Please rotate your device to landscape mode for a better experience.
Connexion

Phantoms
GP: 6 | W: 5 | L: 1 | OTL: 0 | P: 10
GF: 34 | GA: 19 | PP%: 38.46% | PK%: 90.00%
DG: Richard Duguay | Morale : 50 | Moyenne d’équipe : 62
Prochains matchs #112 vs Senators

Centre de jeu
Minnesota
1-6-0, 2pts
4
FINAL
6 Phantoms
5-1-0, 10pts
Team Stats
L2SéquenceL1
0-2-0Fiche domicile3-1-0
1-4-0Fiche domicile2-0-0
1-6-0Derniers 10 matchs5-1-0
3.14Buts par match 5.67
5.71Buts contre par match 3.17
10.00%Pourcentage en avantage numérique38.46%
68.42%Pourcentage en désavantage numérique90.00%
Firebirds
6-0-1, 13pts
3
FINAL
1 Phantoms
5-1-0, 10pts
Team Stats
W4SéquenceL1
2-0-0Fiche domicile3-1-0
4-0-1Fiche domicile2-0-0
6-0-1Derniers 10 matchs5-1-0
5.86Buts par match 5.67
3.71Buts contre par match 3.17
52.38%Pourcentage en avantage numérique38.46%
65.00%Pourcentage en désavantage numérique90.00%
Phantoms
5-1-0, 10pts
2025-10-23
Senators
3-4-0, 6pts
Statistiques d’équipe
L1SéquenceL3
3-1-0Fiche domicile1-3-0
2-0-0Fiche visiteur2-1-0
5-1-010 derniers matchs3-4-0
5.67Buts par match 3.57
3.17Buts contre par match 3.57
38.46%Pourcentage en avantage numérique47.62%
90.00%Pourcentage en désavantage numérique61.11%
Sound Tigers
2-1-3, 7pts
2025-10-25
Phantoms
5-1-0, 10pts
Statistiques d’équipe
OTL1SéquenceL1
1-0-3Fiche domicile3-1-0
1-1-0Fiche visiteur2-0-0
2-1-310 derniers matchs5-1-0
3.83Buts par match 5.67
4.17Buts contre par match 5.67
37.50%Pourcentage en avantage numérique38.46%
66.67%Pourcentage en désavantage numérique90.00%
Manchots
4-2-1, 9pts
2025-10-28
Phantoms
5-1-0, 10pts
Statistiques d’équipe
W1SéquenceL1
2-1-0Fiche domicile3-1-0
2-1-1Fiche visiteur2-0-0
4-2-110 derniers matchs5-1-0
4.29Buts par match 5.67
3.71Buts contre par match 5.67
41.18%Pourcentage en avantage numérique38.46%
66.67%Pourcentage en désavantage numérique90.00%
Meneurs d'équipe
Buts
Ryder Rolston
6
Passes
Frank Nazar
7
Points
Ryder Rolston
10
Plus/Moins
Josiah Slavin
6
Victoires
James Reimer
4
Pourcentage d’arrêts
James Reimer
0.877

Statistiques d’équipe
Buts pour
34
5.67 GFG
Tirs pour
161
26.83 Avg
Pourcentage en avantage numérique
38.5%
5 GF
Début de zone offensive
29.0%
Buts contre
19
3.17 GAA
Tirs contre
165
27.50 Avg
Pourcentage en désavantage numérique
90.0%%
1 GA
Début de la zone défensive
37.7%
Informations de l'équipe

Directeur généralRichard Duguay
DivisionNord-Est
ConférenceEst
Capitaine
Assistant #1
Assistant #2


Informations de l’aréna

Capacité3,000
Assistance2,797
Billets de saison300


Informations de la formation

Équipe Pro21
Équipe Mineure20
Limite contact 41 / 50
Espoirs17


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPÂgeContratSalaire
1Frank Nazar (R)X100.00604076787684687260686867735550050680202950,000$
2Conor Geekie (R)X100.00704076697875666759636564675250050640203886,667$
3Tanner LaczynskiX100.0059427267646965644563596263605005061X0271775,000$
4Brendan LemieuxX100.00675661637470696045555658597857050600282780,000$
5Nick Abruzzese (R)X100.00564174676069676444645855635450050600251850,000$
6Ryder Rolston (R)X100.0064417364666463624259575961515005059X0222895,000$
7Josiah Slavin (R)X100.00584270636468666143565554605450050580251600,000$
8Elliot Desnoyers (R)X100.00584271666264636142605355605150050580221825,000$
9Dalibor Dvorský (R)X100.00604167626358576242616055625050050580193886,667$
10Tristan Broz (R)X100.00574264626162616255605955615050050580213925,000$
11Julian Lutz (R)X100.00604168586361595741575454575050050560203923,333$
12Caleb JonesX100.0064427568697472654063566963755605065N0272680,000$
13Kevin Korchinski (R)X100.00604473686970656840655962655550050630202918,333$
14Dylan CoghlanX100.0054426968666864664061646266605005062N0261650,000$
15Tobias Bjornfot (R)X100.0062417165656361594056536559525005060X0232800,000$
16Topi Niemelä (R)X100.00564271686164626240625563625150050600221856,667$
Rayé
MOYENNE D’ÉQUIPE100.0060427166666864634561586063565105061
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPÂgeContratSalaire
1James Reimer100.007085847880807780807878908305073N03612,222,222$
2Devon Levi (R)100.0077697268737575767674675850050670221925,000$
3Vadim Zherenko (R)100.0071636666686871666968585250050620231846,667$
Rayé
1Chris Driedger100.00697071676969706868696965580506303031,000,000$
2Cooper Black (R)100.0066595769646466656562545250050590232950,000$
MOYENNE D’ÉQUIPE100.007169707071717271727065635805065
Nom de l’entraîneur PH DF OF PD EX LD PO CNT Âge Contrat Salaire


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du joueur Nom de l’équipePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Ryder RolstonPhantoms (Phi)RW6641050065156640.00%112420.7410128000001173.33%15210011.6100000200
2Conor GeekiePhantoms (Phi)C6551035569174729.41%311318.8602207000081052.73%5525001.7700010021
3Frank NazarPhantoms (Phi)C6279-155111219141610.53%613823.0502217000080063.76%14985001.3000100010
4Josiah SlavinPhantoms (Phi)LW635862074131223.08%28714.5300002101120050.00%401001.8400000100
5Tanner LaczynskiPhantoms (Phi)C6347200631731417.65%28614.4400000000130157.50%4044001.6200000010
6Nick AbruzzesePhantoms (Phi)C6257200910275117.41%19716.2300000000030066.67%1533001.4400000011
7Dalibor DvorskýPhantoms (Phi)RW6257400123112718.18%110317.28101170000000100.00%105001.3500000002
8Elliot DesnoyersPhantoms (Phi)LW63365204462350.00%211318.9611217000001012.50%827001.0600000200
9Kevin KorchinskiPhantoms (Phi)D61566406380212.50%516527.6410111101108000%039000.7200000000
10Caleb JonesPhantoms (Phi)D61455559240225.00%815726.32000011000111000%028000.6300100000
11Brendan LemieuxPhantoms (Phi)LW6325515510346675.00%312320.6010118000001087.50%834000.8100010001
12Dylan CoghlanPhantoms (Phi)D61454001192411.11%212020.140110500007000%009100.8300000000
13Julian LutzPhantoms (Phi)LW6112-1006020150.00%0518.6200001011050080.00%503000.7700000000
14Tristan BrozPhantoms (Phi)C61124004230233.33%28514.2700002000021077.78%904000.4700000000
15Tobias BjornfotPhantoms (Phi)D6000255222110%28414.06000020000100100.00%10400000001000
16Topi NiemeläPhantoms (Phi)D60002175344310%411419.110000400008000%01600000001000
Statistiques d’équipe totales ou en moyenne9634558953603010267161498521.12%44176818.4356117881233745261.61%3103087111.0100222555
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du gardien Nom de l’équipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1James ReimerPhantoms (Phi)64100.8773.26331001814667000060000
2Devon LeviPhantoms (Phi)11000.9471.94310011912000006000
Statistiques d’équipe totales ou en moyenne75100.8853.1436300191657900066000


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du joueur Nom de l’équipePOS Âge Date de naissance Pays Recrue Poids Taille Non-échange Disponible pour échange Acquis Par Date de la Dernière Transaction Ballotage forcé Waiver Possible Contrat Date du Signature du Contrat Forcer UFA Rappel d'urgence Type Salaire actuel Plafond salarial Plafond salarial restant Exclus du plafond salarial Salaire année 2Salaire année 3Salaire année 4Salaire année 5Salaire année 6Salaire année 7Salaire année 8Salaire année 9Salaire année 10Plafond salarial année 2Plafond salarial année 3Plafond salarial année 4Plafond salarial année 5Plafond salarial année 6Plafond salarial année 7Plafond salarial année 8Plafond salarial année 9Plafond salarial année 10Non-échange année 2Non-échange année 3Non-échange année 4Non-échange année 5Non-échange année 6Non-échange année 7Non-échange année 8Non-échange année 9Non-échange année 10Lien
Brendan Lemieux (contrat à 1 volet)Phantoms (Phi)LW281996-03-15CANNo214 Lbs6 ft1NoNoFree AgentYesYes22024-09-23FalseFalsePro & Farm780,000$0$0$No780,000$--------780,000$--------No--------Lien
Caleb JonesPhantoms (Phi)D271997-06-06USANo194 Lbs6 ft1YesNoFree AgentYesYes22025-09-21FalseFalsePro & Farm680,000$0$0$No680,000$--------680,000$--------No--------Lien
Chris Driedger (contrat à 1 volet)Phantoms (Phi)G301994-05-18CANNo207 Lbs6 ft4NoNoFree AgentYesYes32024-09-23FalseFalsePro & Farm1,000,000$80,000$73,782$No1,000,000$1,000,000$-------1,000,000$1,000,000$-------NoNo-------Lien
Conor GeekiePhantoms (Phi)C202004-05-05CANYes207 Lbs6 ft4NoNoProspectNoNo32025-07-10FalseFalsePro & Farm886,667$0$0$No886,667$886,667$-------886,667$886,667$-------NoNo-------Lien
Cooper BlackPhantoms (Phi)G232001-06-14USAYes194 Lbs6 ft8NoNoDraftNoNo22024-06-25FalseFalsePro & Farm950,000$0$0$No950,000$--------950,000$--------No--------Lien
Dalibor DvorskýPhantoms (Phi)RW192005-06-15SLVYes201 Lbs6 ft1NoNoTrade2025-07-18NoNo32025-07-10FalseFalsePro & Farm886,667$0$0$No886,667$886,667$-------886,667$886,667$-------NoNo-------Lien
Devon LeviPhantoms (Phi)G222001-12-27CANYes183 Lbs6 ft0NoNoN/ANoNo1FalseFalsePro & Farm925,000$0$0$No---------------------------Lien
Dylan CoghlanPhantoms (Phi)D261998-02-19CANNo205 Lbs6 ft2YesNoFree AgentYesYes12025-09-21FalseFalsePro & Farm650,000$0$0$No---------600,000$-----------------Lien
Elliot DesnoyersPhantoms (Phi)LW222002-01-21CANYes183 Lbs5 ft11NoNoN/ANoNo1FalseFalsePro & Farm825,000$0$0$No---------------------------Lien
Frank NazarPhantoms (Phi)C202004-01-14USAYes190 Lbs5 ft10NoNoProspectNoNo22024-06-25FalseFalsePro & Farm950,000$0$0$No950,000$--------950,000$--------No--------Lien
James Reimer (contrat à 1 volet)Phantoms (Phi)G361988-03-15CANNo200 Lbs6 ft2YesNoTrade2024-12-12YesYes1FalseFalsePro & Farm2,222,222$1,302,222$1,201,013$No---------------------------Lien
Josiah SlavinPhantoms (Phi)LW251998-12-31USAYes190 Lbs6 ft3NoNoN/AYesYes1FalseFalsePro & Farm600,000$0$0$No---------------------------Lien
Julian LutzPhantoms (Phi)LW202004-02-29GERYes194 Lbs6 ft3NoNoProspectNoNo32025-07-10FalseFalsePro & Farm923,333$0$0$No923,333$923,333$-------923,333$923,333$-------NoNo-------Lien
Kevin KorchinskiPhantoms (Phi)D202004-06-21CANYes192 Lbs6 ft3NoNoProspectNoNo22024-06-25FalseFalsePro & Farm918,333$0$0$No918,333$--------918,333$--------No--------Lien
Nick AbruzzesePhantoms (Phi)C251999-06-04USAYes181 Lbs5 ft11NoNoTrade2024-10-17YesYes1FalseFalsePro & Farm850,000$0$0$No---------------------------Lien
Ryder RolstonPhantoms (Phi)RW222001-10-31USAYes201 Lbs6 ft2NoYesProspectNoNo22024-06-25FalseFalsePro & Farm895,000$0$0$No895,000$--------895,000$--------No--------Lien
Tanner LaczynskiPhantoms (Phi)C271997-06-01USANo190 Lbs6 ft1NoYesN/AYesYes1FalseFalsePro & Farm775,000$0$0$No---------------------------Lien
Tobias BjornfotPhantoms (Phi)D232001-04-06SWEYes203 Lbs6 ft0NoYesFree Agent2024-06-23NoNo22024-08-31FalseFalsePro & Farm800,000$0$0$No800,000$--------800,000$--------No--------Lien
Topi NiemeläPhantoms (Phi)D222002-03-25FINYes179 Lbs6 ft0NoNoTrade2024-01-24NoNo1FalseFalsePro & Farm856,667$0$0$No---------------------------Lien
Tristan BrozPhantoms (Phi)C212002-10-10USAYes179 Lbs6 ft0NoNoProspectNoNo32025-07-10FalseFalsePro & Farm925,000$0$0$No925,000$925,000$-------925,000$925,000$-------NoNo-------Lien
Vadim ZherenkoPhantoms (Phi)G232001-03-15RUSYes196 Lbs6 ft4NoNoN/ANoNo1FalseFalsePro & Farm846,667$0$0$No---------------------------Lien
Nombre de joueursÂge moyenPoids moyenTaille moyenneContrat moyenSalaire moyen 1e année
2123.86194 Lbs6 ft21.81911,693$



Attaque à 5 contre 5
Ligne #Ailier gaucheCentreAilier droit% tempsPHYDFOF
1Brendan LemieuxFrank NazarRyder Rolston40122
2Elliot DesnoyersConor GeekieDalibor Dvorský30122
3Josiah SlavinTanner LaczynskiNick Abruzzese20122
4Julian LutzNick AbruzzeseFrank Nazar10122
Défense à 5 contre 5
Ligne #DéfenseDéfense% tempsPHYDFOF
1Caleb JonesKevin Korchinski40122
2Dylan CoghlanTopi Niemelä30122
3Tobias BjornfotTristan Broz20122
4Caleb JonesKevin Korchinski10122
Attaque en avantage numérique
Ligne #Ailier gaucheCentreAilier droit% tempsPHYDFOF
1Brendan LemieuxFrank NazarRyder Rolston60122
2Elliot DesnoyersConor GeekieDalibor Dvorský40122
Défense en avantage numérique
Ligne #DéfenseDéfense% tempsPHYDFOF
1Caleb JonesKevin Korchinski60122
2Dylan CoghlanTopi Niemelä40122
Attaque à 4 en désavantage numérique
Ligne #CentreAilier% tempsPHYDFOF
1Frank NazarConor Geekie60122
2Tanner LaczynskiNick Abruzzese40122
Défense à 4 en désavantage numérique
Ligne #DéfenseDéfense% tempsPHYDFOF
1Caleb JonesKevin Korchinski60122
2Dylan CoghlanTopi Niemelä40122
3 joueurs en désavantage numérique
Ligne #Ailier% tempsPHYDFOFDéfenseDéfense% tempsPHYDFOF
1Frank Nazar60122Caleb JonesKevin Korchinski60122
2Conor Geekie40122Dylan CoghlanTopi Niemelä40122
Attaque à 4 contre 4
Ligne #CentreAilier% tempsPHYDFOF
1Frank NazarConor Geekie60122
2Tanner LaczynskiNick Abruzzese40122
Défense à 4 contre 4
Ligne #DéfenseDéfense% tempsPHYDFOF
1Caleb JonesKevin Korchinski60122
2Dylan CoghlanTopi Niemelä40122
Attaque dernière minute
Ailier gaucheCentreAilier droitDéfenseDéfense
Brendan LemieuxFrank NazarRyder RolstonCaleb JonesKevin Korchinski
Défense dernière minute
Ailier gaucheCentreAilier droitDéfenseDéfense
Brendan LemieuxFrank NazarRyder RolstonCaleb JonesKevin Korchinski
Attaquants supplémentaires
Normal Avantage numériqueDésavantage numérique
Tristan Broz, Josiah Slavin, Julian LutzTristan Broz, Josiah SlavinJulian Lutz
Défenseurs supplémentaires
Normal Avantage numériqueDésavantage numérique
Tobias Bjornfot, Dylan Coghlan, Topi NiemeläTobias BjornfotDylan Coghlan, Topi Niemelä
Tirs de pénalité
Frank Nazar, Conor Geekie, Tanner Laczynski, Nick Abruzzese, Brendan Lemieux
Gardien
#1 : James Reimer, #2 : Devon Levi


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
TotalDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Cabaret Lady Mary Ann2200000014410110000009181100000053241.00014213500417121543264632441623336583.33%4175.00%0609066.67%6611756.41%6510363.11%106541474910956
2Caroline10001000651000000000001000100065121.000611170041712131326463234209300.00%000%0609066.67%6611756.41%6510363.11%106541474910956
3Firebirds1010000013-21010000013-20000000000000.00011200417121213264632244920000%20100.00%0609066.67%6611756.41%6510363.11%106541474910956
4Minnesota11000000642110000006420000000000021.0006101600417121223264632226216200.00%10100.00%1609066.67%6611756.41%6510363.11%106541474910956
5Oceanics11000000734110000007340000000000021.000712190041712133326463241162625200.00%30100.00%0609066.67%6611756.41%6510363.11%106541474910956
Total6410100034191543100000231112210010001183100.833345589004171211613264632165446010313538.46%10190.00%1609066.67%6611756.41%6510363.11%106541474910956
_Since Last GM Reset6410100034191543100000231112210010001183100.833345589004171211613264632165446010313538.46%10190.00%1609066.67%6611756.41%6510363.11%106541474910956
_Vs Conference11000000734110000007340000000000021.000712190041712133326463241162625200.00%30100.00%0609066.67%6611756.41%6510363.11%106541474910956
_Vs Division10000000651000000000001000000065100.000611170041712131326463234209300.00%000%0609066.67%6611756.41%6510363.11%106541474910956

Total pour les joueurs
Matchs jouésPointsSéquenceButsPassesPointsTirs pourTirs contreTirs bloquésMinutes de pénalitésMises en échecButs en filet désertBlanchissages
610L1345589161165446010300
Tous les matchs
GPWLOTWOTL SOWSOLGFGA
64110003419
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
43100002311
Matchs extérieurs
GPWLOTWOTL SOWSOLGFGA
2101000118
Derniers 10 matchs
WLOTWOTL SOWSOL
510000
Tentatives en avantage numériqueButs en avantage numérique% en avantage numériqueTentatives en désavantage numériqueButs contre en désavantage numérique% en désavantage numériqueButs pour en désavantage numérique
13538.46%10190.00%1
Tirs en 1e périodeTirs en 2e périodeTirs en 3e périodeTirs en 4e périodeButs en 1e périodeButs en 2e périodeButs en 3e périodeButs en 4e période
3264632417121
Mises en jeu
Gagnées en zone offensiveTotal en zone offensive% gagnées en zone offensive Gagnées en zone défensiveTotal en zone défensive% gagnées en zone défensiveGagnées en zone neutreTotal en zone neutre% gagnées en zone neutre
609066.67%6611756.41%6510363.11%
Temps avec la rondelle
En zone offensiveContrôle en zone offensiveEn zone défensiveContrôle en zone défensiveEn zone neutreContrôle en zone neutre
106541474910956


Derniers matchs joués
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe visiteuse Score Équipe locale Score ST OT SO RI Lien
3 - 2025-10-0912Phantoms5Cabaret Lady Mary Ann3WSommaire du match
5 - 2025-10-1130Phantoms6Caroline5WXSommaire du match
7 - 2025-10-1344Cabaret Lady Mary Ann1Phantoms9WSommaire du match
10 - 2025-10-1666Oceanics3Phantoms7WSommaire du match
12 - 2025-10-1881Minnesota4Phantoms6WSommaire du match
14 - 2025-10-2094Firebirds3Phantoms1LSommaire du match
17 - 2025-10-23112Phantoms-Senators-
19 - 2025-10-25127Sound Tigers-Phantoms-
22 - 2025-10-28150Manchots-Phantoms-
24 - 2025-10-30170Jayhawks-Phantoms-
26 - 2025-11-01188Marlies-Phantoms-
27 - 2025-11-02196Heat-Phantoms-
29 - 2025-11-04204Phantoms-Rocket-
31 - 2025-11-06223Phantoms-Jayhawks-
33 - 2025-11-08232Senators-Phantoms-
37 - 2025-11-12266Oil Kings-Phantoms-
39 - 2025-11-14281Phantoms-Chiefs-
40 - 2025-11-15293Phantoms-Stars-
45 - 2025-11-20324Chiefs-Phantoms-
47 - 2025-11-22339Spiders-Phantoms-
49 - 2025-11-24353Phantoms-Thunder-
51 - 2025-11-26363Phantoms-Cabaret Lady Mary Ann-
53 - 2025-11-28381Phantoms-Sound Tigers-
54 - 2025-11-29395Phantoms-Spiders-
56 - 2025-12-01407Manchots-Phantoms-
58 - 2025-12-03423Crunch-Phantoms-
62 - 2025-12-07453Monsters-Phantoms-
64 - 2025-12-09469Sags-Phantoms-
66 - 2025-12-11483Las Vegas-Phantoms-
68 - 2025-12-13501Caroline-Phantoms-
69 - 2025-12-14510Phantoms-Caroline-
71 - 2025-12-16521Phantoms-Rocket-
73 - 2025-12-18535Phantoms-Crunch-
75 - 2025-12-20549Phantoms-Wolf Pack-
77 - 2025-12-22572Comets-Phantoms-
78 - 2025-12-23583Phantoms-Baby Hawks-
83 - 2025-12-28605Phantoms-Firebirds-
85 - 2025-12-30621Phantoms-Comets-
86 - 2025-12-31630Phantoms-Heat-
89 - 2026-01-03647Phantoms-Oil Kings-
92 - 2026-01-06670Admirals-Phantoms-
94 - 2026-01-08686Marlies-Phantoms-
96 - 2026-01-10705Thunder-Phantoms-
98 - 2026-01-12719Thunder-Phantoms-
100 - 2026-01-14736Phantoms-Crunch-
101 - 2026-01-15741Phantoms-Manchots-
103 - 2026-01-17755Wolf Pack-Phantoms-
105 - 2026-01-19775Phantoms-Las Vegas-
107 - 2026-01-21790Phantoms-Roadrunners-
109 - 2026-01-23805Phantoms-Monsters-
112 - 2026-01-26827Sound Tigers-Phantoms-
114 - 2026-01-28840Phantoms-Monsters-
115 - 2026-01-29843Phantoms-Bruins-
117 - 2026-01-31859Monarchs-Phantoms-
120 - 2026-02-03889Bears-Phantoms-
122 - 2026-02-05907Senators-Phantoms-
142 - 2026-02-25911Phantoms-Bears-
143 - 2026-02-26924Phantoms-Wolf Pack-
145 - 2026-02-28935Bruins-Phantoms-
147 - 2026-03-02954Phantoms-Marlies-
150 - 2026-03-05976Roadrunners-Phantoms-
152 - 2026-03-07993Phantoms-Manchots-
Date limite d’échanges --- Les échanges ne peuvent plus se faire après la simulation de cette journée!
154 - 2026-03-091008Wolf Pack-Phantoms-
156 - 2026-03-111026Bears-Phantoms-
157 - 2026-03-121035Phantoms-Minnesota-
159 - 2026-03-141052Monsters-Phantoms-
163 - 2026-03-181082Phantoms-Admirals-
164 - 2026-03-191093Phantoms-Monarchs-
166 - 2026-03-211103Phantoms-Sags-
169 - 2026-03-241125Monsters-Phantoms-
171 - 2026-03-261142Baby Hawks-Phantoms-
173 - 2026-03-281163Phantoms-Cougars-
174 - 2026-03-291172Stars-Phantoms-
176 - 2026-03-311184Phantoms-Bears-
178 - 2026-04-021196Cougars-Phantoms-
179 - 2026-04-031205Phantoms-Sound Tigers-
181 - 2026-04-051224Bruins-Phantoms-
183 - 2026-04-071236Phantoms-Spiders-
185 - 2026-04-091250Phantoms-Cougars-
187 - 2026-04-111272Phantoms-Oceanics-
189 - 2026-04-131284Caroline-Phantoms-
190 - 2026-04-141294Rocket-Phantoms-



Capacité de l’aréna - Tendance du prix des billets - %
Niveau 1Niveau 2
Capacité20001000
Prix des billets3515
Assistance7,4083,778
Assistance PCT92.60%94.45%

Revenu
Matchs à domicile restantsAssistance moyenne - %Revenu moyen par matchRevenu annuel à ce jourCapacitéPopularité de l’équipe
-1 2797 - 93.22% 94,785$379,140$3000100

Dépenses
Dépenses annuelles à ce jourSalaire total des joueursPlafond Salariale total des joueursSalaire des entraineurs
117,690$ 1,514,334$ 1,514,334$ 0$
Plafond salarial par jourPlafond salarial à ce jourJoueurs Inclus dans le plafond salarialJoueurs exclut du plafond Salarial
7,846$ 117,690$ 0 0

Estimation
Revenus de la saison estimésJours restants de la saisonDépenses par jourDépenses de la saison estimées
3,507,045$ 178 7,846$ 1,396,588$




Phantoms Leaders statistiques des joueurs (saison régulière)

# Nom du joueur GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Phantoms Leaders des statistiques des gardiens (saison régulière)

# Nom du gardien GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA

Phantoms Statistiques de l'Équipe de Carrière

TotalDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT

Phantoms Leaders statistiques des joueurs (séries éliminatoires)

# Nom du joueur GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Phantoms Leaders des statistiques des gardiens (séries éliminatoires)

# Nom du gardien GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA