Please rotate your device to landscape mode for a better experience.
Login

Monsters
GP: 45 | W: 25 | L: 18 | OTL: 2 | P: 52
GF: 190 | GA: 168 | PP%: 30.16% | PK%: 73.02%
GM : Fred Gagnon | Morale : 50 | Team Overall : 60
Next Games #728 vs Heat

Game Center
Monsters
25-18-2, 52pts
2
FINAL
8 Monsters
29-10-5, 63pts
Team Stats
L5StreakW5
11-9-0Home Record11-5-5
14-9-2Home Record18-5-0
4-6-0Last 10 Games7-2-1
4.22Goals Per Game5.05
3.73Goals Against Per Game4.00
30.16%Power Play Percentage39.68%
73.02%Penalty Kill Percentage71.79%
Monsters
25-18-2, 52pts
1
FINAL
3 Roadrunners
23-20-3, 49pts
Team Stats
L5StreakW3
11-9-0Home Record14-6-0
14-9-2Home Record9-14-3
4-6-0Last 10 Games6-4-0
4.22Goals Per Game5.17
3.73Goals Against Per Game5.33
30.16%Power Play Percentage49.07%
73.02%Penalty Kill Percentage58.28%
Heat
23-18-4, 50pts
2026-01-13
Monsters
25-18-2, 52pts
Team Stats
W5StreakL5
11-7-3Home Record11-9-0
12-11-1Away Record14-9-2
6-2-2Last 10 Games4-6-0
5.07Goals Per Game4.22
4.84Goals Against Per Game4.22
44.92%Power Play Percentage30.16%
66.67%Penalty Kill Percentage73.02%
Comets
23-16-5, 51pts
2026-01-15
Monsters
25-18-2, 52pts
Team Stats
SOL1StreakL5
10-7-2Home Record11-9-0
13-9-3Away Record14-9-2
5-3-2Last 10 Games4-6-0
4.16Goals Per Game4.22
3.64Goals Against Per Game4.22
54.64%Power Play Percentage30.16%
69.41%Penalty Kill Percentage73.02%
Monsters
25-18-2, 52pts
2026-01-17
Manchots
26-15-3, 55pts
Team Stats
L5StreakOTL1
11-9-0Home Record13-9-0
14-9-2Away Record13-6-3
4-6-0Last 10 Games5-4-1
4.22Goals Per Game4.43
3.73Goals Against Per Game4.43
30.16%Power Play Percentage30.66%
73.02%Penalty Kill Percentage66.98%
Team Leaders
Goals
Ivan Miroshnichenko
35
Assists
Fedor Svechkov
45
Points
Ivan Miroshnichenko
76
Plus/Minus
Fedor Svechkov
24
Wins
Arturs Silovs
25
Save Percentage
Arturs Silovs
0.867

Team Stats
Goals For
190
4.22 GFG
Shots For
1144
25.42 Avg
Power Play Percentage
30.2%
38 GF
Offensive Zone Start
33.8%
Goals Against
168
3.73 GAA
Shots Against
1228
27.29 Avg
Penalty Kill Percentage
73.0%%
34 GA
Defensive Zone Start
35.8%
Team Info

General ManagerFred Gagnon
DivisionNord-Est
ConferenceEst
Captain
Assistant #1
Assistant #2


Arena Info

Capacity3,000
Attendance2,882
Season Tickets300


Roster Info

Pro Team25
Farm Team21
Contract Limit46 / 50
Prospects9


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPAgeContractSalary
1Fedor Svechkov (R)X100.00654080727475666959666565695250050650212925,000$
2Ivan Miroshnichenko (R)XX100.00694077747878636740636263675550050640202950,000$
3Matt Rempe (R)XXX100.00777058648871686547596063635550050630221820,000$
4Benoit-Olivier Groulx (R)XXX100.00654470677070676464625962645950050620241700,000$
5Laurent DauphinXXX100.00574359655765646043605862616053050600291888,888$
6Jared Davidson (R)X100.00644365696362606343596063645050050600222862,500$
7William Strömgren (R)X100.00584173656465636343645655615050050590212900,833$
8Dylan Roobroeck (R)X100.00644264626760586242586059615050050590203850,000$
9Cole Fonstad (R)X100.00494069655853545540515051585150050530241700,000$
10Matteo Costantini (R)X100.00525554545551515254515154535555050530222620,000$
11Drew Helleson (R)X100.00715167717977726940656371685650050680231925,000$
12Chase PriskieX100.00564270716170696640626267665950050630282700,000$
13Matt KierstedX100.00644466696370676440625469626050050630262930,000$
14Connor MackeyX100.00605955666571686340595767626050050620281925,000$
15Vincent Iorio (R)X100.00664270666863616340595568615050050620211845,000$
16Frederic Brunet (R)X100.00654270686461596240605568625050050620212860,000$
17Roman Schmidt (R)X100.00644758626761605840545564585050050590213805,833$
18Guillaume Richard (R)X100.00584062625958575640545560585050050570213867,500$
Scratches
1Zach PariseX100.001920202020181819201818201920200502304012,400,000$
2Lukas Cormier (R)X100.00554269666361595940575358595150050580221793,333$
3Daniil Chayka (R)X100.00584168636660585540515157565050050570211847,500$
TEAM AVERAGE100.0060446464646360604357556060524905059
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPAgeContractSalary
1Arturs Silovs (R)100.0074697079737170687272675652050650231870,000$
2Jakub Skarek (R)100.0069636566666567636667565350050600241765,000$
Scratches
1Mads Sogaard (R)100.0065596171656262596364585250050580231800,000$
2Yaniv Perets (R)100.0067595866636059566262565250050560242805,000$
TEAM AVERAGE100.006963647167656562666659535105060
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Ivan MiroshnichenkoMonsters (Clb)LW/RW4535417616291569521904610618.42%19106123.5881321258930391065145.05%915322041.4302102943
2Fedor SvechkovMonsters (Clb)C432145662424105394146498514.38%2496322.414111518810330954158.89%11312321011.3712002374
3Jimmy SnuggerudColumbusRW412922511130105954128235622.66%1279719.4554913722022333250.00%402515021.2800011470
4Benoit-Olivier GroulxMonsters (Clb)C/LW/RW4520294972810527194256621.28%1890220.0638118781122634057.95%4591420011.0912002330
5Matt RempeMonsters (Clb)C/LW/RW452424481416670644099325324.24%2190920.2256118860114344048.72%782019001.0612428305
6Laurent DauphinMonsters (Clb)C/LW/RW4517143144810815865194826.15%1884218.723258770002201040.54%371318000.7400002203
7Jared DavidsonMonsters (Clb)C45121426-23410515381214614.81%1169715.50123214000020046.72%2591413000.7500200103
8William StrömgrenMonsters (Clb)LW4591120-1075483460254815.00%1268515.231121110001181138.64%441816000.5800010011
9Dylan RoobroeckMonsters (Clb)C4551318-1012053505119389.80%1367414.9900000000001053.57%112911000.5300000021
10Chase PriskieMonsters (Clb)D4521517619526515416183.70%3090520.130224640000710016.67%61833000.3800001000
11Matt KierstedMonsters (Clb)D45116176251530414712172.13%2187319.420112630001680050.00%21128000.3900102000
12Frederic BrunetMonsters (Clb)D4567134602736194931.58%2873716.384267109000064100%0530000.3500000000
13Owen PickeringColumbusD221121344018302012115.00%2852924.07134455000058000%0927000.4900000001
14Roman SchmidtMonsters (Clb)D45112134763043703321113.03%5496421.430000000000000%01126000.2700006012
15Vincent IorioMonsters (Clb)D4546101012022362291018.18%3073016.233367530110107000%1126000.2700000000
16Connor MackeyMonsters (Clb)D32279284302424259118.00%3346614.5600001000050050.00%4623000.3900312010
17Matteo CostantiniMonsters (Clb)C4033-395772120%26817.0000000000000050.62%8110000.8800100000
18Cole FonstadMonsters (Clb)LW4000-320976120%27117.93000010000300100.00%20500000000000
19Drew HellesonMonsters (Clb)D3000055110000%23311.100000000003000%01200000001000
20Daniil ChaykaMonsters (Clb)D33000-400310010%2551.6900001000030014.29%71100000000000
21Lukas CormierMonsters (Clb)D43000375081000%02505.820000000000000%00300000001000
22Guillaume RichardMonsters (Clb)D45000000141000%31222.72000020000000100.00%10000000000000
Team Total or Average81018929148083627235741822114434463816.52%3831334316.4738589610786766122176024554.90%2355253359080.723812530252623
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Arturs SilovsMonsters (Clb)45251420.8673.552500211481114561310.5008450000
2Jakub SkarekMonsters (Clb)90400.8415.172090018113590000045000
Team Total or Average54251820.8653.6827092116612276203184545000


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Country Rookie Weight Height No Trade Available For Trade Acquired By Last Trade Date Force Waivers Waiver Possible Contract Contract Signature Date Force UFA Emergency Recall Type Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10Salary Cap Year 2Salary Cap Year 3Salary Cap Year 4Salary Cap Year 5Salary Cap Year 6Salary Cap Year 7Salary Cap Year 8Salary Cap Year 9Salary Cap Year 10No Trade Year 2No Trade Year 3No Trade Year 4No Trade Year 5No Trade Year 6No Trade Year 7No Trade Year 8No Trade Year 9No Trade Year 10Link
Arturs SilovsMonsters (Clb)G232001-03-22LVAYes203 Lbs6 ft4NoNoTrade2025-02-24NoNo1FalseFalsePro & Farm870,000$0$0$No---------------------------Link
Benoit-Olivier GroulxMonsters (Clb)C/LW/RW242000-02-06CANYes194 Lbs6 ft2NoNoFree AgentNoYes12025-09-05FalseFalsePro & Farm700,000$0$0$No---------------------------Link
Chase PriskieMonsters (Clb)D281996-03-19USANo185 Lbs6 ft0NoNoFree AgentYesYes22024-09-03FalseFalsePro & Farm700,000$0$0$No700,000$--------700,000$--------No--------Link
Cole FonstadMonsters (Clb)LW242000-04-24CANYes170 Lbs5 ft10NoNoN/ANoYes1FalseFalsePro & Farm700,000$0$0$No---------------------------Link
Connor MackeyMonsters (Clb)D281996-09-12USANo190 Lbs6 ft2NoNoFree AgentYesYes12025-08-27FalseFalsePro & Farm925,000$0$0$No---------------------------Link
Daniil ChaykaMonsters (Clb)D212002-10-22RUSYes187 Lbs6 ft3NoNoN/ANoNo1FalseFalsePro & Farm847,500$0$0$No---------------------------Link
Drew HellesonMonsters (Clb)D232001-03-26USAYes213 Lbs6 ft3NoNoN/ANoNo1FalseFalsePro & Farm925,000$0$0$No---------------------------Link
Dylan RoobroeckMonsters (Clb)C202004-07-27CANYes205 Lbs6 ft7NoNoDraftNoNo32025-07-10FalseFalsePro & Farm850,000$0$0$No850,000$850,000$-------850,000$850,000$-------NoNo-------Link
Fedor SvechkovMonsters (Clb)C212003-04-05RUSYes187 Lbs6 ft0NoNoTrade2025-07-26NoNo22024-06-25FalseFalsePro & Farm925,000$0$0$No925,000$--------925,000$--------No--------Link
Frederic BrunetMonsters (Clb)D212003-08-21CANYes176 Lbs6 ft2NoNoProspectNoNo22024-06-25FalseFalsePro & Farm860,000$0$0$No860,000$--------860,000$--------No--------Link
Guillaume RichardMonsters (Clb)D212003-02-10CANYes170 Lbs6 ft2NoNoProspectNoNo32025-07-10FalseFalsePro & Farm867,500$0$0$No867,500$867,500$-------867,500$867,500$-------NoNo-------Link
Ivan MiroshnichenkoMonsters (Clb)LW/RW202004-02-04RUSYes185 Lbs6 ft1NoNoProspectNoNo22024-06-25FalseFalsePro & Farm950,000$0$0$No950,000$--------950,000$--------No--------Link
Jakub SkarekMonsters (Clb)G241999-11-10CZEYes203 Lbs6 ft3NoNoFree AgentNoYes12025-08-27FalseFalsePro & Farm765,000$0$0$No---------------------------Link
Jared DavidsonMonsters (Clb)C222002-07-07CANYes181 Lbs6 ft0NoNoProspectNoNo22024-06-25FalseFalsePro & Farm862,500$0$0$No862,500$--------862,500$--------No--------Link
Laurent Dauphin (1 Way Contract)Monsters (Clb)C/LW/RW291995-03-27CANNo181 Lbs6 ft1NoNoN/AYesYes1FalseFalsePro & Farm888,888$0$0$No---------------------------Link
Lukas CormierMonsters (Clb)D222002-03-27CANYes185 Lbs5 ft11NoNoN/ANoNo1FalseFalsePro & Farm793,333$0$0$No---------------------------Link
Mads SogaardMonsters (Clb)G232000-12-13DENYes196 Lbs6 ft7NoNoFree AgentNoNo12024-09-03FalseFalsePro & Farm800,000$0$0$No---------------------------Link
Matt KierstedMonsters (Clb)D261998-04-14USANo181 Lbs6 ft0NoNoFree AgentYesYes22025-08-27FalseFalsePro & Farm930,000$0$0$No930,000$--------930,000$--------No--------Link
Matt RempeMonsters (Clb)C/LW/RW222002-06-29CANYes255 Lbs6 ft9NoNoN/ANoNo1FalseFalsePro & Farm820,000$0$0$No---------------------------Link
Matteo CostantiniMonsters (Clb)C222002-08-16CANYes176 Lbs6 ft2NoNoProspectNoNo22024-06-25FalseFalsePro & Farm620,000$0$0$No620,000$--------620,000$--------No--------Link
Roman SchmidtMonsters (Clb)D212003-02-27USAYes209 Lbs6 ft5NoNoProspectNoNo32025-07-10FalseFalsePro & Farm805,833$0$0$No805,833$805,833$-------805,833$805,833$-------NoNo-------Link
Vincent IorioMonsters (Clb)D212002-11-14CANYes205 Lbs6 ft4NoNoN/ANoNo1FalseFalsePro & Farm845,000$0$0$No---------------------------Link
William StrömgrenMonsters (Clb)LW212003-06-07SWEYes174 Lbs6 ft3NoNoProspectNoNo22024-06-25FalseFalsePro & Farm900,833$0$0$No900,833$--------900,833$--------No--------Link
Yaniv PeretsMonsters (Clb)G242000-03-04CANYes181 Lbs6 ft1NoNoTrade2025-02-14NoYes22024-06-25FalseFalsePro & Farm805,000$0$0$No805,000$--------805,000$--------No--------Link
Zach Parise (1 Way Contract)ColumbusLW401984-07-28USANo195 Lbs5 ft11NoNoTrade2025-09-17YesYes1FalseFalsePro & Farm2,400,000$2,400,000$1,193,782$No---------------------------Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2523.64191 Lbs6 ft21.60894,255$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Ivan MiroshnichenkoMatteo CostantiniMatt Rempe40122
2Laurent DauphinBenoit-Olivier GroulxCole Fonstad30122
3William StrömgrenJared DavidsonDylan Roobroeck20122
4Matt RempeDylan RoobroeckIvan Miroshnichenko10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Roman SchmidtConnor Mackey40122
2Chase PriskieMatt Kiersted30122
3Vincent IorioFrederic Brunet20122
4Roman SchmidtDrew Helleson10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Ivan MiroshnichenkoJared DavidsonMatt Rempe60122
2Laurent DauphinBenoit-Olivier GroulxWilliam Strömgren40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Frederic BrunetVincent Iorio60122
2Chase PriskieMatt Kiersted40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1William StrömgrenIvan Miroshnichenko60122
2Matt RempeBenoit-Olivier Groulx40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Vincent IorioFrederic Brunet60122
2Chase PriskieMatt Kiersted40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Matt Rempe60122Frederic BrunetVincent Iorio60122
2Ivan Miroshnichenko40122Chase PriskieMatt Kiersted40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Laurent DauphinIvan Miroshnichenko60122
2Matt RempeBenoit-Olivier Groulx40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Vincent IorioFrederic Brunet60122
2Chase PriskieMatt Kiersted40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Ivan MiroshnichenkoBenoit-Olivier GroulxMatt RempeChase PriskieMatt Kiersted
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Ivan MiroshnichenkoBenoit-Olivier GroulxMatt RempeChase PriskieMatt Kiersted
Extra Forwards
Normal PowerPlayPenalty Kill
Jared Davidson, William Strömgren, Ivan MiroshnichenkoJared Davidson, William StrömgrenIvan Miroshnichenko
Extra Defensemen
Normal PowerPlayPenalty Kill
Guillaume Richard, Vincent Iorio, Frederic BrunetGuillaume RichardVincent Iorio, Frederic Brunet
Penalty Shots
Jared Davidson, Ivan Miroshnichenko, Matt Rempe, Benoit-Olivier Groulx, Dylan Roobroeck
Goalie
#1 : Arturs Silovs, #2 : Jakub Skarek


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals2010010038-51010000015-41000010023-110.2503470028718856325241447214661425454125.00%5340.00%044079655.28%46884455.45%38571553.85%838381923426950498
2Bears311010008621010000013-22100100073440.66781119012871885582524144721450198427114.29%4175.00%044079655.28%46884455.45%38571553.85%838381923426950498
3Cabaret Lady Mary Ann11000000422000000000001100000042221.000471100287188531252414472142444187114.29%20100.00%044079655.28%46884455.45%38571553.85%838381923426950498
4Caroline11000000826000000000001100000082621.0008917002871885392524144721424102143266.67%10100.00%044079655.28%46884455.45%38571553.85%838381923426950498
5Chiefs1010000025-31010000025-30000000000000.00024600287188523252414472143068224125.00%4175.00%044079655.28%46884455.45%38571553.85%838381923426950498
6Comets1010000012-1000000000001010000012-100.0001230028718851925241447214287417300.00%20100.00%044079655.28%46884455.45%38571553.85%838381923426950498
7Cougars22000000954110000004221100000053241.000916250028718855525241447214541113344250.00%4175.00%044079655.28%46884455.45%38571553.85%838381923426950498
8Crunch2200000018711110000009271100000095441.0001825430028718854925241447214531654278450.00%70100.00%144079655.28%46884455.45%38571553.85%838381923426950498
9Firebirds10001000431000000000001000100043121.000461000287188529252414472142488154125.00%4175.00%044079655.28%46884455.45%38571553.85%838381923426950498
10Heat11000000642000000000001100000064221.0006101600287188516252414472144610138000%4175.00%044079655.28%46884455.45%38571553.85%838381923426950498
11Jayhawks11000000725000000000001100000072521.000711180028718852425241447214241126142150.00%20100.00%044079655.28%46884455.45%38571553.85%838381923426950498
12Las Vegas2110000078-1110000004311010000035-220.500710171028718855725241447214431718427228.57%9277.78%044079655.28%46884455.45%38571553.85%838381923426950498
13Manchots30300000715-820200000612-61010000013-200.000711180028718855325241447214853543487228.57%14471.43%044079655.28%46884455.45%38571553.85%838381923426950498
14Marlies312000001615121100000121021010000045-120.33316294500287188594252414472147821455511545.45%15566.67%144079655.28%46884455.45%38571553.85%838381923426950498
15Minnesota220000001055110000005321100000052341.0001014240028718855125241447214401513346466.67%4175.00%044079655.28%46884455.45%38571553.85%838381923426950498
16Monarchs11000000532000000000001100000053221.0005813002871885392524144721429117152150.00%10100.00%044079655.28%46884455.45%38571553.85%838381923426950498
17Monsters20200000513-81010000035-21010000028-600.000581300287188543252414472145913639600.00%3166.67%044079655.28%46884455.45%38571553.85%838381923426950498
18Oceanics1010000036-3000000000001010000036-300.000369002871885312524144721438101414400.00%20100.00%044079655.28%46884455.45%38571553.85%838381923426950498
19Oil Kings22000000844110000004221100000042241.000812200028718855025241447214452016333133.33%3166.67%044079655.28%46884455.45%38571553.85%838381923426950498
20Roadrunners1010000013-2000000000001010000013-200.000123002871885212524144721440151311200.00%4175.00%044079655.28%46884455.45%38571553.85%838381923426950498
21Rocket11000000817110000008170000000000021.00081018002871885272524144721419619146116.67%20100.00%144079655.28%46884455.45%38571553.85%838381923426950498
22Sags10100000511-60000000000010100000511-600.00058130028718852725241447214481361144250.00%330.00%044079655.28%46884455.45%38571553.85%838381923426950498
23Senators210000101266110000007251000001054141.0001216280028718856125241447214511150337342.86%5260.00%144079655.28%46884455.45%38571553.85%838381923426950498
24Sound Tigers21000001981110000004221000000156-130.75091423002871885462524144721450166229200.00%6183.33%244079655.28%46884455.45%38571553.85%838381923426950498
25Spiders321000001613321100000111011100000053240.66716264200287188587252414472141134183667228.57%9277.78%044079655.28%46884455.45%38571553.85%838381923426950498
26Stars1010000035-2000000000001010000035-200.0003470028718852425241447214245411000%220.00%044079655.28%46884455.45%38571553.85%838381923426950498
27Thunder11000000422110000004220000000000021.000461000287188514252414472141882154125.00%10100.00%044079655.28%46884455.45%38571553.85%838381923426950498
28Wolf Pack1010000014-31010000014-30000000000000.00012300287188513252414472142510812200.00%4175.00%044079655.28%46884455.45%38571553.85%838381923426950498
Total452218021111901682220119000008673132511902111104959520.57819029148111287188511442524144721412283836297411263830.16%1263473.02%644079655.28%46884455.45%38571553.85%838381923426950498
_Since Last GM Reset452218021111901682220119000008673132511902111104959520.57819029148111287188511442524144721412283836297411263830.16%1263473.02%644079655.28%46884455.45%38571553.85%838381923426950498
_Vs Conference248120111190100-101257000004750-31235011114350-7220.4589014323301287188560725241447214691224421399631828.57%732368.49%444079655.28%46884455.45%38571553.85%838381923426950498
_Vs Division13320000149481722000002331-8610000012617970.26949731220128718852962524144721434713120621128725.00%38976.32%244079655.28%46884455.45%38571553.85%838381923426950498

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
4552L51902914811144122838362974111
All Games
GPWLOTWOTL SOWSOLGFGA
4522182111190168
Home Games
GPWLOTWOTL SOWSOLGFGA
2011900008673
Visitor Games
GPWLOTWOTL SOWSOLGFGA
25119211110495
Last 10 Games
WLOTWOTL SOWSOL
460000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
1263830.16%1263473.02%6
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
252414472142871885
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
44079655.28%46884455.45%38571553.85%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
838381923426950498


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
3 - 2025-10-0916Monsters7Jayhawks2WBoxScore
5 - 2025-10-1133Monsters5Minnesota2WBoxScore
7 - 2025-10-1345Spiders5Monsters9WBoxScore
10 - 2025-10-1667Monsters5Monsters3LBoxScore
12 - 2025-10-1882Thunder2Monsters4WBoxScore
15 - 2025-10-21106Monsters3Stars5LBoxScore
18 - 2025-10-24125Bears3Monsters1LBoxScore
19 - 2025-10-25134Monsters1Manchots3LBoxScore
22 - 2025-10-28152Monsters9Crunch5WBoxScore
23 - 2025-10-29166Marlies8Monsters6LBoxScore
26 - 2025-11-01189Chiefs5Monsters2LBoxScore
27 - 2025-11-02195Monsters5Sound Tigers6LXXBoxScore
30 - 2025-11-05215Monsters6Heat4WBoxScore
33 - 2025-11-08241Monsters1Comets2LBoxScore
35 - 2025-11-10254Monsters4Oil Kings2WBoxScore
36 - 2025-11-11264Monsters4Firebirds3WXBoxScore
38 - 2025-11-13274Oil Kings2Monsters4WBoxScore
40 - 2025-11-15290Wolf Pack4Monsters1LBoxScore
42 - 2025-11-17305Rocket1Monsters8WBoxScore
43 - 2025-11-18311Monsters3Oceanics6LBoxScore
45 - 2025-11-20319Monsters4Marlies5LBoxScore
47 - 2025-11-22335Monsters5Cougars3WBoxScore
49 - 2025-11-24356Monsters4Bears3WXBoxScore
51 - 2025-11-26369Marlies2Monsters6WBoxScore
53 - 2025-11-28388Manchots4Monsters1LBoxScore
56 - 2025-12-01406Monsters5Spiders3WBoxScore
59 - 2025-12-04432Cougars2Monsters4WBoxScore
61 - 2025-12-06442Monsters4Cabaret Lady Mary Ann2WBoxScore
62 - 2025-12-07459Monsters3Bears0WBoxScore
64 - 2025-12-09471Monsters8Caroline2WBoxScore
66 - 2025-12-11486Senators2Monsters7WBoxScore
68 - 2025-12-13502Las Vegas3Monsters4WBoxScore
71 - 2025-12-16525Admirals5Monsters1LBoxScore
73 - 2025-12-18540Minnesota3Monsters5WBoxScore
75 - 2025-12-20560Monsters2Admirals3LXBoxScore
77 - 2025-12-22574Monsters5Monarchs3WBoxScore
83 - 2025-12-28603Sound Tigers2Monsters4WBoxScore
84 - 2025-12-29606Monsters5Senators4WXXBoxScore
86 - 2025-12-31627Spiders5Monsters2LBoxScore
89 - 2026-01-03646Crunch2Monsters9WBoxScore
90 - 2026-01-04658Manchots8Monsters5LBoxScore
92 - 2026-01-06675Monsters5Sags11LBoxScore
94 - 2026-01-08692Monsters3Las Vegas5LBoxScore
96 - 2026-01-10699Monsters2Monsters8LBoxScore
97 - 2026-01-11714Monsters1Roadrunners3LBoxScore
99 - 2026-01-13728Heat-Monsters-
101 - 2026-01-15743Comets-Monsters-
103 - 2026-01-17760Monsters-Manchots-
106 - 2026-01-20782Senators-Monsters-
108 - 2026-01-22797Stars-Monsters-
110 - 2026-01-24814Thunder-Monsters-
112 - 2026-01-26828Monarchs-Monsters-
114 - 2026-01-28840Phantoms-Monsters-
116 - 2026-01-30858Monsters-Baby Hawks-
117 - 2026-01-31868Monsters-Chiefs-
120 - 2026-02-03887Monsters-Spiders-
121 - 2026-02-04894Baby Hawks-Monsters-
143 - 2026-02-26918Monsters-Bruins-
145 - 2026-02-28937Sound Tigers-Monsters-
147 - 2026-03-02953Monsters-Wolf Pack-
148 - 2026-03-03963Jayhawks-Monsters-
150 - 2026-03-05978Cabaret Lady Mary Ann-Monsters-
152 - 2026-03-07995Roadrunners-Monsters-
Trade Deadline --- Trades can’t be done after this day is simulated!
155 - 2026-03-101015Monsters-Thunder-
157 - 2026-03-121031Monsters-Cabaret Lady Mary Ann-
159 - 2026-03-141052Monsters-Phantoms-
162 - 2026-03-171070Caroline-Monsters-
164 - 2026-03-191086Wolf Pack-Monsters-
166 - 2026-03-211104Firebirds-Monsters-
167 - 2026-03-221114Monsters-Sound Tigers-
169 - 2026-03-241125Monsters-Phantoms-
171 - 2026-03-261137Monsters-Rocket-
173 - 2026-03-281158Sags-Monsters-
174 - 2026-03-291170Bruins-Monsters-
176 - 2026-03-311185Caroline-Monsters-
178 - 2026-04-021197Monsters-Caroline-
180 - 2026-04-041215Oceanics-Monsters-
183 - 2026-04-071235Monsters-Cougars-
185 - 2026-04-091247Monsters-Crunch-
187 - 2026-04-111271Monsters-Rocket-
188 - 2026-04-121278Bruins-Monsters-
190 - 2026-04-141295Bears-Monsters-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Capacity20001000
Ticket Price3515
Attendance38,78018,852
Attendance PCT96.95%94.26%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueCapacityTeam Popularity
-16 2882 - 96.05% 98,405$1,968,096$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Salaries CapCoaches Salaries
978,642$ 1,906,749$ 1,906,749$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
9,880$ 978,642$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
2,066,501$ 96 9,880$ 948,480$




Monsters Players Stat Leaders (Regular Season)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Monsters Goalies Stat Leaders (Regular Season)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA

Monsters Career Team Stats

OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT

Monsters Players Stat Leaders (Play-Off)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Monsters Goalies Stat Leaders (Play-Off)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA