
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Seattle
0-0-0, 0pts
2022-10-12
Admirals
0-0-0, 0pts
Statistiques d’équipe
N/ASéquenceN/A
0-0-0Fiche domicile0-0-0
0-0-0Fiche visiteur0-0-0
0-0-010 derniers matchs0-0-0
0Buts par match 0
0Buts contre par match 0
0%Pourcentage en avantage numérique0%
0%Pourcentage en désavantage numérique0%
Seattle
0-0-0, 0pts
2022-10-13
Monarchs
0-0-0, 0pts
Statistiques d’équipe
N/ASéquenceN/A
0-0-0Fiche domicile0-0-0
0-0-0Fiche visiteur0-0-0
0-0-010 derniers matchs0-0-0
0Buts par match 0
0Buts contre par match 0
0%Pourcentage en avantage numérique0%
0%Pourcentage en désavantage numérique0%
Las Vegas
0-0-0, 0pts
2022-10-15
Seattle
0-0-0, 0pts
Statistiques d’équipe
N/ASéquenceN/A
0-0-0Fiche domicile0-0-0
0-0-0Fiche visiteur0-0-0
0-0-010 derniers matchs0-0-0
0Buts par match 0
0Buts contre par match 0
0%Pourcentage en avantage numérique0%
0%Pourcentage en désavantage numérique0%
Meneurs d'équipe

Statistiques d’équipe
Informations de l'équipe

Directeur généralYvon Bergeron
DivisionMid-Ouest
ConférenceOuest
Capitaine
Assistant #1
Assistant #2


Informations de l’aréna

Capacité6,000
Assistance
Billets de saison600


Informations de la formation

Équipe Pro19
Équipe Mineure19
Limite contact 38 / 50
Espoirs13


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPÂgeContratSalaire moyen
1William CarrierX100.009046847979618362446366662565680506502621,100,000$
2Oliver WahlstromX100.00795972807762846938627160415859050640212925,001$
3Josh LeivoXX100.007472807172737567506166706363630506402812,000,000$
4Daniel SprongX100.00694395847363786625607260756566050640241700,000$
5Michael McCarronXX100.00889963699157626483626678255757050640262700,000$
6Nicolas Aube-KubelX100.008454817668568860326368682561610506302511,573,000$
7Alex Barre-BouletX100.00674291736558756940657162254646050620243759,258$
8Radim ZohornaXXX100.00794591688556646737696268254646050620253792,500$
9Ty Dellandrea (R)XX100.00747182757174776480596465614646050620213863,333$
10Brett MurrayX100.00737867698764766125666061254545050600233775,000$
11Jansen HarkinsXX100.00695293676854775857555965256162050590241750,000$
12Fredrik KarlstromX100.00807397667360615771496165584444050580233700,000$
13Jake WalmanX100.00734293746564646425514874255859050630251910,000$
14Kale ClagueX100.006341837665706769255648662550500506102341,700,000$
15Brendan GuhleX100.00757378797357614725354164395959050590243650,000$
16Jeremy DaviesX100.00696676686665685525514360414646050570241925,000$
17Simon Lundmark (R)X100.00807591707551524725384163394444050560204850,833$
Rayé
MOYENNE D’ÉQUIPE100.0076618373746171624257596638545405061
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPÂgeContratSalaire moyen
1Daniel Vladar100.0071464680776570717671754646050650241700,000$
2Spencer Martin100.0059496173626460656665304444050600262750,000$
Rayé
MOYENNE D’ÉQUIPE100.006548547770656568716853454505063
Nom de l’entraîneur PH DF OF PD EX LD PO CNT Âge Contrat Salaire


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du joueur Nom de l’équipePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du gardien Nom de l’équipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du joueur Nom de l’équipePOS Âge Date de naissance Nouveau joueur Poids Taille Non-échange Disponible pour échange Ballotage forcé Contrat Type Salaire actuel Salaire moyen restantPlafond salarial Plafond salarial restant Exclus du plafond salarial Salaire annuel 2Salaire annuel 3Salaire annuel 4Salaire annuel 5Salaire annuel 6Salaire annuel 7Salaire annuel 8Salaire annuel 9Salaire annuel 10Link
Alex Barre-BouletSeattle (SEA)C241997-05-20No180 Lbs5 ft10NoNoNo3Pro & Farm759,258$759,258$75,926$75,926$No759,258$759,258$Lien
Brendan GuhleSeattle (SEA)D241997-07-29No197 Lbs6 ft2NoNoNo3Pro & Farm650,000$650,000$65,000$65,000$No650,000$650,000$Lien
Brett MurraySeattle (SEA)LW231998-07-19No228 Lbs6 ft5NoNoNo3Pro & Farm775,000$775,000$77,500$77,500$No775,000$775,000$Lien
Daniel SprongSeattle (SEA)RW241997-03-17No200 Lbs6 ft0NoNoNo1Pro & Farm700,000$700,000$70,000$70,000$NoLien
Daniel VladarSeattle (SEA)G241997-08-20No185 Lbs6 ft5NoNoNo1Pro & Farm700,000$700,000$70,000$70,000$NoLien
Fredrik KarlstromSeattle (SEA)C231998-01-12No196 Lbs6 ft2NoNoNo3Pro & Farm700,000$700,000$70,000$70,000$No700,000$700,000$Lien
Jake WalmanSeattle (SEA)D251996-02-20No170 Lbs6 ft1NoNoNo1Pro & Farm910,000$910,000$91,000$91,000$NoLien
Jansen HarkinsSeattle (SEA)C/LW241997-05-23No182 Lbs6 ft1NoNoNo1Pro & Farm750,000$750,000$75,000$75,000$NoLien
Jeremy DaviesSeattle (SEA)D241996-12-04No180 Lbs5 ft11NoNoNo1Pro & Farm925,000$925,000$92,500$92,500$NoLien
Josh LeivoSeattle (SEA)LW/RW281993-05-26No192 Lbs6 ft2NoNoNo1Pro & Farm2,000,000$2,000,000$200,000$200,000$NoLien
Kale ClagueSeattle (SEA)D231998-06-05No177 Lbs6 ft0NoNoNo4Pro & Farm1,700,000$1,700,000$170,000$170,000$No1,700,000$1,700,000$1,700,000$Lien
Michael McCarronSeattle (SEA)C/RW261995-03-07No232 Lbs6 ft6NoNoNo2Pro & Farm700,000$700,000$70,000$70,000$No700,000$Lien
Nicolas Aube-KubelSeattle (SEA)RW251996-05-09No187 Lbs5 ft11NoNoNo1Pro & Farm1,573,000$1,573,000$157,300$157,300$NoLien
Oliver WahlstromSeattle (SEA)RW212000-06-13No205 Lbs6 ft2NoNoNo2Pro & Farm925,001$925,001$92,500$92,500$No925,001$Lien
Radim ZohornaSeattle (SEA)C/LW/RW251996-04-29No220 Lbs6 ft6NoNoNo3Pro & Farm792,500$792,500$79,250$79,250$No792,500$792,500$Lien
Simon LundmarkSeattle (SEA)D202000-10-08Yes201 Lbs6 ft2NoNoNo4Pro & Farm850,833$850,833$85,083$85,083$No850,833$850,833$850,833$Lien
Spencer MartinSeattle (SEA)G261995-06-08No191 Lbs6 ft1NoNoNo2Pro & Farm750,000$750,000$75,000$75,000$No750,000$Lien
Ty DellandreaSeattle (SEA)C/RW212000-07-20Yes190 Lbs6 ft1NoNoNo3Pro & Farm863,333$863,333$86,333$86,333$No863,333$863,333$Lien
William CarrierSeattle (SEA)LW261994-12-20No218 Lbs6 ft2NoNoNo2Pro & Farm1,100,000$1,100,000$110,000$110,000$No1,100,000$Lien
Nombre de joueursÂge moyenPoids moyenTaille moyenneContrat moyenSalaire moyen 1e année
1924.00196 Lbs6 ft22.16953,891$



Attaque à 5 contre 5
Ligne #Ailier gaucheCentreAilier droit% tempsPHYDFOF
10000
20000
30000
40000
Défense à 5 contre 5
Ligne #DéfenseDéfense% tempsPHYDFOF
10000
20000
30000
40000
Attaque en avantage numérique
Ligne #Ailier gaucheCentreAilier droit% tempsPHYDFOF
10000
20000
Défense en avantage numérique
Ligne #DéfenseDéfense% tempsPHYDFOF
10000
20000
Attaque à 4 en désavantage numérique
Ligne #CentreAilier% tempsPHYDFOF
10000
20000
Défense à 4 en désavantage numérique
Ligne #DéfenseDéfense% tempsPHYDFOF
10000
20000
3 joueurs en désavantage numérique
Ligne #Ailier% tempsPHYDFOFDéfenseDéfense% tempsPHYDFOF
100000000
200000000
Attaque à 4 contre 4
Ligne #CentreAilier% tempsPHYDFOF
10000
20000
Défense à 4 contre 4
Ligne #DéfenseDéfense% tempsPHYDFOF
10000
20000
Attaque dernière minute
Ailier gaucheCentreAilier droitDéfenseDéfense
Défense dernière minute
Ailier gaucheCentreAilier droitDéfenseDéfense
Attaquants supplémentaires
Normal Avantage numériqueDésavantage numérique
, , ,
Défenseurs supplémentaires
Normal Avantage numériqueDésavantage numérique
, , ,
Tirs de pénalité
, , , ,
Gardien
#1 : , #2 :


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
TotalDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Total00000000000000000000000000000000000.000000000000000000000000.00%000.00%0000.00%000.00%000.00%000000

Total pour les joueurs
Matchs jouésPointsSéquenceButsPassesPointsTirs pourTirs contreTirs bloquésMinutes de pénalitésMises en échecButs en filet désertBlanchissages
00N/A0000000000
Tous les matchs
GPWLOTWOTL SOWSOLGFGA
000000000
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
000000000
Matchs extérieurs
GPWLOTWOTL SOWSOLGFGA
000000000
Derniers 10 matchs
WLOTWOTL SOWSOL
000000
Tentatives en avantage numériqueButs en avantage numérique% en avantage numériqueTentatives en désavantage numériqueButs contre en désavantage numérique% en désavantage numériqueButs pour en désavantage numérique
000.00%000.00%0
Tirs en 1e périodeTirs en 2e périodeTirs en 3e périodeTirs en 4e périodeButs en 1e périodeButs en 2e périodeButs en 3e périodeButs en 4e période
00000000
Mises en jeu
Gagnées en zone offensiveTotal en zone offensive% gagnées en zone offensive Gagnées en zone défensiveTotal en zone défensive% gagnées en zone défensiveGagnées en zone neutreTotal en zone neutre% gagnées en zone neutre
000.00%000.00%000.00%
Temps avec la rondelle
En zone offensiveContrôle en zone offensiveEn zone défensiveContrôle en zone défensiveEn zone neutreContrôle en zone neutre
000000


Derniers matchs joués
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe visiteuse Score Équipe locale Score ST OT SO RI Lien
6 - 2022-10-129Seattle-Admirals-
7 - 2022-10-1320Seattle-Monarchs-
9 - 2022-10-1536Las Vegas-Seattle-
11 - 2022-10-1747Caroline-Seattle-
13 - 2022-10-1958Chiefs-Seattle-
15 - 2022-10-2173Seattle-Monsters-
17 - 2022-10-2387Seattle-Baby Hawks-
19 - 2022-10-25105Crunch-Seattle-
21 - 2022-10-27118Comets-Seattle-
23 - 2022-10-29137Manchots-Seattle-
26 - 2022-11-01155Seattle-Heat-
28 - 2022-11-03167Seattle-Minnesota-
30 - 2022-11-05184Seattle-Manchots-
33 - 2022-11-08205Chill-Seattle-
36 - 2022-11-11224Minnesota-Seattle-
38 - 2022-11-13243Oceanics-Seattle-
42 - 2022-11-17271Wolf Pack-Seattle-
44 - 2022-11-19286Monarchs-Seattle-
48 - 2022-11-23316Sharks-Seattle-
50 - 2022-11-25329Seattle-Las Vegas-
52 - 2022-11-27343Seattle-Admirals-
54 - 2022-11-29360Seattle-Monarchs-
56 - 2022-12-01374Bears-Seattle-
58 - 2022-12-03389Cabaret Lady Mary Ann-Seattle-
61 - 2022-12-06411Rocket-Seattle-
64 - 2022-12-09427Seattle-Bears-
66 - 2022-12-11444Seattle-Cabaret Lady Mary Ann-
68 - 2022-12-13459Seattle-Thunder-
70 - 2022-12-15475Seattle-Caroline-
73 - 2022-12-18500Oceanics-Seattle-
75 - 2022-12-20515Chiefs-Seattle-
77 - 2022-12-22530Seattle-Comets-
83 - 2022-12-28561Heat-Seattle-
85 - 2022-12-30577Oil Kings-Seattle-
87 - 2023-01-01594Sound Tigers-Seattle-
89 - 2023-01-03606Seattle-Oil Kings-
91 - 2023-01-05615Seattle-Marlies-
93 - 2023-01-07632Seattle-Senators-
95 - 2023-01-09646Seattle-Rocket-
96 - 2023-01-10651Seattle-Crunch-
98 - 2023-01-12665Seattle-Bruins-
100 - 2023-01-14687Seattle-Baby Hawks-
102 - 2023-01-16698Thunder-Seattle-
103 - 2023-01-17711Seattle-Oil Kings-
105 - 2023-01-19728Spiders-Seattle-
107 - 2023-01-21743Monsters-Seattle-
111 - 2023-01-25770Comets-Seattle-
113 - 2023-01-27786Heat-Seattle-
114 - 2023-01-28797Monsters-Seattle-
124 - 2023-02-07816Seattle-Sound Tigers-
126 - 2023-02-09824Seattle-Spiders-
127 - 2023-02-10828Seattle-Wolf Pack-
129 - 2023-02-12848Seattle-Phantoms-
131 - 2023-02-14860Seattle-Oceanics-
133 - 2023-02-16876Phantoms-Seattle-
135 - 2023-02-18894Cougars-Seattle-
137 - 2023-02-20904Seattle-Sharks-
140 - 2023-02-23927Bruins-Seattle-
143 - 2023-02-26952Marlies-Seattle-
145 - 2023-02-28964Seattle-Chiefs-
147 - 2023-03-02978Seattle-Cougars-
148 - 2023-03-03984Seattle-Monsters-
150 - 2023-03-051005Seattle-Monsters-
152 - 2023-03-071021Admirals-Seattle-
154 - 2023-03-091035Senators-Seattle-
156 - 2023-03-111049Stars-Seattle-
158 - 2023-03-131063Stars-Seattle-
161 - 2023-03-161090Seattle-Sharks-
163 - 2023-03-181098Oil Kings-Seattle-
Date limite d’échanges --- Les échanges ne peuvent plus se faire après la simulation de cette journée!
166 - 2023-03-211130Seattle-Stars-
168 - 2023-03-231142Seattle-Chill-
170 - 2023-03-251152Seattle-Chill-
172 - 2023-03-271173Seattle-Minnesota-
175 - 2023-03-301198Admirals-Seattle-
177 - 2023-04-011213Monarchs-Seattle-
179 - 2023-04-031228Jayhawks-Seattle-
180 - 2023-04-041238Seattle-Comets-
182 - 2023-04-061253Jayhawks-Seattle-
184 - 2023-04-081271Baby Hawks-Seattle-
186 - 2023-04-101283Seattle-Jayhawks-
187 - 2023-04-111293Seattle-Las Vegas-
189 - 2023-04-131312Las Vegas-Seattle-



Capacité de l’aréna - Tendance du prix des billets - %
Niveau 1Niveau 2
Capacité40002000
Prix des billets3515
Assistance0.00%0.00%
Assistance PCT0.00%0.00%

Revenu
Matchs à domicile restantsAssistance moyenne - %Revenu moyen par matchRevenu annuel à ce jourCapacitéPopularité de l’équipe
41 0 - 0.00%0$0$6000100

Dépenses
Dépenses annuelles à ce jourSalaire total des joueursSalaire total moyen des joueursSalaire des entraineurs
0$ 1,812,392$ 1,812,392$ 0$
Plafond salarial par jourPlafond salarial à ce jourJoueurs Inclus dans le plafond salarialJoueurs exclut du plafond Salarial
9,539$ 0$ 19 0

Estimation
Revenus de la saison estimésJours restants de la saisonDépenses par jourDépenses de la saison estimées
0$ 190 9,539$ 1,812,410$




Seattle Leaders statistiques (saison régulière)

# Nom du joueur GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Seattle Leaders des statistiques des gardiens (saison régulière)

# Nom du gardien GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA

Seattle Statistiques de l'Équipe de Carrière

TotalDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT

Seattle Leaders statistiques (séries éliminatoires)

# Nom du joueur GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Seattle Leaders des statistiques des gardiens (séries éliminatoires)

# Nom du gardien GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA